Planktonic Biota Constituents Responses to Global Sea-Level Changes Recorded in the Uppermost Albian to Middle Cenomanian Deep-Water Facies of the Outer Carpathians
Abstract
:1. Introduction
2. Geological Setting
2.1. General Outline
2.2. Lithostratigraphy, Biostratigraphy and Chemostratigraphy
3. Material and Methods
3.1. Sampling
3.2. Microfacies Analysis
3.3. Micropalaeontological Analysis
4. Results
4.1. General Sedimentary Features of Turbidites
4.2. Microfauna in Microfacies Record—Content and Preservation
4.2.1. Sublitharenite
4.2.2. Spiculite
4.2.3. Foraminiferal and Radiolarian Biomicrite/Biosparite
4.2.4. Hemipelagic Siltstone to Claystone
4.3. Analysis of Relative Abundance of Radiolarian Assemblage
4.4. Qualitative Analysis of Planktonic Foraminiferal Assemblages
4.5. Percentage Quantity of Planktonic Microfossils
5. Discussion
5.1. Record of Sea Level Change
5.2. Microplankton Content in Relation to Sea Level Changes
5.2.1. Planktonic Foraminifera Environmental Signal
5.2.2. Environmental Signal from Radiolarian Distribution in Water Column
5.2.3. General Trends in Plankton Distribution in Relation to Sea Level
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haq, B.U. Cretaceous eustasy revisited. Global Planet. Chang. 2014, 113, 44–58. [Google Scholar] [CrossRef]
- Jurkowska, A.; Świerczewska-Gładysz, E.; Bąk, M.; Kowalik, S. The role of biogenic silica in the formation of Upper Cretaceous pelagic carbonates and its palaeoecological implications. Cret. Res. 2019, 93, 170–187. [Google Scholar] [CrossRef]
- Hemleben, C.; Spindler, M.; Anderson, O.R. Modern Planktonic Foraminifera; Springer: New York, NY, USA, Berlin/Heidelberg, Germany, 1989; p. 363. [Google Scholar]
- Gebhardt, H.; Wolfgang, K.; Holbourn, A. Foraminiferal response to sea level change, organic flux and oxygen deficiency in the Cenomanian of the Tarfaya Basin, southern Morocco. Mar. Micropal. 2004, 53, 133–157. [Google Scholar] [CrossRef]
- Bąk, M.; Bąk, K.; Michalik, M. Decadal to millennial variations in water column parameters in pelagic marine environments of the Western Tethys (Carpathian realm) during Middle–Late Jurassic-evidence from the radiolarian record. Glob. Planet. Chang. 2018, 162, 148–162. [Google Scholar] [CrossRef]
- Caron, M.; Homewood, P. Evolution of early planktic foraminifera. Mar. Micropaleontol. 1983, 7, 453–462. [Google Scholar] [CrossRef]
- Leckie, R.M. Paleoecology of mid-Cretaceous planktonic foraminifera: A comparison of open ocean and epicontinental sea assemblages. Micropaleontology 1987, 33, 164–176. [Google Scholar] [CrossRef]
- Hart, M.B. The evolution and biodiversity of Cretaceous planktonic Foraminiferida. Geobios 1999, 32, 247–255. [Google Scholar] [CrossRef]
- Galeotti, S. Planktic and benthic foraminiferal distribution patterns as a response to changes in surface fertility and ocean circulation: A case study from the Late Albian ‘‘Amadeus Segment’’ (Central Italy). J. Micropal. 1998, 17, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Coccioni, R.; Luciani, V. Planktonic foraminifera and environmental changes across the Bonarelli Event (OAE2, latest Cenomanian) in its type area: A high resolution study from the Tethyan reference Bottaccione section (Gubbio, central Italy). J. Foram. Res. 2004, 34, 109–129. [Google Scholar] [CrossRef]
- Kopaevich, L.F.; Gorbachik, T.N. Shell morphology of Cretaceous planktonic foraminifera as a means for paleoenvironment reconstructions. Paleontol. J. 2017, 51, 1–12. [Google Scholar] [CrossRef]
- Bąk, K. Environmental changes around the Cenomanian–Turonian boundary in a marginal part of the Outer Carpathian Basin expressed by microfacies, microfossils and chemical records in the Skole Nappe (Poland). Ann. Soc. Geol. Polon. 2007, 77, 39–67. [Google Scholar]
- Bąk, K.; Oszczypko, N. Late Albian and Cenomanian redeposited foraminifera from Late Cretaceous–Paleocene deposits of the Rača subunit (Magura Nappe, Polish Western Carpathians) and their paleogeographical significance. Geol. Carpath. 2000, 51, 371–382. [Google Scholar]
- De Wever, P.; Dumitriča, P.; Caulet, J.-P.; Nigrini, C.; Caridroit, M. Radiolarians in the Sedimentary Record; Gordon and Breach Science Publishers: Amsterdam, The Netherland, 2001; p. 533. [Google Scholar]
