Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Collection of Soil Samples and Corn Grains
2.3. Soil and Corn Grain Analysis
2.4. Quality Control and Assurance
2.5. Pollution Indices
Geoaccumulation Index (Igeo)
- Igeo ≤ 0, uncontaminated;
- 0 < Igeo < 1, uncontaminated or moderately contaminated;
- 1 < Igeo < 2, moderately contaminated;
- 2 < Igeo < 3, moderately to heavily contaminated;
- 3 < Igeo < 4, heavily contaminated;
- 4 < Igeo < 5, heavily to extremely contaminated;
- 5 ≤ Igeo, extremely contaminated.
Single Pollution Index (PI)
Bioaccumulation Factor (BF)
Potential Ecological Risk (RI)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Soil Properties
3.2. PTE Content in the Studied Soils
3.3. PTE Content in the Corn Grains
3.4. Relationships between Soil/Corn Grain PTE Contents and the Soil Characteristics
3.5. Bioaccumulation Factor (BF)
3.6. Pollution Indices and Potential Ecological Risk (RI)
3.6.1. Geoaccumulation Index (Igeo) and Single Pollution Index (PI)
3.6.2. Potential Ecological Risk (RI)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bilias, F.; Nikoli, T.; Kalderis, D.; Gasparatos, D. Towards a Soil Remediation Strategy Using Biochar: Effects on Soil Chemical Properties and Bioavailability of Potentially Toxic Elements. Toxics 2021, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Alloway, B.J. Sources of heavy metals and metalloids in soils. In Heavy Metals in Soils. Environmental Pollution; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 22, pp. 11–50. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Kalyvas, G.; Ioannou, D.; Massas, I. Desorption of Arsenic from Calcareous Mine Affected Soils by Phosphate Fertilizers Application in Relation to Soil Properties and As Partitioning. Soil Syst. 2019, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Tripti; Raj, D.; Maiti, S.K.; Maleva, M.; Borisova, G. Soil Pollution and Plant Efficiency Indices for Phytoremediation of Heavy Metal(loid)s: Two-Decade Study (2002–2021). Metals 2022, 12, 1330. [Google Scholar] [CrossRef]
- González Henao, S.; Ghneim-Herrera, T. Heavy Metals in Soils and the Remediation Potential of Bacteria Associated With the Plant Microbiome. Frontiers in Environmental Science 2021, 9, 15. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Massas, I. Selenium Uptake by Lettuce Plants and Se Distribution in Soil Chemical Phases Affected by the Application Rate and the Presence of a Seaweed Extract-Based Biostimulant. Soil Syst. 2022, 6, 56. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef]
- Fraser, C.J.D.; Roulet, N.T.; Moore, T.R. Hydrology and dissolved organic carbon biogeochemistry in an ombrotrophic bog. Hydrol. Process. 2001, 15, 3151–3166. [Google Scholar] [CrossRef]
- Fraser, C.; Roulet, N.; Lafleur, M. Groundwater flow patterns in a large peatland. J. Hydrol. 2001, 246, 142–154. [Google Scholar] [CrossRef]
- Rezanezhad, F.; Price, J.S.; Quinton, W.L.; Lennartz, B.; Milojevic, T.; Van Cappellen, P. Structure of peat soils and implications for water storage, flow and solute transport: A review update for geochemists. Chem. Geol. 2016, 429, 75–84. [Google Scholar] [CrossRef]
- Kløve, B.; Berglund, K.; Berglund, Ö.; Weldon, S.; Maljanen, M. Future options for cultivated Nordic peat soils: Can land management and rewetting control greenhouse gas emissions? Environ. Sci. Policy 2017, 69, 85–93. [Google Scholar] [CrossRef]
- Monteverde, S.; Healy, M.; O’Leary, D.; Daly, E.; Callery, O. Management and rehabilitation of peatlands: The role of water chemistry, hydrology, policy, and emerging monitoring methods to ensure informed decision making. Ecol. Inf. 2022, 69, 101638. [Google Scholar] [CrossRef]
- Tsioptsias, C.; Samiotis, G.; Lefteri, L.; Amanatidou, E. Cr(VI) Leached from Lignite Fly Ash—Assessment of Groundwater Contamination Risk. Water Air Soil Pollut. 2020, 231, 373. [Google Scholar] [CrossRef]
- Pavloudakis, F.; Roumpos, C.; Karlopoulos, E.; Koukouzas, N. Sustainable Rehabilitation of Surface Coal Mining Areas: The Case of Greek Lignite Mines. Energies 2020, 13, 3995. [Google Scholar] [CrossRef]
