Metallogenesis of the Bawang Sn-Zn Polymetallic Deposit, Wuxu Ore Field, Guangxi, South China: U-Pb Dating and C-O-S-Pb Isotopic Constraints
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Sample Collection and Analytical Methods
4.1. Cassiterite U-Pb Isotope Dating
4.2. C-O-S-Pb Isotopes
5. Results
5.1. Cassiterite U-Pb Isotope Dating
5.2. C–O Isotopes
5.3. S-Pb Isotopes
6. Discussion
6.1. Metallogenic Epoch
6.2. Ore-Forming Fluid Source
6.3. Source of Ore-Forming Material
7. Conclusions
- (1)
- The 207Pb/206Pb-238U/206Pb concordant ages of samples BW4 and BW5 from the I ore body of the Bawang tin–zinc polymetallic deposit are 93.1 ± 4.8 and 85.3 ± 6.3 Ma, respectively, while the 206Pb/207Pb-238U/207Pb isochron ages are 89.3 ± 6.3 and 82.9 ± 5.3 Ma, respectively. The cassiterite isochron ages of the two samples are consistent with concordant ages within the error range, indicating that the mineralization occurred in the early Late Cretaceous.
- (2)
- The C, O, and S isotopic compositions indicate that the ore-forming fluid of the Bawang deposit originated from the mixing of magmatic hydrothermal fluid and stratum. The Pb isotopic composition is consistent with that of the granite of the same age, indicating that ore-forming metals were mainly derived from magmatic hydrothermal solution.
- (3)
- From the comprehensive ore deposit geological characteristics and the isotope analysis, the Bawang deposit is a hydrothermal vein-type deposit, located in the external contact zone of Late Cretaceous granite, controlled by tectonic fractures, and formed by the interaction of magmatic hydrothermal fluid and carbonate rock. It is expected that large skarn-type ore bodies are present in the deep zone.
Author Contributions
Funding
Conflicts of Interest
References
- Peng, H.W.; Fan, H.R.; Zhang, R.Q.; Lan, T.G. Geochronological framework and ore genesis of the Tiantangshan Rb-Sn-W deposit, northeastern Guangdong, south China: Constraints from cassiterite and monazite U-Pb dating. Ore Geol. Rev. 2021, 139, 104457. [Google Scholar] [CrossRef]
- Li, C.Y.; Zhang, R.Q.; Ding, X.; Ling, M.X.; Fan, W.M.; Sun, W.D. Dating cassiterite using laser ablation ICP-MS. Ore Geol. Rev. 2016, 72, 313–322. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lehmann, B.; Seltmann, R.; Sun, W.D.; Li, C.Y. Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: The classic Erzgebirge tin province (Saxony and Bohemia). Geology 2017, 45, 1095–1098. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Spandler, C.; Kemp, A.; Mao, J.W.; Rusk, B.; Hu, Y.; Blake, K. Controls on cassiterite (SnO2) crystallization: Evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District. Am. Mineral. 2019, 104, 118–129. [Google Scholar] [CrossRef]
- Liu, P.; Mao, J.W.; Lehmann, B.; Peng, L.L.; Zhang, R.Q.; Wang, F.Y.; Lu, G.A.; Jiang, C.Y. Cassiterite U-Pb dating of the lower Cretaceous Yanbei tin porphyry district in the Mikengshan volcanic basin, SE China. Ore Geol. Rev. 2021, 134, 104151. [Google Scholar] [CrossRef]
- Leonid, A.N.; Christopher, S.H.-D.; Richard, J.M. In situ LA-ICPMS U-Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from worldwide tin deposits spanning the Proterozoic to the Tertiary. Chem. Geol. 2018, 483, 410–425. [Google Scholar]
- Yu, H.; Tang, J.R.; Li, H.; Kang, H.Y. Metallogenesis of the Siding Pb-Zn deposit in Guangxi, South China: Rb-Sr dating and C-O-S-Pb isotopic constraints. Ore Geol. Rev. 2020, 121, 103499. [Google Scholar] [CrossRef]
