Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Artificial Weathering Processes
2.3.1. Thermal Quenching
2.3.2. Salt Crystallization
3. Results and Discussions
3.1. Influence of Cyclic Thermal Quenching Weathering on Physicomechanical Characteristics
3.2. Influence of Cyclic Salt Crystallization Weathering on Physicomechanical Properties
3.3. Degradation Model of the Mechanical Strength Parameters
3.3.1. Decay Constant (λ)
3.3.2. Half-Life (N1/2)
4. Conclusions
- The studied limestone rocks are more sensitive to the destructive effect of the salt crystallization action than the thermal quenching weathering process. The tested limestone rock samples, namely LSG, showed the most significant increase in porosity (3.30%) and the highest percentage decrease in uniaxial compression strength and tensile strength (48.3% and 53.4%), respectively, after the cyclic salt crystallization compared to the other limestone samples. Therefore, the thermal quenching process is not very destructive to the tested limestone samples with high strength and durability compared to salt crystallization. After the end of the cyclic salt crystallization, a slight disintegration was observed at the edges and corners of the LSG samples. Therefore, the studied limestone samples can be used as building stones in mild or humid and salty areas for a long time without degradation. Nevertheless, partial attention must be given to the LSG limestone type.
- The lowest deterioration level was recorded for the LQ rock samples due to their low porosity and water absorption capacity. Therefore, these specimens were more resistant to weathering processes than other samples.
- The tested rock specimens under cyclic thermal quenching showed low variations in their physico-mechanical properties. The major reason for these changes is the presence of calcite mineral that leads to anisotropic pressures. These pressures may reopen micro-fractures or pores and finally damage the rock. Overall, the cyclic salt weathering process deteriorated the physical and mechanical characteristics of the rock samples compared to the thermal quenching action.
- An exponential decay model is applied for predicting the integrity loss characteristics (disintegration rate) of the mechanical strength properties for the tested limestones following cyclic thermal quenching and salt crystallization weathering. This model exhibited a higher sensitivity of limestone rock samples to the cyclic salt weathering process. High values of the decay constant were attained under salt crystallization weathering in comparison with the thermal quenching action, so this model is capable of predicting the degradation rate (integrity loss) of limestone rock specimens without performing any testing and is appropriate for rocks quarried from the same type.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozcelik, Y.; Careddu, N.; Yilmazkaya, E. The effects of freeze–thaw cycles on the gloss values of polished stone surfaces. Cold Reg. Sci. Technol. 2012, 82, 49–55. [Google Scholar] [CrossRef]
- García-Del-Cura, M.A.; Benavente, D.; Martínez-Martínez, J.; Cueto, N. Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Constr. Build. Mater. 2012, 28, 456–467. [Google Scholar] [CrossRef]
- Momeni, A.; Abdilor, Y.; Khanlari, G.R.; Heidari, M.; Sepahi, A.A. The effect of freeze– thaw cycles on physical and mechanical properties of granitoid hard rocks. Bull. Eng. Geol. Environ. 2016, 75, 1649–1656. [Google Scholar] [CrossRef]
- Ali, R.; Khan, I.; Ali, A.; Mohamed, A. Two new generalized iteration methods for solving absolute value equations using M-matrix. AIMS Math. 2022, 7, 8176–8187. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Shao, Y.F.; Song, F. Characteristics of crack patterns controlling the retained strength of ceramics after thermal shock. Front. Mater. Sci. China 2010, 4, 251–254. [Google Scholar] [CrossRef]