- Christanis, K.; Georgakopoulos, A.; Fernández-Turiel, J.; Bouzinos, A. Geological factors influencing the concentration of trace elements in the Philippi peatland, eastern Macedonia, Greece. Int. J. Coal Geol. 1998, 36, 295–313. [Google Scholar] [CrossRef]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A.; Fernandez-Turiel, J.-L.; Llorens, J.-F.; Mousty, F. Leachability of Major and Trace Elements of Fly Ash from Ptolemais Power Station, Northern Greece. Energy Sources 2002, 24, 103–113. [Google Scholar] [CrossRef]
- Giouri, K.; Melfos, V.; Papadopoulou, L.; Vavelidis, M.; Alifragkis, D. Selected Metal Content and Binding Behaviour in Riverbed Sediments of the Kavala–Philippi Area (Northern Greece). Geosciences 2018, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Finkelman, R.B. Trace elements in coal: Environmental and health significance. Biol. Trace Elem. Res. 1999, 67, 197–204. [Google Scholar] [CrossRef]
- Ahmad, M.S.A.; Ashraf, M. Essential Roles and Hazardous Effects of Nickel in Plants. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; Volume 214, pp. 125–167. [Google Scholar]
- Shahzad, B.; Tanveer, M.; Rehman, A.; Alam Cheema, S.; Fahad, S.; Rehman, S.; Sharma, A.N. Whether toxic or essential for plants and environment—A review. Plant Physiol. Biochem. 2018, 132, 641–651. [Google Scholar] [CrossRef]
- Markus, J.; McBratney, A.B. A Review of the Contamination of Soil with Lead. Environ. Int. 2001, 27, 399–411. [Google Scholar] [CrossRef]
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Ali, M.N.V.S.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Koppala, S.; et al. Bioaccumulation of lead (Pb) and its effects in plants: A review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Zhang, L.; Qin, X.; Tang, J.; Liu, W.; Yang, H. Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China. Appl. Geochem. 2017, 77, 80–88. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Kalderis, D.; Massas, I. Selenium Biofortification of Lettuce Plants (Lactuca sativa L.) as Affected by Se Species, Se Rate, and a Biochar Co-Application in a Calcareous Soil. Agronomy 2022, 12, 131. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Massas, I. Selenium uptake by rocket plants (Eruca sativa) grown in a calcareous soil as affected by Se species, Se rate and a seaweed extract-based biostimulant application. Crop Pasture Sci. 2022. [Google Scholar] [CrossRef]
- Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef]
- Zafeiriou, I.; Gasparatos, D.; Massas, I. Adsorption/Desorption Patterns of Selenium for Acid and Alkaline Soils of Xerothermic Environments. Environments 2020, 7, 72. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An Overview of Selenium Uptake, Metabolism, and Toxicity in Plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [Green Version]
- Genova, G.; Della Chiesa, S.; Mimmo, T.; Borruso, L.; Cesco, S.; Tasser, E.; Matteazzi, A.; Niedrist, G. Copper and zinc as a window to past agricultural land-use. J. Hazard. Mater. 2021, 424, 126631. [Google Scholar] [CrossRef] [PubMed]
- Mir, A.R.; Pichtel, J.; Hayat, S. Copper: Uptake, toxicity and tolerance in plants and management of Cu-contaminated soil. BioMetals 2021, 34, 737–759. [Google Scholar] [CrossRef]
- Wulf, S.; Hardiman, M.J.; Staff, R.; Koutsodendris, A.; Appelt, O.; Blockley, S.P.; Lowe, J.J.; Manning, C.J.; Ottolini, L.; Schmitt, A.K.; et al. The marine isotope stage 1–5 cryptotephra record of Tenaghi Philippon, Greece: Towards a detailed tephrostratigraphic framework for the Eastern Mediterranean region. Quat. Sci. Rev. 2018, 186, 236–262. [Google Scholar] [CrossRef]
- Nachtergaele, F. Soil Taxonomy—A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Geoderma 2001, 99, 336–337. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources Organization (FAO-WRB). International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Reference Base for Soil Resources Organization (FAO-WRB): Rome, Italy, 2014. [Google Scholar]
- NF ISO 10693; Détermination de la Teneuren Carbonate—MéthodeVolumétrique. Qualité des Sols AFNOR: Paris, France, 1995; pp. 177–186.