- Wu, J.H.; Chen, Y.L.; Zheng, C.Y.; Li, H.; Yonezu, K.; Tang, Y.Y.; Zong, Q. Genesis of the Longkou-Tudui gold deposit, Jiaodong Peninsula, eastern China: Constraints from zircon U-Pb dating, fluid inclusion studies and C-H-O-S stable isotopes. Ore Geol. Rev. 2021, 139, 104449. [Google Scholar] [CrossRef]
- Zhao, D.; Han, R.S.; Wang, L.; Ren, T.; Wang, J.S.; Zhang, X.P.; Cui, J.H.; Ding, J.J. Genesis of the Lehong large zinc–lead deposit in northeastern Yunnan, China: Evidences from geological characteristics and C-H-O-S-Pb isotopic compositions. Ore Geol. Rev. 2021, 135, 104219. [Google Scholar] [CrossRef]
- Shi, K.T.; Wang, K.Y.; Wang, R.; Ma, X.L.; Sun, L.X.; Yang, H. Geological, fluid inclusion, and O-C-S-Pb-He-Ar isotopic constraints on the genesis of the Honghuagou lode gold deposit, northern North China Craton. Geochemistry 2021, 81, 125807. [Google Scholar] [CrossRef]
- Xu, R.; Chen, W.; Deng, M.G.; Li, W.C.; Chen, F.C.; Lai, C.K.; Sha, J.Z.; Jia, Z.; Liu, W. Geology and C-O-S-Pb isotopes of the Fangyangshan Cu-Pb-Zn deposit in the Baoshan block (SW China): Implications for metal source and ore genesis. Ore Geol. Rev. 2021, 132, 103992. [Google Scholar] [CrossRef]
- Xu, J. The Orefield Structure of Danchi Area, Guangxi; Science and Technology Press: Beijing, China, 1988; p. 3. [Google Scholar]
- Liang, T.; Wang, D.H.; Cai, M.H.; Fan, S.K.; Yu, Y.X.; Wei, K.L.; Huang, H.M.; Zheng, Y. Metallogenic characteristics and ore-forming regularity of metallic deposits along Nandan-Hechi metallogenic belt in Northwesten Guangxi. Miner. Depos. 2014, 33, 1171–1192, (In Chinese with English abstract). [Google Scholar]
- Cai, M.H.; Zhao, G.C.; Zheng, Y.; Wang, X.B.; Guo, T.F.; Liu, H. Ore-controlling structural styles of the Nandan-Hechi metallogenic belt in Northwestern Guangxi. Geol. Explor. 2021, 48, 68–75, (In Chinese with English abstract). [Google Scholar]
- Han, F.; Hutchinson, R.W. Evidence for exhalative origin of the Dachang tin-polymetallic sulfide deposits-their geological and geochemical characteristics. Miner. Depos. 1990, 9, 309–324, (In Chinese with English abstract). [Google Scholar]
- Han, F.; Shen, J.Z.; Hutchinson, R.W. Adularia–An important indicator mineral of syngenetic origin for stratiform mineralization at the Dachang tin-polymetallic depost. Miner. Depos. 1993, 12, 330–337, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.C.; Huang, M.Z.; Xu, J.; Hu, Y.Z.; Tang, S.H.; Meng, L.K. Geology of Dachang Tin Deposit; Geological Publishing House: Beijing, China, 1993; pp. 1–361. [Google Scholar]
- Fu, M.; Changkakoti, A.; Krouse, H.R.; Gray, J.; Kwak, T.A.P. An oxygen, hydrogen, sulfur, and carbon isotope study of carbonate-replacement (skarn) tin deposits of Dachang tin field, China. Econ. Geol. 1991, 86, 1683–1703. [Google Scholar] [CrossRef]
- Fu, M.; Kwak, T.; Mernagh, T.P. Fluid inclusion studies of zoning in the Dachang tin-polymetallic ore field, People’s Republic of China. Econ. Geol. 1993, 88, 283–300. [Google Scholar] [CrossRef]
- Cai, M.H.; Mao, J.W.; Liang, T.; Huang, H.L. Study on fluid inclusion of Tongkeng-Changpo deposit in Dachang tin polymetallic ore field. Miner. Depos. 2005, 24, 228–241, (In Chinese with English abstract). [Google Scholar]
- Liang, T.; Wang, D.H.; Cai, M.H.; Chen, Z.Y.; Guo, C.L.; Huang, H.M. Geochemical Characteristics and Prospecting potential of The Dachang Tin Polymetallic Deposit, Guangxi province. Acta Geol. Sin. 2008, 82, 967–977, (In Chinese with English abstract). [Google Scholar]