- Abad, S.A.N.K.; Mohamad, E.T.; Komoo, I. Dominant weathering profiles of granite in southern Peninsular Malaysia. Eng. Geol. 2014, 183, 208–215. [Google Scholar] [CrossRef]
- Ercoli, L.; Zimbardo, M.; Nocilla, A. Rock decay phenomena and collapse processes in the Latomiae del Paradiso in Syracuse (Sicily). Eng. Geol. 2014, 178, 155–165. [Google Scholar] [CrossRef]
- Abad, S.V.A.N.K.; Mohamad, E.T.; Komoo, I.; Kalatehjari, R. A typical weathering profile of granitic rock in Johor, Malaysia based on joint characterization. Arab. J. Geosci. 2015, 8, 2191–2201. [Google Scholar] [CrossRef]
- Abad, S.V.A.N.K.; Mohamad, E.T.; Komoo, I.; Kalatehjari, R. Assessment of weathering effects on rock mass structure. J. Tekh. 2015, 72, 71–75. [Google Scholar]
- Khanlari, G.; Sahamieh, R.Z.; Abdilor, Y. The effect of freeze–thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran. Arab. J. Geosci. 2015, 8, 5991–6001. [Google Scholar] [CrossRef]
- Shushakova, V.; Edwin, R.; Fuller, E.R., Jr.; Heidelbach, F.; Mainprice, D.; Siegesmund, S. Marble decay induced by thermal strains: Simulations and experiments. Environ. Earth. Sci. 2013, 69, 1281–1297. [Google Scholar] [CrossRef]
- Andriani, G.F.; Germinario, L. Thermal decay of carbonate dimension stones: Fabric, physical and mechanical changes. Environ. Earth. Sci. 2014, 72, 2523–2539. [Google Scholar] [CrossRef]
- Ghobadi, M.H.; Babazadeh, R. Experimental studies on the effects of cyclic freezing– thawing, salt crystallization, and thermal shock on the physical and mechanical characteristics of selected sandstones. Rock Mech. Rock Eng. 2015, 48, 1001–1016. [Google Scholar] [CrossRef]
- Vazquez, P.; Shushakova, V.; Gomez-Heras, M. Influence of mineralogy on granite decay induced by temperature increase: Experimental observations and stress simulation. Eng. Geol. 2015, 189, 58–67. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Sert, M. Accelerated aging laboratory tests for the evaluation of the durability of hydrophobic treated and untreated andesite with respect to salt crystallization, freezing–thawing, and thermal shock. Bull. Eng. Geol. Environ. 2020, 79, 3751–3770. [Google Scholar] [CrossRef]
- Lisci, C.; Sitzia, F.; Pires, V.; Mirão, J. Building stones durability by UVA radiation, moisture and spray accelerated weathering. J. Build. Rehabil. 2022, 7, 60. [Google Scholar] [CrossRef]
- Karakaş, A.; Morali, G.; Coruk, ö.; Bozkurtoğlu, E. Geomechanical, durability–hygrothermal and thermal shock properties of Kocaeli Kandira stone used as building stone in historical structures. Environ Earth Sci. 2021, 80, 130. [Google Scholar] [CrossRef]
- Yavuz, A.B. Deterioration of the volcanic kerb and pavement stones in a humid environment in the city centre of Izmir, Turk. Environ Geol. 2006, 51, 211–227. [Google Scholar] [CrossRef]
- Hale, P.A.; Shakoor, A. A laboratory investigation of the effects of cyclic heating and cooling, wetting and drying, and freezing and thawing on the compressive strength of selected sandstones. Environ. Eng. Geosci. 2003, 9, 117–130. [Google Scholar] [CrossRef]
- Sousa, L.M.O.; Suarez, L.M.; Calleja, L.; de Argandoña, V.G.R.; Rey, A.R. Influence of micro fractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng. Geol. 2005, 77, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Xu, J.; Liu, S.; Wang, H.; Liu, S. Static and dynamic mechanical properties of sedimentary rock after freeze-thaw or thermal shock weathering. Eng. Geol. 2016, 210, 148–157. [Google Scholar] [CrossRef]