- Page, A.L. (Ed.) Methods of Soil Analysis, Part 2, 2nd ed.; American Society of Agronomy: Madison, WI, USA, 1982. [Google Scholar]
- Davies, B.E. Loss-on-Ignition as an Estimate of Soil Organic Matter. Soil Sci. Soc. Am. J. 1974, 38, 150–151. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Jones, J.B.; Case, V.W. Sampling, Handling and Analysing Plant Tissue Samples. In Soil Testing and Plant Analysis, 3rd ed.; Westerman, R.L., Ed.; Book Series No. 3; Soil Science Society of America: Madison, WI, USA, 1990; pp. 389–427. [Google Scholar]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination—A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [Green Version]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- De Vivo, B.; Albanese, S.; Lima, A.; Cicchella, D.; Dinelli, E.; Valera, P.; Reimann, C.; Birke, M.; Demetriades, A.; The GEMAS Project Team. GEMAS: The geochemical mapping of agricultural and grazing land soils of Europe. E3S Web Conf. 2013, 1, 38004. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, H.A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin/Heidelberg, Germany, 2007; ISBN 978-3-540-32714-1. [Google Scholar] [CrossRef]
- Mamat, Z.; Haximu, S.; Zhang, Z.Y.; Aji, R. An ecological risk assessment of heavy metal contamination in the surface sediments of Bosten Lake, northwest China. Environ. Sci. Pollut. Res. 2016, 23, 7255–7265. [Google Scholar] [CrossRef]
- Wang, S.; Wu, W.; Liu, F.; Liao, R.; Hu, Y. Accumulation of heavy metals in soil-crop systems: A review for wheat and corn. Environ. Sci. Pollut. Res. 2017, 24, 15209–15225. [Google Scholar] [CrossRef]
- Håkanson, L. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Kusin, F.M.; Azani, N.N.M.; Hasan, S.N.M.S.; Sulong, N.A. Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. CATENA 2018, 165, 454–464. [Google Scholar] [CrossRef]
- Wei, Z.; Van Le, Q.; Peng, W.; Yang, Y.; Yang, H.; Gu, H.; Lam, S.S.; Sonne, C. A review on phytoremediation of contaminants in air, water and soil. J. Hazard. Mater. 2020, 403, 123658. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, S.; Idakwo, S.; Ameh, E. Heavy metal contamination and ecological risk assessment of soils around the pegmatite mining sites at Olode area, Ibadan southwestern Nigeria. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100424. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wang, Y.; Li, Y.; Li, L.; Tang, M.; Hu, W.; Chen, L.; Ai, S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022, 825, 153862. [Google Scholar] [CrossRef] [PubMed]
- Karyotis, T.; Charoulis, A.; Mitsimponas, T.; Vavoulidou, E. Nutrients and Trace Elements of Arable Soils Rich in Organic Matter. Commun. Soil Sci. Plant Anal. 2005, 36, 403–414. [Google Scholar] [CrossRef]