- Tanelli, G.; Lattanzi, P. The cassiterite-polymetallic sulfide deposits of Dachang (Guangxi, People’s Republic of China). Miner. Depos. 1985, 20, 102–106. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Han, F.; Shen, J.Z.; Palmer, M.R. Chemical and Rb-Sr, Sm-Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P.R. China. Chem. Geol. 1999, 157, 49–67. [Google Scholar] [CrossRef]
- Zhao, K.D.; Jiang, S.Y.; Ni, P.; Ling, H.F.; Jiang, Y.H. Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China: Implication for ore genesis. Mineral. Petrol. 2007, 89, 251–273. [Google Scholar] [CrossRef]
- Chen, Y.C.; Huang, M.Z.; Xu, J.; Ai, Y.D.; Li, X.M.; Tang, S.H.; Meng, L.K. Geological characteristics and metallogenic series of Dachang cassiterite-sulfide polymetallic ore belt. Acta Geol. Sin. 1985, 3, 228–240, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.G.; Li, X.L. Study on mineralization and material composition of DC ore field in Guangxi. Geochimica 1981, 1, 74–86, (In Chinese with English abstract). [Google Scholar]
- Wang, D.H.; Chen, Y.C.; Chen, W.; Sang, H.Q.; Li, H.Q.; Lu, Y.F.; Chen, K.L.; Lin, Z.M. Dating the Dachang giant tin-polymetallic deposit in Nandan, Guangxi. Acta Geol. Sin. 2004, 78, 132–138, (In Chinese with English abstract). [Google Scholar]
- Guo, J.; Zhang, R.Q.; Sun, W.D.; Ling, M.X.; Hu, Y.B.; Wu, K.; Luo, M.; Zhang, L.C. Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: Insights from cassiterite U-Pb ages and trace element compositions. Ore Geol. Rev. 2018, 95, 863–879. [Google Scholar] [CrossRef]
- Cai, H.Y.; Yang, Y.; Zhang, G.L. Preliminary discussion on stratabound ore control in Dachang tin deposit. Miner. Resour. Geol. 1983, 3, 72–77, (In Chinese with English abstract). [Google Scholar]
- Qin, D.X.; Hong, T.; Tian, Y.L. Geology and Technical Economy of No. 92 Orebody in Dachang Tin Deposit, Guangxi; Geological Publishing House: Beijing, China, 2002; pp. 31–132. [Google Scholar]
- Fan, D.L.; Zhang, T.; Ye, J.; Pasava, J.; Kribek, B.; Dobes, P.; Varrin, I.; Zak, K. Geochemistry and origin of tin-polymetallic sulfide deposits hosted by the Devonian black shale series near Dachang, Guangxi, China. Ore Geol. Rev. 2004, 24, 103–120. [Google Scholar] [CrossRef]
- Yan, Y.F.; Liu, C.M.; Qin, D.X.; Jiang, K. Geological characteristics and metallogenic significance of the Devonian intermediate-basic volcanic rocks in the Dachang deposit, Guangxi Zhuang Autonomous Region. Chin. J. Geochem. 2013, 32, 110–118. [Google Scholar] [CrossRef]
- Tu, G.C. Some problems of Sn–Pb–Zn mineralization. Miner. Resour. Geol. 1984, 1, 4–14, (In Chinese with English abstract). [Google Scholar]
- Chen, J. On geological characteristics and formation mechanism of stratabound tin deposit in South China. Geol. Rev. 1988, 34, 524–532, (In Chinese with English abstract). [Google Scholar]
- Lattanzi, P.; Corazza, M.; Corsini, F.; Tanelli, G.C. Sulfide mineralogy in the polymetallic cassiterite deposits of Dachang, P.R. China. Miner. Depos. 1989, 24, 141–147. [Google Scholar] [CrossRef]
- Wang, J.C.; Yu, H.; Jiang, N.; Tang, J.R.; Wei, A.W. Temporal and spatial relation between the metallotectonic series and metallogenic series in the Dachang orefield, Guangxi. J. Guilin Univ. Technol. 2016, 36, 633–643, (In Chinese with English abstract). [Google Scholar]
- Hu, R.G.; Zhao, Y.L.; Cai, Y.F.; Feng, Z.H.; Liu, X.J.; Zhou, Z.H.; Sha, P.Z. Characteristics of Biotite in the Granite Porphyry and Its Significance for Petrogenesis and Mineralization of Dachang Sn-Polymetallic Ore Deposit, Guangxi. Earth Sci. 2020, 45, 1213–1226, (In Chinese with English abstract). [Google Scholar]
- Zeng, Y.F.; Liu, W.J. Sedimentary Tectonic Evolution of Youjiang Basin in South China; Geological Publishing House: Beijing, China, 1993; pp. 1–102. [Google Scholar]