- Ali, R.; Pan, K.; Ali, A. Two generalized successive overrelaxation methods for solving absolute value equations. Math. Theory Appl. 2020, 40, 44–55. [Google Scholar]
- Gokceoglu, C.; Zorlu, K.; Ceryan, S.; Nefeslioglu, H. A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques. Mater. Charact. 2009, 60, 1317–1327. [Google Scholar] [CrossRef]
- Mutluturk, M.; Altindag, R.; Turk, G. A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling. Int. J. Rock. Mech. Min. Sci. 2004, 41, 237–244. [Google Scholar] [CrossRef]
- Jefferson, D.P. Building stone: The geological dimension. Q. J. Eng. Geol. Hydrol. 1993, 26, 305–319. [Google Scholar] [CrossRef]
- Doehne, E.; Price, C.A. Stone Conservation: An Overview of Current Research; The Getty Conservation Institute: Second edition; J Paul Getty Museum Publications: Los Ángeles, CA, USA, 2010; Volume 158. [Google Scholar]
- Benavente, D.; del Cura, M.A.G.; Fort, R.; Ordóñez, S. Thermodynamic modeling of changes induced by salt pressure crystallization in porous media of stone. J. Cryst. Growth 1999, 204, 168–178. [Google Scholar] [CrossRef]
- Jamshidi, A.; Nikudel, M.R.; Khamehchiyan, M. Predicting the long-term durability of building stones against freeze–thaw using a decay function model. Cold Reg. Sci. Technol. 2013, 92, 29–36. [Google Scholar] [CrossRef]
- Pitzurra, L.; Moroni, B.; Nocentini, A.; Sbaraglia, G.; Poli, G.; Bistoni, F. Microbial growth and air pollution in carbonate rock weathering. Int. Biodeterior. 2003, 52, 63–68. [Google Scholar] [CrossRef]
- Sandrolini, F.; Franzoni, E. An operative protocol for reliable measurements of moisture in porous materials of ancient buildings. Build. Environ. 2006, 41, 1372–1380. [Google Scholar] [CrossRef]
- Bozdağ, A. The Effect of Salt (NaCl) Crystallization on Engineering Parameters of Rocks. Ph.D. Thesis, Selcuk University, Konya, Turkey, 2013. [Google Scholar]
- Korkanç, M. Deterioration of different stones used in historical buildings within Nigde Province, Cappadocia. Constr. Build. Mater. 2013, 48, 789–803. [Google Scholar]
- Barone, G.; Mazzoleni, P.; Pappalardo, G.; Raneri, S. Microtextural and microstructural influence on the changes of physical and mechanical proprieties related to salts crystallization weathering in natural building stones. The example of Sabucina stone (Sicily). Constr. Build. Mater. 2015, 95, 355–365. [Google Scholar] [CrossRef]
- Erdogan, O.; Ozvan, A. Evaluation of strength parameters and quality assessment of different lithotype levels of Edremit (Van) Travertine (Eastern Turkey). J. Afr. Earth. Sci. 2016, 106, 108–118. [Google Scholar] [CrossRef]
- Jamshidi, A.; Nikudel, M.R.; Khamehchiyan, M. Evaluation of the durability of Gerdoee travertine after freeze-thaw cycles in fresh water and sodium sulfate solution. Eng. Geol. 2016, 202, 36–43. [Google Scholar] [CrossRef]
- Menendez, B.; Petranova, V. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions. Eng. Geol. 2016, 210, 124–139. [Google Scholar] [CrossRef]
- Ruffolo, S.A.; La Russa, M.F.; Ricca, M.; Belfiore, C.M.; Macchia, A.; Comite, V.; Pezzino, A.; Crisci, G.M. New insights on the consolidation of salt weathered limestone: The case study of Modica stone. Bull. Eng. Geol. Environ. 2017, 76, 11–20. [Google Scholar] [CrossRef]
- Çelik, M.Y.; Tığlı, R. The investigation of the water repellent chemical influence on salt crystallization in high porous building stones. Gazi Univ. J. Eng. Arch. 2018, 34, 535–552. [Google Scholar]
- Khodabandeh, M.A.; Rozgonyi-Boissinot, N. The Effect of Salt Weathering and Water Absorption on the Ultrasonic Pulse Velocities of Highly Porous Limestone. Period. Polytech. Civ. Eng. 2022, 66, 627–639. [Google Scholar] [CrossRef]