- Finzgar, N.; Tlustoš, P.; Leštan, D. Relationship of soil properties to fractionation, bioavailability and mobility of lead and zinc in soil. Plant Soil Environ. 2008, 53, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Lappalainen, E. (Ed.) Global Peat Resources; The International Peat Society: Jyväskylä, Finland, 1996. [Google Scholar]
- Orru, H.; Orru, M. Sources and distribution of trace elements in Estonian peat. Glob. Planet. Chang. 2006, 53, 249–258. [Google Scholar] [CrossRef]
- Kozioł, K.; Korzeniowska, J.; Okupny, D.; Bezak-Mazur, E.; Żurek, S. Trace elements content of surface peat deposits in the Solovetsky Islands (White Sea). Mires Peat 2020, 26, 1–13. [Google Scholar] [CrossRef]
- Glina, B.; Kowalska, J.B.; Łuczak, K.; Mazurek, R.; Spychalski, W.; Mendyk, Ł. Potentially toxic elements in fen peatland soils located near lignite-fired power plants in Central Poland. Geoderma Reg. 2021, 25, e00370. [Google Scholar] [CrossRef]
- Antoniadis, V.; Golia, E.E.; Liu, Y.-T.; Wang, S.-L.; Shaheen, S.M.; Rinklebe, J. Soil and maize contamination by trace elements and associated health risk assessment in the industrial area of Volos, Greece. Environ. Int. 2019, 124, 79–88. [Google Scholar] [CrossRef]
- Custodio, M.; Peñaloza, R.; Orellana, E.; Aguilar-Cáceres, M.A.; Maldonado-Oré, E.M. Heavy Metals and Arsenic in Soil and Cereal Grains and Potential Human Risk in the Central Region of Peru. J. Ecol. Eng. 2021, 22, 206–220. [Google Scholar] [CrossRef]
- Cao, X.; Bai, L.; Zeng, X.; Zhang, J.; Wang, Y.; Wu, C.; Su, S.; Li, J. Is maize suitable for substitution planting in arsenic-contaminated farmlands? Plant Soil Environ. 2019, 65, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Heckman, J.R.; Sims, J.T.; Beegle, D.B.; Coale, F.J.; Herbert, S.J.; Bruulsema, T.W.; Bamka, W.J. Nutrient Removal by Corn Grain Harvest. Agron. J. 2003, 95, 587–591. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Y.; Feng, N.; Zhu, M.; Tian, J. Potentially toxic element (PTE) levels in maize, soil, and irrigation water and health risks through maize consumption in northern Ningxia, China. BMC Public Health 2020, 20, 1729. [Google Scholar] [CrossRef] [PubMed]
- Rosas-Castor, J.; Guzmán-Mar, J.; Hernández-Ramírez, A.; Garza-González, M.; Hinojosa-Reyes, L. Arsenic accumulation in maize crop (Zea mays): A review. Sci. Total Environ. 2014, 488–489, 176–187. [Google Scholar] [CrossRef]
- EPA. Risk Assessment Guidance for Superfund (RAGS). Volume I. Human Health Evaluation Manual (HHEM). Part E. Supplemental Guidance for Dermal Risk Assessment; EPA: Washington, DC, USA, 2004; p. 20460, EPA/540/1-89/002.
- Song, T.; Su, X.; He, J.; Liang, Y.; Zhou, T.; Liu, C. Selenium (Se) uptake and dynamic changes of Se content in soil–plant systems. Environ. Sci. Pollut. Res. 2018, 25, 34343–34350. [Google Scholar] [CrossRef] [PubMed]