- Wang, D.M. A Study on the Characteristic and Origin of the Antimony Deposit in Danchi Metallogenic Belt, Guangxi. Master’s Thesis, Chang’an University, Xi’an, China, 2012; pp. 1–107. [Google Scholar]
- Cai, J.M.; Xu, X.H.; Liu, W.Z. Metallogenic characteristics and material sources of polymetallic deposit in Wuxu ore field, Guangxi. J. Mineral. Petrol. 1995, 15, 63–68, (In Chinese with English abstract). [Google Scholar]
- Tu, J.R.; Cui, Y.R.; Zhou, H.Y.; Li, H.M.; Hao, S.; Li, G.z. Review of U-Pb dating methods for cassiterite. Geol. Surv. Res. 2019, 42, 245–253, (In Chinese with English abstract). [Google Scholar]
- Xu, B.; Jiang, S.Y.; Luo, L. LA-MC-ICP-MS U-Pb dating of cassiterite from the Jianfengpo Sn deposit in the Pengshan Sn-polymetallic ore field, Jiangxi Province and its geological significance. Acta Petrol. Sin. 2015, 31, 701–708, (In Chinese with English abstract). [Google Scholar]
- Yuan, S.D.; Peng, J.T.; Hao, S.; Li, H.M.; Geng, J.Z.; Zhang, D.L. Insitu LA-MC-ICP-MS and ID-TIMS U-Pb geochronology of cassiterite in the giant Furong tin deposit, Hunan Province, South China: New constraints on the timing of tin-polymetallic mineralization. Ore Geol. Rev. 2011, 43, 235–242. [Google Scholar] [CrossRef]
- Ludwig, K.R. On the treatment of concordant uranium-lead ages. Geochim. Et Cosmochim. Acta 1998, 62, 665–676. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 5; Geochronology Center: Berkeley, CA, USA, 2012; p. 70. [Google Scholar]
- Friedman, I.; O’Neil, J.R. Chapter KK, Compilation of Stable Isotope Fractionation Factors of Geochemical Interest. In Data of Geochemistry, 6th ed.; Professional Paper 440-KK, KK1–12; Fleischer, M., Ed.; U.S. Geological Survey Publications: Washington, DC, USA, 1949; p. 1997. [Google Scholar]
- Wei, S.C. Study on the Geological Characteristics and Genesis of the Main Deposits in the Wuxu ore field, Guangxi. Master’s Thesis, Guangxi University, Nanning, China, 2020; pp. 1–86. [Google Scholar]
- Cai, M.H.; Liang, T.; Wei, K.L.; Huang, H.M.; Liu, G.Q. Rb-Sr dating of the No. 92 orebody of the Tongkeng-Changpo deposit in the Dachang tin-polymetallic ore field, Guangxi, and its significance. Geol. Miner. Resour. South China 2006, 31–36, (In Chinese with English abstract). [Google Scholar]
- Li, H.Q.; Wang, D.H.; Mei, Y.P.; Liang, T.; Chen, Z.Y.; Guo, C.L.; Ying, L.J. Lithogenesis and mineralization chronology study on the Lamo zinc-copper polymetallic ore deposit in Dachang orefield, Guangxi. Acta Geol. Sin. 2008, 82, 912–920, (In Chinese with English abstract). [Google Scholar]
- Wang, X.Y.; Huang, H.W.; Chen, N.S.; Huang, X.Q.; Wu, X.K.; Hao, S.; Li, H.M. In-situ La-MC-ICP-MS U-Pb geochronology of cassiterite from Changpo-Tongkeng tin-polymetallic deposits, Dachang orefield, Guangxi. Geol. Rev. 2015, 61, 892–900, (In Chinese with English abstract). [Google Scholar]
- Huang, W.T.; Liang, H.Y.; Zhang, J.; Wu, J.; Chen, X.L.; Ren, L. Genesis of the Dachang Sn-polymetallic and Baoshan Cu ore deposits, and formation of a Cretaceous Sn-Cu ore belt from Southwest China to western Myanmar. Ore Geol. Rev. 2019, 112, 103030. [Google Scholar] [CrossRef]
- Wu, J.; Yuan, H.W.; Gan, N.J.; Wei, S.C.; Liao, J.; Zhang, J.; Liang, H.Y. Source characteristics of magmatic rocks and zircon U-Pb age in the Mangchang ore field, Danchi metallogenic belt, Guangxi. Acta Petrol. Sin. 2020, 36, 1586–1596, (In Chinese with English abstract). [Google Scholar]