- Lezzerini, M.; Tomei, A.; Gallello, G.; Aquino, A.; Pagnotta, S. The Crystallization Effect of Sodium Sulfate on Some Italian Marbles, Calcarenites and Sandstones. Heritage 2022, 5, 1449–1461. [Google Scholar] [CrossRef]
- Çelik, M.Y.; İbrahimoglu, A. Characterization of travertine stones from Turkey and assessment of their durability to salt crystallization. J. Build. Eng. 2021, 43, 102592. [Google Scholar] [CrossRef]
- Oguchi, C.T.; Yu, S. A review of theoretical salt weathering studies for stone heritage. Prog. Earth Planet. Sci. 2021, 8, 32. [Google Scholar] [CrossRef]
- Angeli, M.; Heber, R.; Menendez, B.; David, C.; Bigas, J.-P. Influence of temperature and salt concentration on the salt weathering of a sedimentary stone with sodium sulphate. Eng. Geol. 2010, 115, 193–199. [Google Scholar] [CrossRef]
- Cultrone, G.; Luque, A.; Sebastián, E. Petrophysical and durability tests on sedimentary stones to evaluate their quality as building materials. Q. J. Eng. Geol. Hydrog. 2012, 45, 415–422. [Google Scholar] [CrossRef]
- Vázquez, P.; Alonso, F.; Carrizo, L.; Molina, E.; Cultrone, G.; Blanco, M.; Zamora, I. Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr. Build. Mater. 2013, 41, 868–878. [Google Scholar] [CrossRef]
- Yavuz, A.B.; Topal, T. Thermal and salt crystallization effects on marble deterioration: Examples from Western Anatolia, Turkey. Eng. Geol. 2007, 90, 30–40. [Google Scholar] [CrossRef]
- Benavente, D.; Cueto, N.; Martínez-Martínez, J.; Del Cura, M.A.G.; Cañaveras, J.C. The influence of petrophysical properties on the salt weathering of porous building rocks. Environ. Geol. 2007, 52, 197–206. [Google Scholar] [CrossRef]
- Yavuz, A.B.; Kaputoglu, S.A.; Çolak, M.; Tanyu, B.F. Durability assessments of rare green andesites widely used as building stones in Buca (Izmir), Turkey. Environ. Earth Sci. 2017, 76, 211. [Google Scholar] [CrossRef]
- Ruedrich, J.; Siegesmund, S. Salt and ice crystallisation in porous sandstones. Environ. Geol. 2007, 52, 225–249. [Google Scholar] [CrossRef]
- Yavuz, H. Effect of freeze–thaw and thermal shock weathering on the physical and mechanical properties of an andesite stone. Bull. Eng. Geol. Environ. 2011, 70, 187–192. [Google Scholar] [CrossRef]
- Liu, Q.S.; Huang, S.B.; Kang, Y.S.; Liu, X.W. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze–thaw. Cold Reg. Sci. Technol. 2015, 120, 96–107. [Google Scholar] [CrossRef]
- TS EN 1936; Natural Stone Test Methods-Determination of Real Density and Apparent Density and of Total and Open Porosity. Turkish Standards Institute: Ankara, Turkey, 2010; p. 10.
- TS EN 13755; Natural Stone Test Methods-Determination of Water Absorption at Atmospheric Pressure. Turkish Standards Institute: Ankara, Turkey, 2009; p. 10.
- ISRM. Rock Characterization, Testing, and Monitoring; ISRM Suggested Methods, Pergamon Press: Oxford, UK, 1981. [Google Scholar]
- TS EN 1926; Natural Stone Test Methods-Determination of Uniaxial Compressive Strength. Turkish Standards Institute: Ankara, Turkey, 2007; p. 19.
- ISRM. Suggested methods for determining tensile strength of rock materials. Int. J. Rock. Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- Aydin, A. ISRM suggested method for determination of the Schmidt hammer rebound hardness: Revised version. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014 SE-2; Ulusay, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 25–33. [Google Scholar]
- Martínez-Martínez, J.; Benavente, D.; García-del-Cura, M.A. Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng. Geol. 2011, 119, 84–95. [Google Scholar] [CrossRef]
- Turkish Standards Institute; Natural Stone Test Methods—Determination of Resistance to Ageing by Thermal Shock. Institute of Turkish Standards: Ankara, Turkey, 2004; p. 3.