- Mombo, S.; Schreck, E.; Dumat, C.; Laplanche, C.; Pierart, A.; Longchamp, M.; Besson, P.; Castrec-Rouelle, M. Bioaccessibility of selenium after human ingestion in relation to its chemical species and compartmentalization in maize. Environ. Geochem. Health 2015, 38, 869–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks; WHO: Geneva, Switzerland, 2009. [Google Scholar]
- Supriatin, S.; Weng, L.; Comans, R.N.J. Selenium-rich dissolved organic matter determines selenium uptake in wheat grown on Low-selenium arable land soils. Plant Soil 2016, 408, 73–94. [Google Scholar] [CrossRef] [Green Version]
- Strawn, D.G. Review of interactions between phosphorus and arsenic in soils from four case studies. Geochem. Trans. 2018, 19, 10. [Google Scholar] [CrossRef] [Green Version]
- Pokhrel, G.R.; Wang, K.T.; Zhuang, H.; Wu, Y.; Chen, W.; Lan, Y.; Zhu, X.; Li, Z.; Fu, F.; Yang, G. Effect of selenium in soil on the toxicity and uptake of arsenic in riceplant. Chemosphere 2020, 239, 124712. [Google Scholar] [CrossRef]
- Ali, W.; Zhang, H.; Junaid, M.; Mao, K.; Xu, N.; Chang, C.; Rasool, A.; Aslam, M.W.; Ali, J.; Yang, Z. Insights into the mechanisms of arsenic-selenium interactions and the associated toxicity in plants, animals, and humans: A critical review. Crit. Rev. Environ. Sci. Technol. 2020, 51, 704–750. [Google Scholar] [CrossRef]
- Yusuf, M.; Khan, T.A.; Fariduddin, Q. Interaction of epibrassinolide and selenium ameliorates the excess copper in Brassica juncea through altered proline metabolism and antioxidants. Ecotoxicol. Environ. Saf. 2016, 129, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.I.C.; Sah, A.S.R.; Haris, H. Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Trop. Life Sci. Res. 2020, 31, 109–125. [Google Scholar] [CrossRef] [PubMed]
Risk Classification | RI | Risk Classification | ||
---|---|---|---|---|
< 40 | Low | RI < 50 | Low | Ni: 5 |
40 ≤ < 80 | Moderate | 50 ≤ RI < 200 | Moderate | Cr: 2 |
80 ≤ < 160 | Considerable | 200 ≤ RI < 300 | Considerable | As: 10 |
160 ≤ < 320 | High | RI ≥ 300 | High | Zn: 1 |
≥ 320 | Very high | Cu: 5 | ||
Pb: 5 | ||||
Mn: 1 |
Soil Sample | CaCO3 (%) | pH | Organic Matter (g kg−1) | Exchangeable Cations | Available P (mg kg−1) | |||
---|---|---|---|---|---|---|---|---|
Na+ | K+ | Ca2+ | Mg2+ | |||||
(cmolc kg−1) | ||||||||
1 | 33.2 | 7.12 | 401 | 0.36 | 0.57 | 65.1 | 4.48 | 43.6 |
2 | 35.7 | 7.50 | 363 | 0.49 | 1.73 | 62.5 | 4.78 | 83.2 |
3 | 31.6 | 7.48 | 383 | 0.51 | 0.37 | 63.2 | 4.76 | 42.3 |
4 | 28.3 | 7.61 | 387 | 1.37 | 0.61 | 106.2 | 14.80 | 29.7 |
5 | 30.3 | 7.51 | 310 | 0.49 | 0.60 | 94.1 | 8.62 | 26.5 |
6 | 36.1 | 7.61 | 290 | 0.43 | 0.32 | 64.3 | 2.80 | 35.4 |
7 | 8.6 | 7.51 | 280 | 0.37 | 0.72 | 59.3 | 2.41 | 9.9 |
8 | 16.4 | 7.51 | 310 | 0.56 | 0.72 | 61.7 | 2.39 | 29.5 |