- Liang, T.; Wang, D.H.; Hou, K.J.; Li, H.Q.; Huang, H.M.; Cai, M.H.; Wang, D.M. LA-MC-ICP-MS zircon U-Pb dating of Longxianggai pluton in Dachang of Guangxi and its geological significance. Acta Petrol. Sin. 2011, 27, 1624–1636, (In Chinese with English abstract). [Google Scholar]
- Rddad, L. The genesis of the Jurassic-hosted Mississippi Valley-type Pb-Zn ore deposit, Tigrinine-Taabast district (Central High Atlas, Morocco): Insights from fluid inclusion and C-O-S-Pb isotope studies. J. Afr. Earth Sci. 2021, 174, 104071. [Google Scholar] [CrossRef]
- Duan, X.X.; Zeng, Q.D.; Wang, Y.B.; Zhou, L.L.; Chen, B. Genesis of the Pb-Zn deposits of the Qingchengzi ore field, eastern Liaoning, China: Constraints from carbonate LA-ICPMS trace element analysis and C–O–S–Pb isotopes. Ore Geol. Rev. 2017, 89, 752–771. [Google Scholar] [CrossRef]
- Rddad, L.; Bouhlel, S. The Bou Dahar Jurassic carbonate-hosted Pb–Zn–Ba deposits (Oriental High Atlas, Morocco): Fluid-inclusion and C–O–S–Pb isotope studies. Ore Geol. Rev. 2016, 72, 1072–1087. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.F.; Chen, J.F. Stable Isotope Geochemistry; Science Press: Beijing, China, 2000; pp. 1–316, (In Chinese with English abstract). [Google Scholar]
- Chen, J.; Wang, H.N. Geochemistry; Science Press: Beijing, China, 2004; pp. 1–418, (In Chinese with English abstract). [Google Scholar]
- Taylor, B.E. Magmatic volatiles: Isotopic variation of C, H, and S. Rev. Mineral. Geochem. 1986, 16, 185–225. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics—The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposit. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-70703-5. (Print). [Google Scholar]
- Shao, Z.Z. Study on the Characteristics of Ore-Forming Fluid and Genesis of Dachang Tongkeng Tin Polymetallic Deposit, Guangxi. Master’s Thesis, Guangxi University, Nanning, China, 2019; pp. 1–80. [Google Scholar]
- Liu, J.M.; Liu, J.J.; Zheng, M.H.; Gu, X.X. Stable isotope compositions of micro-disseminated gold and genetic discussion. Geochimica 1998, 27, 585–591. [Google Scholar]
- Huang, Z.L.; Li, W.B.; Chen, J.; Han, R.S.; Liu, C.Q.; Xu, C.; Guan, T. Carbon and oxygen isotope constraints on mantle fluidinvolvement in the mineralization of the Huize super-large Pb-Zn deposits, Yunnan Province, China. J. Geochem. Explor. 2003, 78–79, 637–642. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Y.T.; Li, H.M.; Pirajno, F.; Zhang, C.Q.; Wang, R.T. The relationship of mantle-derived fluids to gold metallogenesis in the Jiaodong Peninsula: Evidence from D–O–C–S isotope systematics. Ore Geol. Rev. 2008, 33, 361–381. [Google Scholar] [CrossRef]
- Yuan, S.D.; Peng, J.T.; Li, X.Q.; Peng, Q.L.; Fu, Y.Z.; Shen, N.P.; Zhang, D.L. Carbon, Oxygen and Strontium Isotope Geochemistry of Calcites from the Xianghualing Tin-Polymetallic Deposit, Hunan Province. Acta Geol. Sin. 2008, 82, 1522–1530, (In Chinese with English abstract). [Google Scholar]
- Demny, A.; Harangi, S.Z. Stable isotope studies on carbonate formations in alkaline basalt and lamprophyre series: Evolution of magmatic fluids and magma-sediment interactions. Lithos 1996, 37, 335–349. [Google Scholar] [CrossRef]
- Shuang, Y.; Bi, X.W.; Hu, R.Z.; Peng, J.T.; Su, W.C.; Zhao, C.S. Study on the ore-forming fluid geochemistry of the Furong tin polymetallic deposit, Hunan province, China. Acta Petrol. Sin. 2009, 25, 2588–2600, (In Chinese with English abstract). [Google Scholar]
- Liu, J.X. Guangxi Calcite Tin Polymetallic Deposit Calcite Earth Chemical Characteristics Study. Master’s Thesis, Guangxi University, Nanning, China, 2019; pp. 1–57. [Google Scholar]