- Rothert, E.; Eggers, T.; Cassar, J.; Ruedrich, J.; Fitzner, B.; Siegesmund, S. Stone properties and weathering induced by salt crystallization of Maltese Globigerina Limestone. Geol. Soc. Lond. Spec. Publ. 2007, 271, 189. [Google Scholar] [CrossRef] [Green Version]
- Ruedrich, J.; Kirchner, D.; Siegesmund, S. Physical weathering of building stones induced by freeze–thaw action: A laboratory long term study. Environ. Earth. Sci. 2011, 63, 1573–1586. [Google Scholar] [CrossRef] [Green Version]
- Benavente, D.; Pla, C.; Cueto, N.; Galvañ, S.; Martínez-Martínez, J.; García-Del-Cura, M.; Ordóñez, S. Predicting water permeability in sedimentary rocks from capillary imbibition and pore structure. Eng. Geol. 2015, 195, 301–311. [Google Scholar] [CrossRef]
- Akin, A.; Ozsan, A. Evaluation of the long-term durability of yellow travertine using accelerated weathering tests. Bull. Eng. Geol. Environ. 2011, 70, 101–114. [Google Scholar] [CrossRef]
- Tuğrul, A. The effect of weathering on the pore geometry and compressive strength of selected rock types from Turkey. Eng. Geol. 2004, 75, 215–227. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Ahmad, A.; Pamplona, M.; Simon, S. Ultrasonic testing for the investigation and characterization of stone—A non-destructive and transportable tool. Stud. Conserv. 2009, 54, 43–53. [Google Scholar] [CrossRef]
- La Iglesia, A.; González, V.; López-Acevedo, V.; Viedma, C. Salt crystallization in porous construction materials. I. Estimation of crystallization pressure. J. Cryst. Growth 1997, 177, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.A.; Wichern, D.W. Applied Multivariate Statistical Analysis, 5th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1999. [Google Scholar]
- Eren, O.; Bahali, M. Some engineering properties of natural building cut stones of Cyprus. Constr. Build. Mater. 2005, 19, 213–222. [Google Scholar] [CrossRef]
Rock Type | Code | Locality | Microstructure |
---|---|---|---|
Limestone | LSS | South Sinai | Medium-grained calcite texture, oolitic, porous, packstone, cemented, pores filled with rare minerals |
Limestone | LSZ | Suez | Fine-grained calcite texture, calcareous massive, slightly porous |
Limestone | LEM | El-Minia | Fine-grained calcite texture, slightly hard stone, clastic |
Limestone | LQ | Qena | Very fine-grained calcite texture, clastic, compact, marly, hard stone |
Limestone | LSG | Sohag | Coarse-grained calcite texture, porous, weak stone |
Limestone | LA | Aswan | Medium- to fine-grained calcite texture, semiporous, pack stone |
Rock type | Locality | CaO | K2O | MgO | Al2O3 | Na2O | Fe2O3 | SiO2 | LOI | Total |
---|---|---|---|---|---|---|---|---|---|---|
LSS | South-Sinai | 55.06 | 0.05 | 0.30 | 0.11 | 0.09 | 0.15 | 2.07 | 42.09 | 99.92 |
LSZ | Suez | 53.13 | 0.07 | 0.60 | 0.16 | 0.05 | 0.17 | 2.77 | 43.20 | 100.15 |
LEM | El-Minia | 51.87 | 0.04 | 0.43 | 0.09 | 0.04 | 0.11 | 3.28 | 44.25 | 100.11 |
LQ | Qena | 50.61 | 0.02 | 0.33 | 0.07 | 0.01 | 0.10 | 4.97 | 43.88 | 99.99 |
LSG | Sohag | 56.47 | 0.09 | 0.66 | 0.19 | 0.06 | 0.23 | 1.80 | 40.54 | 100.04 |