9 | 20.5 | 7.38 | 463 | 0.79 | 0.49 | 83.1 | 4.08 | 40.3 |
10 | 23.8 | 7.61 | 393 | 1.30 | 1.56 | 76.2 | 5.69 | 21.5 |
11 | 1.4 | 7.61 | 150 | 0.57 | 1.26 | 46.7 | 2.75 | 29.9 |
12 | 2.1 | 7.46 | 93 | 0.32 | 2.04 | 27.9 | 2.23 | 30.0 |
13 | 0.2 | 7.20 | 423 | 1.10 | 1.00 | 60.2 | 2.95 | 11.9 |
14 | 0.1 | 7.10 | 410 | 0.55 | 1.12 | 75.1 | 2.96 | 17.8 |
15 | 1.7 | 7.35 | 473 | 0.39 | 1.03 | 125.2 | 13.70 | 12.7 |
16 | 3.7 | 7.47 | 557 | 0.50 | 1.46 | 117 | 8.36 | 18.8 |
CV | 83 | 2 | 330 | 53 | 53 | 34 | 72 | 59 |
Soil Sample | Pb | Cr | Ni | Zn | Cu | Mn | As | Se |
---|---|---|---|---|---|---|---|---|
1 | 49 | 10.6 | 19.5 | 106 | 17.6 | 1020 | 21.1 | 1.09 |
2 | 46 | 12.8 | 8.5 | 144 | 18.3 | 1415 | 18.8 | 0.73 |
3 | 72 | 18.4 | 21.4 | 101 | 18.6 | 842 | 21.9 | 1.20 |
4 | 62 | 10.6 | 14.4 | 141 | 32.7 | 779 | 21.9 | 1.09 |
5 | 31 | 14.2 | 18.3 | 83 | 22.0 | 1517 | 27.7 | 1.11 |
6 | 65 | 19.7 | 27.9 | 94 | 23.5 | 628 | 26.1 | 1.22 |
7 | 121 | 88.1 | 92.2 | 182 | 63.1 | 681 | 27.7 | 2.38 |
8 | 125 | 44.8 | 39.3 | 132 | 37.6 | 765 | 25.8 | 2.11 |
9 | 65 | 11.4 | 17.3 | 68 | 21.9 | 957 | 26.1 | 1.50 |
10 | 66 | 22.2 | 25.6 | 128 | 31.7 | 544 | 26.5 | 1.60 |
11 | 329 | 64.5 | 88.5 | 372 | 79.6 | 926 | 18.6 | 1.81 |
12 | 210 | 40.9 | 43.4 | 158 | 46.0 | 544 | 12.2 | 1.35 |
13 | 185 | 50.3 | 54.1 | 163 | 49.1 | 926 | 31.3 | 2.82 |
14 | 181 | 55.7 | 52.6 | 162 | 47.9 | 861 | 31.4 | 2.66 |
15 | 118 | 22.8 | 30.1 | 116 | 32.3 | 562 | 29.0 | 2.10 |
16 | 78 | 25.7 | 27.1 | 107 | 26.5 | 548 | 27.3 | 2.04 |
Mean | 113 | 32.0 | 36.3 | 141 | 35.5 | 845 | 24.6 | 1.68 |
Median | 75 | 22.5 | 27.5 | 131 | 32.0 | 811 | 26.1 | 1.55 |
Min | 31 | 10.6 | 8.5 | 68 | 17.6 | 544 | 12.2 | 1.09 |
Max | 329 | 88.1 | 92.2 | 373 | 79.6 | 1517 | 31.5 | 1.82 |
CV | 70 | 72 | 68 | 49 | 50 | 34 | 21 | 37 |
Corn Grain Sample | As | Se | Pb | Cr | Ni | Zn | Mn | Cu |
---|---|---|---|---|---|---|---|---|
C_1 | 0.20 | 0.17 | BDL | 0.51 | BDL | 33 | 2.2 | 8.4 |
C_2 | 0.09 | 0.03 | BDL | 0.59 | BDL | 28 | BDL | 9.4 |
C_3 | 0.07 | 0.08 | BDL | 0.58 | 0.22 | 21 | 2.6 | 9.2 |
C_4 | 0.06 | 0.08 | BDL | 0.43 | BDL | 31 | 0.4 | 11.0 |
C_5 | 0.04 | 0.08 | BDL | 0.82 | 0.74 | 29 | 2.4 | 11.3 |
C_6 | 0.06 | 0.03 | BDL | 1.31 | 0.27 | 31 | 2.2 | 9.4 |
C_7 | 0.08 | 0.37 | BDL | 0.96 | 0.51 | 47 | 8.4 | 13.0 |
C_8 | 0.04 | 0.07 | BDL | 1.55 | BDL | 39 | 0.4 | 12.1 |
C_9 | 0.08 | 0.04 | BDL | 1.07 | BDL | 25 | 3.2 | 8.8 |
C_10 | 0.04 | 0.02 | BDL | BDL | BDL | 22 | 3.0 | 11.2 |
C_11 | 0.06 | 0.39 | BDL | 1.28 | 0.10 | 42 | 2.6 | 11.0 |
C_12 | 0.03 | 0.95 | BDL | 0.69 | BDL | 31 | 4.6 | 9.4 |
C_13 | 0.06 | 0.05 | BDL | BDL | BDL | 31 | 4.0 | 9.4 |
C_14 | 0.02 | 0.04 | BDL | 0.50 | BDL | 18 | 2.2 | 12.2 |
C_15 | 0.02 | 0.03 | BDL | 0.82 | 0.54 | 25 | 4.2 | 13.0 |
C_16 | 0.01 | 0.03 | BDL | 1.34 | 0.69 | 27 | 3.2 | 8.4 |