- Tan, Z.M.; Tang, L.F.; Huang, D.J.; Cai, M.H.; Peng, Z.A.; Chang, J.; Zhao, J. Study on isotopes of carbon, hydrogen and oxygen and sources of ore-forming fluids in the Dachang tin orefield, Guangxi. Miner. Explor. 2014, 5, 738–743, (In Chinese with English abstract). [Google Scholar]
- Ding, T.P.; Peng, Z.C.; Li, H. Stable Isotope Study of Several Typical Deposits in Nanling Area; Beijing Science and Technology Press: Beijing, China, 1988; pp. 21–44. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of Sulfur and Carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 1979; pp. 509–556. [Google Scholar]
- Li, Y. Genesis of the Lame Zn-Cu Deposit, Nandan. Master’s Thesis, China University of Geosciences, Beijing, China, 2017; pp. 1–73. [Google Scholar]
- Cai, M.H.; Mao, J.W.; Liang, T.; Pirajno, F.; Huang, H.L. The origin of the Tongkeng-Changpo tin deposit, Dachang metal district, Guangxi, China: Clues from fluid inclusions and He isotope systematic. Min. Depos. 2007, 42, 613–626. [Google Scholar]
- Liang, T. Study on the Metallogenic Mechanism of Changpo-Tongkeng Tin-polymetallic Deposit, Dachang. Ph.D. Thesis, Chang’an University, Xi’an, China, 2008; pp. 1–249. [Google Scholar]
- Cheng, Y.S. Geological features and S isotope composition of tin deposit in Dachang ore district in Guangxi. Trans. Nonferrous Met. Soc. China 2014, 24, 2938–2945. [Google Scholar] [CrossRef]
- Ye, X.S.; Yan, Y.X. Discussion on metallogenic geochemistry of surrounding rock medium in Dachang cassiterite-sulfide ore field. Geochemical 1987, 2, 123–131, (In Chinese with English abstract). [Google Scholar]
- He, H.Z.; Ye, X.S. Study on source of ore-forming materials in Dachang ore field, Guangxi. Guangxi Geol. 1996, 9, 33–41, (In Chinese with English abstract). [Google Scholar]
- Cheng, Y.S. Sulfur and Lead isotope geochemistry of Dachang intrusive plutons in Guangxi. Acta Geol. Sin. 2015, 89, 313–314. [Google Scholar]
- Zhu, B.Q.; Li, X.H.; Dai, T.M. Theory and Application of Isotope System in Earth Sciences—On the Evolution of Crust-Mantle in China; Science Press: Beijing, China, 1998; pp. 224–226. [Google Scholar]
- Wang, H.B. Study on metallogenic regularity and prospecting prediction of zinc and copper deposit, Lame, Dachang, Guangxi. Master’s Thesis, Kunming University of Science and Technology, Yunnan, China, 2013; pp. 1–95. [Google Scholar]
- Lei, L.Q. The Minerogenetic Mechanism in the Dachang Superlarge Tin-Polymetallic Ore Deposit, Guangxi; Guangxi Normal University Press: Guilin, China, 1998; pp. 1–68. [Google Scholar]
- Han, F.; Zhao, R.S.; Shen, J.Z.; Rechard, W. Hutchinson. In Geology and Origin of Ores in the Dachang Tin-Polymetallic Ore Field; Geological Publishing House: Beijing, China, 1997; pp. 1–213. [Google Scholar]
- Gao, J.Y. Pb isotopic evolution and its significance in ore genesis in the Dachang tin-polymetallic ore deposits. Geol.-Geochem. 1999, 27, 38–43, (In Chinese with English abstract). [Google Scholar]
Fraction | U-Pb Isochron Age/Ma | U-Pb Concordant Age (Tera–Wasserburg)/Ma | ||||||
---|---|---|---|---|---|---|---|---|
238U/206Pb | 2σ | 207Pb/206Pb | 2σ | 238U/207Pb | 2σ | 206Pb/207Pb | 2σ | |
BW4.2 | 9.20 | 4.89 | 0.7697 | 3.42 | 11.21 | 4.81 | 1.2993 | 3.42 |
BW4.3 | 17.31 | 3.21 | 0.6649 | 4.06 | 24.57 | 3.39 | 1.5039 | 4.06 |
BW4.4 | 19.27 | 4.20 | 0.6199 | 5.58 | 29.51 | 4.97 | 1.6133 | 5.58 |
BW4.5 | 25.36 | 4.90 | 0.5436 | 5.15 | 43.37 | 6.66 | 1.8395 | 5.15 |
BW4.6 | 23.85 | 3.83 | 0.5761 | 5.47 | 39.74 | 4.13 | 1.7357 | 5.47 |
BW4.7 | 21.62 | 4.54 | 0.6054 | 7.58 | 35.10 | 5.42 | 1.6519 | 7.58 |
BW4.8 | 19.73 | 3.55 | 0.6048 | 5.44 | 31.27 | 3.76 | 1.6534 | 5.44 |