LA | Aswan | 53.39 | 0.07 | 0.61 | 0.15 | 0.05 | 0.20 | 3.78 | 41.68 | 99.93 |
Absolute error (%) | 0.030 | 0.001 | 0.006 | 0.002 | 0.001 | 0.004 | 0.013 | 0.00 |
Rock Type | ρd (g/cm3) | W (%) | n (%) | SCH | UPV (Km/s) | Ts (MPa) | UCS (MPa) |
---|---|---|---|---|---|---|---|
Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | |
LSS | 2.46 0.08 | 5.50 0.64 | 9.82 0.95 | 30.5 1.65 | 3.33 0.39 | 3.19 0.37 | 38.08 1.74 |
LSZ | 2.61 0.11 | 2.26 0.41 | 7.99 1.17 | 36.9 0.99 | 4.67 0.65 | 5.15 0.62 | 54.95 1.71 |
LEM | 2.49 0.07 | 1.61 0.44 | 7.47 0.83 | 38.3 1.06 | 4.81 0.44 | 5.42 0.72 | 66.90 1.75 |
LQ | 2.44 0.09 | 1.56 0.38 | 6.89 0.90 | 40.7 1.41 | 5.02 0.53 | 5.83 0.99 | 73.77 1.65 |
LSG | 2.63 0.10 | 4.80 0.40 | 9.33 0.72 | 33.8 1.18 | 3.78 0.88 | 3.99 0.65 | 41.05 2.36 |
LA | 2.52 0.06 | 4.30 0.52 | 8.80 0.91 | 35.4 1.13 | 4.02 0.75 | 4.19 0.60 | 45.97 2.02 |
No of tested specimens | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Cyclic Number | LSS | LSZ | LEM | LQ | LSG | LA |
---|---|---|---|---|---|---|
Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | |
n (%) | ||||||
0 | 9.82 0.95 | 7.99 1.17 | 7.47 0.83 | 6.89 0.90 | 9.33 0.72 | 8.80 0.91 |
50 | 9.94 0.99 | 8.14 1.12 | 7.55 0.95 | 6.95 0.99 | 9.51 0.66 | 8.97 1.07 |
SCH | ||||||
0 | 30.51 1.65 | 36.90 0.99 | 38.44 1.06 | 40.71 1.41 | 33.8 1.18 | 35.4 1.13 |
50 | 29.11 1.09 | 35.05 1.11 | 37.10 1.27 | 39.70 1.33 | 31.9 1.29 | 33.7 1.28 |
UPV (Km/s) | ||||||
0 | 3.23 0.39 | 4.67 0.65 | 4.81 0.44 | 5.02 0.53 | 3.78 0.88 | 4.02 0.75 |
50 | 3.10 0.44 | 4.53 0.77 | 4.70 0.62 | 4.95 0.50 | 3.56 1.04 | 3.82 0.80 |
Ts (MPa) | ||||||
0 | 3.19 0.37 | 5.15 0.72 | 5.42 0.62 | 5.83 0.99 | 3.99 0.65 | 4.19 0.60 |
10 | 2.95 0.39 | 5.03 0.77 | 5.26 0.78 | 5.75 1.10 | 3.65 0.66 | 3.98 0.50 |
20 | 2.83 0.28 | 4.83 0.80 | 5.10 0.80 | 5.69 1.04 | 3.40 0.70 | 3.57 0.67 |
30 | 2.56 0.44 | 4.55 0.96 | 4.99 0.77 | 5.55 0.90 | 3.12 0.98 | 3.33 0.89 |
40 | 2.35 0.50 | 4.28 0.91 | 4.72 0.84 | 5.33 0.95 | 2.75 0.91 | 2.88 0.70 |
50 | 2.30 0.45 | 3.80 0.76 | 4.41 0.93 | 5.07 0.87 | 2.25 0.84 | 2.59 0.99 |
UCS (MPa) | ||||||
0 | 38.08 1.74 | 54.95 1.71 | 66.90 1.75 | 73.77 1.65 | 41.05 2.32 | 45.97 2.02 |
10 | 36.55 2.10 | 51.15 1.66 | 65.11 2.12 | 73.02 1.59 | 37.36 2.55 | 41.57 2.22 |
20 | 33.82 2.04 | 47.10 1.77 | 63.50 1.80 | 71.89 1.87 | 34.56 2.23 | 36.54 2.43 |
30 | 31.75 1.99 | 45.15 2.05 | 60.14 1.98 | 69.18 2.14 | 31.23 2.67 | 33.70 2.30 |
40 | 28.65 1.67 | 42.98 1.99 | 56.84 1.95 | 66.65 2.23 | 26.66 2.11 | 30.54 2.25 |
50 | 27.83 1.89 | 41.29 1.85 | 55.9 2.02 | 65.99 1.77 | 25.00 1.99 | 29.32 2.61 |
Cyclic Number | LSS | LSZ | LEM | LQ | LSG | LA |
---|---|---|---|---|---|---|
Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | Mean SD | |
n (%) | ||||||
0 25 | 9.82 0.95 10.03 1.11 | 7.99 1.17 8.24 1.30 | 7.47 0.83 7.67 0.90 | 6.89 0.90 7.05 1.04 | 9.33 0.72 9.64 1.0 | 8.80 0.91 9.08 1.20 |
SCH | ||||||
0 25 | 30.51 1.65 28.00 1.77 | 36.90 0.99 33.80 1.09 | 38.44 1.06 36.60 1.13 | 40.71 1.41 39.34 1.47 | 33.80 1.18 30.20 1.11 | 35.43 1.13 32.10 1.29 |
UPV (Km/s) | ||||||