Mean | 0.06 | 0.14 | 0.83 | 0.44 | 30 | 2.9 | 10.4 | |
Med | 0.06 | 0.32 | 0.75 | 0.51 | 30 | 2.6 | 10.1 | |
Std | 0.04 | 0.25 | 0.40 | 0.24 | 8 | 2.0 | 1.6 | |
Min | 0.01 | 0.02 | 0.43 | 0.10 | 18 | 0.4 | 8.4 | |
Max | 0.20 | 0.95 | 1.55 | 0.74 | 47 | 8.4 | 13.0 | |
CV | 74 | 181 | 50 | 56 | 25 | 68 | 15 |
CaCO3 | O.M. 1 | P | As | Se | Pb | Cr | Ni | Mn | Zn | Cu | |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil | |||||||||||
CaCO3 | |||||||||||
O.M. | |||||||||||
P | +/** | ||||||||||
As | +/** | −/* | |||||||||
Se | −/*** | −/*** | +/** | ||||||||
Pb | −/*** | −/* | +/* | ||||||||
Cr | −/** | −/* | +/** | +/** | |||||||
Ni | −/** | −/* | +/** | +/*** | +/*** | ||||||
Mn | −/* | ||||||||||
Zn | −/* | −/* | +/*** | +/** | +/*** | ||||||
Cu | −/** | −/* | −/* | +/* | +/*** | +/*** | +/*** | +/*** | |||
Corn | |||||||||||
P | |||||||||||
As | +/* | ||||||||||
Se | −/*** | −/** | +/* | +/* | |||||||
Cr | |||||||||||
Mn | −/* | +/* | +/* | ||||||||
Cu | −/* | +/* | |||||||||
Zn | −/* | +/* | +/* | +/* |
As | Se | Pb | Cr | Ni | Zn | Mn | Cu | |
---|---|---|---|---|---|---|---|---|
Igeo_K | No of samples | |||||||
<0 | 1 | 6 | 5 | 3 | 1 | 4 | 3 | |
0–1 | 12 | 1 | 6 | 5 | 7 | 13 | 10 | 8 |
1–2 | 3 | 8 | 3 | 5 | 4 | 1 | 2 | 5 |
>2 | 7 | 1 | 1 | 2 | 1 | |||
Igeo_G | ||||||||
<0 | 1 | 10 | 10 | 1 | 10 | 7 | ||
0–1 | 6 | 1 | 8 | 5 | 4 | 10 | 6 | 7 |
1–2 | 10 | 8 | 3 | 1 | 2 | 4 | 2 | |
>2 | 7 | 4 | 1 |
As | Se | Pb | Cr | Ni | Zn | Mn | Cu | |
---|---|---|---|---|---|---|---|---|
PI_K | No of samples | |||||||
0–2 | 2 | 9 | 9 | 6 | 6 | 8 | 7 | |
2–4 | 14 | 4 | 3 | 3 | 6 | 9 | 8 | 7 |
4–6 | 5 | 3 | 3 | 2 | 1 | 2 | ||
>6 | 7 | 1 | 1 | 2 | ||||
PI_G | ||||||||
0–2 | 1 | 3 | 13 | 12 | 4 | 14 | 11 | |
2–4 | 13 | 4 | 6 | 3 | 2 | 11 | 2 | 4 |
4–6 | 2 | 5 | 3 | 2 | 1 | |||
>6 | 7 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zafeiriou, I.; Gasparatos, D.; Megremi, I.; Ioannou, D.; Massas, I.; Economou-Eliopoulos, M. Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals 2022, 12, 1475. https://doi.org/10.3390/min12111475
Zafeiriou I, Gasparatos D, Megremi I, Ioannou D, Massas I, Economou-Eliopoulos M. Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals. 2022; 12(11):1475. https://doi.org/10.3390/min12111475
Chicago/Turabian StyleZafeiriou, Ioannis, Dionisios Gasparatos, Ifigeneia Megremi, Dafni Ioannou, Ioannis Massas, and Maria Economou-Eliopoulos. 2022. "Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece" Minerals 12, no. 11: 1475. https://doi.org/10.3390/min12111475
APA StyleZafeiriou, I., Gasparatos, D., Megremi, I., Ioannou, D., Massas, I., & Economou-Eliopoulos, M. (2022). Assessment of Potentially Toxic Element Contamination in the Philippi Peatland, Eastern Macedonia, Greece. Minerals, 12(11), 1475. https://doi.org/10.3390/min12111475