BW4.9 | 16.39 | 2.32 | 0.6590 | 3.16 | 23.30 | 2.12 | 1.5174 | 3.16 |
BW4.10 | 17.04 | 3.64 | 0.6643 | 4.71 | 24.44 | 3.34 | 1.5054 | 4.71 |
BW4.11 | 25.52 | 4.40 | 0.5937 | 6.55 | 42.03 | 4.59 | 1.6845 | 6.55 |
BW4.12 | 22.48 | 4.01 | 0.6146 | 5.61 | 35.15 | 4.30 | 1.6270 | 5.61 |
BW4.13 | 14.79 | 3.20 | 0.7018 | 4.60 | 20.02 | 3.25 | 1.4250 | 4.60 |
BW4.14 | 13.30 | 3.44 | 0.6847 | 4.85 | 18.42 | 4.08 | 1.4605 | 4.85 |
BW4.15 | 6.32 | 14.50 | 0.7651 | 5.06 | 7.60 | 15.82 | 1.3070 | 5.06 |
BW4.16 | 3.11 | 5.89 | 0.8074 | 1.76 | 3.55 | 6.01 | 1.2386 | 1.76 |
BW4.17 | 25.40 | 4.63 | 0.5325 | 8.88 | 46.72 | 7.45 | 1.8779 | 8.88 |
BW4.18 | 24.92 | 7.55 | 0.5311 | 5.60 | 41.80 | 10.34 | 1.8830 | 5.60 |
BW4.19 | 17.08 | 2.49 | 0.6559 | 3.53 | 24.40 | 2.68 | 1.5247 | 3.53 |
BW4.20 | 6.21 | 31.75 | 0.7312 | 5.85 | 7.49 | 33.64 | 1.3677 | 5.85 |
BW4.21 | 28.29 | 5.44 | 0.5077 | 7.81 | 53.36 | 7.63 | 1.9695 | 7.81 |
BW4.22 | 21.80 | 3.20 | 0.6038 | 4.54 | 34.24 | 3.38 | 1.6561 | 4.54 |
BW4.23 | 13.16 | 5.83 | 0.6999 | 4.09 | 17.54 | 6.54 | 1.4288 | 4.09 |
BW4.24 | 8.36 | 3.57 | 0.7563 | 3.39 | 10.32 | 3.83 | 1.3222 | 3.39 |
BW4.25 | 19.29 | 4.51 | 0.6365 | 4.30 | 28.16 | 5.78 | 1.5710 | 4.30 |
BW5.1 | 20.93 | 3.86 | 0.6006 | 5.78 | 33.47 | 4.36 | 1.6650 | 5.78 |
BW5.2 | 15.43 | 5.61 | 0.6608 | 3.97 | 21.78 | 6.36 | 1.5132 | 3.97 |
BW5.3 | 11.36 | 7.94 | 0.6952 | 4.72 | 15.20 | 9.29 | 1.4385 | 4.72 |
BW5.4 | 12.54 | 3.36 | 0.7011 | 3.51 | 16.82 | 3.24 | 1.4263 | 3.51 |
BW5.5 | 18.49 | 2.83 | 0.6173 | 2.93 | 27.84 | 3.33 | 1.6201 | 2.93 |
BW5.6 | 23.91 | 4.45 | 0.5792 | 5.04 | 38.27 | 6.42 | 1.7266 | 5.04 |
BW5.7 | 16.74 | 3.28 | 0.6464 | 4.12 | 24.52 | 3.10 | 1.5469 | 4.12 |
BW5.8 | 23.97 | 3.73 | 0.5775 | 5.60 | 39.58 | 4.69 | 1.7315 | 5.60 |
BW5.9 | 18.19 | 5.98 | 0.6356 | 8.08 | 26.92 | 6.88 | 1.5733 | 8.08 |
BW5.10 | 24.07 | 4.87 | 0.5962 | 6.92 | 39.71 | 5.04 | 1.6773 | 6.92 |
BW5.12 | 6.64 | 2.77 | 0.7399 | 3.13 | 8.40 | 2.75 | 1.3515 | 3.13 |
BW5.13 | 3.19 | 26.59 | 0.7738 | 2.78 | 3.65 | 27.63 | 1.2923 | 2.78 |
BW5.15 | 12.94 | 3.48 | 0.7352 | 4.36 | 16.62 | 3.86 | 1.3601 | 4.36 |
BW5.16 | 2.43 | 10.86 | 0.7988 | 1.09 | 2.78 | 11.26 | 1.2519 | 1.09 |
BW5.17 | 22.79 | 3.83 | 0.5828 | 4.70 | 36.67 | 5.03 | 1.7160 | 4.70 |
BW5.18 | 16.94 | 2.85 | 0.6559 | 3.46 | 24.21 | 2.93 | 1.5246 | 3.46 |
BW5.19 | 11.91 | 5.58 | 0.7190 | 4.79 | 15.65 | 6.00 | 1.3909 | 4.79 |
BW5.20 | 21.62 | 4.22 | 0.5900 | 4.96 | 34.77 | 4.64 | 1.6949 | 4.96 |
BW5.21 | 17.41 | 3.34 | 0.6705 | 4.42 | 24.50 | 3.78 | 1.4915 | 4.42 |
BW5.22 | 34.49 | 4.02 | 0.4752 | 6.30 | 69.68 | 5.20 | 2.1045 | 6.30 |
BW5.23 | 20.37 | 4.14 | 0.6436 | 5.80 | 30.55 | 4.53 | 1.5537 | 5.80 |
BW5.24 | 9.02 | 6.43 | 0.7600 | 3.92 | 11.08 | 6.92 | 1.3157 | 3.92 |
BW5.25 | 13.47 | 6.37 | 0.6743 | 3.60 | 18.97 | 4.21 | 1.4829 | 3.60 |
Sample No. | δ13CV-PDB‰ | δ18OV-PDB‰ | δ18OV-SMOW‰ |
---|---|---|---|
PD5-2 | 0.44 | −16.50 | 13.85 |
PD5-3 | 0.25 | −15.80 | 14.57 |
PD5-4 | −0.07 | −15.21 | 15.18 |
PD5-5 | 0.34 | −16.41 | 13.94 |
PD5-6 | −0.41 | −15.00 | 15.40 |
Sample No. | Mineral | δ34SV-CDT‰ | Reference | Sample No. | Mineral | δ34SV-CDT‰ | Reference |
---|---|---|---|---|---|---|---|
PD2-1 | pyrite | −3.21 | This study | PD5-12-2 | sphalerite | −4.25 | This study |
PD4-1 | pyrite | −4.45 | This study | PD5-13-2 | sphalerite | −4.01 | This study |
PD5-10 | pyrite | −3.81 | This study | PD5-15 | sphalerite | −4.15 | This study |
PD5-12-1 | pyrite | −4.06 | This study | PD5-16 | sphalerite | −4.23 | This study |
PD5-13-1 | pyrite | −3.03 | This study | PD5-17 | sphalerite | −4.17 | This study |