0 25 | 3.23 0.39 3.02 0.49 | 4.67 0.65 4.44 0.73 | 4.81 0.44 4.62 0.55 | 5.02 0.53 4.86 0.76 | 3.78 0.88 3.48 0.97 | 4.02 0.75 3.76 0.66 |
Ts (MPa) | ||||||
0 5 10 15 20 | 3.19 0.37 2.94 0.44 2.77 0.50 2.41 0.41 42.17 0.70 | 5.15 0.72 4.90 0.88 4.65 0.90 4.26 0.88 3.90 1.05 | 5.42 0.62 5.18 0.85 5.01 0.90 4.88 0.80 4.56 0.66 | 5.83 0.99 5.74 1.02 5.63 1.11 5.40 0.92 5.29 0.96 | 3.99 0.65 3.55 0.87 3.25 0.73 2.95 0.90 2.45 0.88 | 4.19 0.60 3.86 0.65 3.29 0.75 2.99 0.78 2.62 0.59 |
25 | 2.03 0.66 | 3.35 1.11 | 4.30 0.78 | 4.95 0.77 | 1.86 1.10 | 2.25 0.81 |
UCS (MPa) | ||||||
0 5 10 15 20 | 38.08 1.74 35.90 2.27 32.99 2.14 30.15 1.90 27.12 1.99 | 54.95 1.71 49.85 1.89 46.12 1.75 43.55 2.22 39.58 1.80 | 66.90 1.75 64.55 2.14 61.88 1.99 59.24 1.86 56.77 1.90 | 73.77 1.65 72.12 1.70 70.79 1.94 68.22 2.01 65.25 2.10 | 41.05 2.32 35.16 2.40 30.66 2.15 27.67 2.60 23.02 2.43 | 45.97 2.02 39.88 2.16 34.12 2.22 31.07 2.07 27.89 2.28 |
25 | 24.65 2.18 | 37.12 1.99 | 54.02 2.22 | 63.98 1.99 | 21.22 2.70 | 26.64 2.35 |
Tensile Strength TS (MPa) | ||||||
---|---|---|---|---|---|---|
Thermal Quenching | Salt Crystallization | |||||
λ | N1/2 | R2 | λ | N1/2 | R2 | |
LSS | −0.007 | 99.0 | 0.9796 | −0.019 | 36.5 | 0.9877 |
LSZ | −0.006 | 115.5 | 0.9385 | −0.017 | 40.8 | 0.9571 |
LEM | −0.004 | 173.3 | 0.9562 | −0.009 | 77.0 | 0.9768 |
LQ | −0.003 | 231.0 | 0.9200 | −0.006 | 115.5 | 0.9438 |
LSG | −0.011 | 63.0 | 0.9589 | −0.029 | 23.9 | 0.9459 |
LA | −0.010 | 69.3 | 0.9827 | −0.025 | 27.7 | 0.9936 |
Uniaxial Compression Strength UCS (MPa). | ||||||
---|---|---|---|---|---|---|
Thermal Quenching | Salt Crystallization | |||||
λ | N1/2 | R2 | λ | N1/2 | R2 | |
LSS | −0.007 | 99 | 0.9840 | −0.018 | 38.5 | 0.9928 |
LSZ | −0.006 | 115.5 | 0.9799 | −0.015 | 46.2 | 0.9953 |
LEM | −0.004 | 173.3 | 0.9753 | −0.009 | 77 | 0.9979 |
LQ | −0.002 | 346.5 | 0.9584 | −0.006 | 115.5 | 0.981 |
LSG | −0.010 | 69.3 | 0.9880 | −0.027 | 25.7 | 0.9931 |
LA | −0.009 | 77.0 | 0.9823 | −0.022 | 31.5 | 0.9735 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelhamid, M.M.A.; Mousa, B.G.; Waqas, H.; Elkotb, M.A.; Eldin, S.M.; Munir, I.; Ali, R.; Galal, A.M. Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt. Minerals 2022, 12, 1393. https://doi.org/10.3390/min12111393
Abdelhamid MMA, Mousa BG, Waqas H, Elkotb MA, Eldin SM, Munir I, Ali R, Galal AM. Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt. Minerals. 2022; 12(11):1393. https://doi.org/10.3390/min12111393
Chicago/Turabian StyleAbdelhamid, Marzouk Mohamed Aly, B. G. Mousa, Hassan Waqas, Mohamed Abdelghany Elkotb, Sayed M. Eldin, Iqra Munir, Rashid Ali, and Ahmed M. Galal. 2022. "Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt" Minerals 12, no. 11: 1393. https://doi.org/10.3390/min12111393
APA StyleAbdelhamid, M. M. A., Mousa, B. G., Waqas, H., Elkotb, M. A., Eldin, S. M., Munir, I., Ali, R., & Galal, A. M. (2022). Artificial Thermal Quenching and Salt Crystallization Weathering Processes for the Assessment of Long-Term Degradation Characteristics of Some Sedimentary Rocks, Egypt. Minerals, 12(11), 1393. https://doi.org/10.3390/min12111393