PD5-14 | pyrite | −2.20 | This study | ZK1502 | pyrite | −5.2 | [47] |
PD5-18 | pyrite | −2.87 | This study | CK002 | pyrite | −5 | [47] |
PD345-1 | pyrite | −3.93 | This study | BW2 | sphalerite | −4.1 | [47] |
PD345-2 | pyrite | −3.96 | This study | BW3 | sphalerite | −3.5 | [47] |
PD5-2-2 | sphalerite | −4.17 | This study | BW4 | sphalerite | −4.5 | [47] |
PD5-11 | sphalerite | −4.20 | This study |
Sample No. | Mineral | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | μ | ω | Th/U | V1 | V2 | △α | △β | △γ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PD2-1 | pyrite | 18.7153 | 15.7192 | 39.0327 | 9.67 | 38.38 | 3.84 | 78.87 | 61.99 | 85.62 | 25.51 | 45.83 |
PD4-1 | pyrite | 18.7198 | 15.7202 | 39.0351 | 9.67 | 38.38 | 3.84 | 78.90 | 62.10 | 85.73 | 25.57 | 45.81 |
PD5-10 | pyrite | 18.6902 | 15.7184 | 39.0049 | 9.67 | 38.40 | 3.84 | 78.81 | 61.87 | 85.48 | 25.53 | 45.83 |
PD5-12-1 | pyrite | 18.6779 | 15.7194 | 38.9939 | 9.67 | 38.44 | 3.85 | 78.97 | 61.90 | 85.55 | 25.64 | 45.98 |
PD5-13-1 | pyrite | 18.7077 | 15.7193 | 39.0277 | 9.67 | 38.41 | 3.84 | 79.00 | 61.96 | 85.65 | 25.54 | 45.96 |
PD5-14 | pyrite | 18.7151 | 15.7202 | 39.0370 | 9.67 | 38.41 | 3.84 | 79.12 | 62.05 | 85.76 | 25.59 | 46.03 |
PD5-18 | pyrite | 18.5914 | 15.7043 | 38.8682 | 9.65 | 38.26 | 3.84 | 76.98 | 60.87 | 83.95 | 24.84 | 44.54 |
PD345-1 | pyrite | 18.7150 | 15.7161 | 38.9047 | 9.66 | 37.84 | 3.79 | 75.56 | 63.17 | 85.37 | 25.30 | 42.27 |
PD345-2 | pyrite | 18.7185 | 15.7161 | 38.9066 | 9.66 | 37.83 | 3.79 | 75.48 | 63.18 | 85.34 | 25.29 | 42.19 |
PD5-2-2 | sphalerite | 18.6413 | 15.7107 | 38.9458 | 9.66 | 38.36 | 3.84 | 78.05 | 61.23 | 84.66 | 25.14 | 45.39 |
PD5-11 | sphalerite | 18.7625 | 15.7209 | 39.0179 | 9.67 | 38.08 | 3.81 | 77.38 | 62.95 | 85.89 | 25.50 | 44.03 |
PD5-12-2 | sphalerite | 18.6028 | 15.7093 | 38.8990 | 9.66 | 38.37 | 3.84 | 77.86 | 61.11 | 84.45 | 25.16 | 45.28 |
PD5-13-2 | sphalerite | 18.7078 | 15.7174 | 39.0138 | 9.66 | 38.33 | 3.84 | 78.44 | 61.93 | 85.42 | 25.41 | 45.46 |
PD5-15 | sphalerite | 18.4055 | 15.6833 | 38.6487 | 9.63 | 38.20 | 3.84 | 74.87 | 59.05 | 81.56 | 23.97 | 43.37 |
PD5-16 | sphalerite | 18.5544 | 15.6859 | 38.8167 | 9.62 | 38.08 | 3.83 | 75.08 | 59.41 | 82.10 | 23.66 | 43.33 |
PD5-17 | sphalerite | 18.5295 | 15.6745 | 38.6232 | 9.60 | 37.32 | 3.76 | 70.07 | 60.28 | 80.97 | 22.93 | 38.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, E.; Huang, D.; Zeng, G.; Liu, G.; Zou, G.; Luo, P.; Chen, D. Metallogenesis of the Bawang Sn-Zn Polymetallic Deposit, Wuxu Ore Field, Guangxi, South China: U-Pb Dating and C-O-S-Pb Isotopic Constraints. Minerals 2022, 12, 137. https://doi.org/10.3390/min12020137
Liang E, Huang D, Zeng G, Liu G, Zou G, Luo P, Chen D. Metallogenesis of the Bawang Sn-Zn Polymetallic Deposit, Wuxu Ore Field, Guangxi, South China: U-Pb Dating and C-O-S-Pb Isotopic Constraints. Minerals. 2022; 12(2):137. https://doi.org/10.3390/min12020137
Chicago/Turabian StyleLiang, Enyun, Dezhi Huang, Guangqian Zeng, Gengyin Liu, Guangjun Zou, Peng Luo, and Di Chen. 2022. "Metallogenesis of the Bawang Sn-Zn Polymetallic Deposit, Wuxu Ore Field, Guangxi, South China: U-Pb Dating and C-O-S-Pb Isotopic Constraints" Minerals 12, no. 2: 137. https://doi.org/10.3390/min12020137
APA StyleLiang, E., Huang, D., Zeng, G., Liu, G., Zou, G., Luo, P., & Chen, D. (2022). Metallogenesis of the Bawang Sn-Zn Polymetallic Deposit, Wuxu Ore Field, Guangxi, South China: U-Pb Dating and C-O-S-Pb Isotopic Constraints. Minerals, 12(2), 137. https://doi.org/10.3390/min12020137