- Bąk, M.; Bąk, K. Palaeoceanographic regime during the Oxfordian–Kimmeridgian in the western Tethys recorded by radiolarian assemblages in the siliceous sediments of the Pieniny Klippen Belt, Carpathians. Geol. J. 2019, 54, 3362–3375. [Google Scholar] [CrossRef]
- Casey, R.E. The Ecology and Distribution of Recent Radiolaria. In Oceanic Micropaleontology; Ramsay, A.T.S., Ed.; Academic Press: London, UK, 1977; Volume 1, pp. 809–841. [Google Scholar]
- Matsuoka, A. Living radiolarian feeding mechanisms: New light on past marine ecosystems. Swiss. J. Geosci. 2007, 100, 273–279. [Google Scholar] [CrossRef]
- Bąk, M.; Górny, Z.; Bąk, K. Sponge growth on the Cenomanian carbonate shelves of the Carpathian Basin: A record from spicule-rich turbidites. Bull. Geosci. 2015, 90, 651–666. [Google Scholar] [CrossRef] [Green Version]
- Jawor, E. The structure of the deep substratum in the region east of Cracow. Acta Geol. Polon. 1970, 20, 709–770. [Google Scholar]
- Moryc, W. Budowa geologiczna podłoża miocenu w rejonie Kraków–Pilzno; Część II. Perm i mezozoik. Nafta–Gaz 2006, 62, 263–282. [Google Scholar]
- Bąk, M.; Bąk, K.; Ciurej, A. Mid-Cretaceous spicule-rich turbidites in the Polish Outer Carpathians: Radiolarian and foraminiferal biostratigraphy. Geol. Quart. 2005, 49, 275–290. [Google Scholar]
- Bąk, M.; Bąk, K.; Ciurej, A. Palaeoenvironmental signal from the microfossils record in the Mikuszowice Cherts of the Silesian Nappe, Polish Outer Carpathians. In Integrating Microfossils Record from the Oceans and Epicontinental Seas; Bąk, M., Kaminski, M.A., Waśkowska, A., Eds.; Grzybowski Foundation Special Publication: London, UK, 2011; Volume 17, pp. 15–25. [Google Scholar]
- Bąk, M. Cretaceous radiolaria from Niedzica succession of the Pieniny Klippen Belt in Polish Carpathians. Acta Palaeontol. Polon. 1996, 41, 91–110. [Google Scholar]
- Bąk, M. Radiolarian biostratigraphy of the upper Cenomanian-lower Turonian deposits in the Subsilesian Nappe (Outer Western Carpathians). Geol. Carpath. 2004, 55, 239–250. [Google Scholar]
- Bąk, K.; Bąk, M. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geol. Polon. 2013, 63, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Bąk, K.; Bąk, M.; Dulemba, P.; Okoński, S. Late Cenomanian environmental conditions at the submerged Tatric Ridge, Central Western Carpathians during the period preceding Oceanic Anoxic Event 2—A palaeontological and isotopic approach. Cret. Res. 2016, 63, 95–112. [Google Scholar] [CrossRef]
- Żytko, K. Correlation of the main structural units of Western and Eastern Carpathians. Prace Państw. Inst. Geol. Warszawa 1999, 168, 135–164. (In Polish) [Google Scholar]
- Burtan, J. Detailed Geological Map of Poland in Scale 1:50,000 (without Quaternary Sediments); The Carpathian and Fore-Carpathian Area: Myślenice Sheet; Wydawnictwa Geologiczne: Warsaw, Poland, 1964. [Google Scholar]
- Koszarski, L.; Ślączka, A. Outer (flysch) Carpathians. Lower Cretaceous. In Geology of Poland, Volume 1 Stratigraphy, Part 2 Mesozoic; Sokołowski, S., Cieśliński, S., Czermiński, J., Pajchlowa, M., Eds.; Geological Institute: Warsaw, Poland, 1973; pp. 492–495. [Google Scholar]
- Bąk, M. Radiolaria from the Upper Cenomanian–Lower Turonian deposits of the Silesian Unit (Polish Flysch Carpathians). Geol. Carpath. 2000, 51, 309–324. [Google Scholar]
- Bąk, K.; Bąk, M.; Paul, Z. Barnasiówka Radiolarian Shale Formation—A new lithostratigraphic unit in the Upper Cenomanian–lowermost Turonian of the Polish Outer Carpathians (Silesian Series). Ann. Soc. Geol. Polon. 2001, 71, 75–103. [Google Scholar]
- Bąk, M.; Bąk, K.; Górny, Z. Timing of mass redeposition of sponge spicules from the peri-Tethyan shelf into the deep Carpathian basin and their relation to mid-Cretaceous global sea level changes. Bull. Geol. Soc. Am. 2021; in press. [Google Scholar]
- Golonka, J.; Gahagan, L.; Krobicki, M.; Marko, F.; Oszczypko, N.; Ślączka, A. Plate Tectonic Evolution and Paleogeography of the Circum–Carpathian Region. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources; Golonka, J., Picha, F., Eds.; American Association of Petroleum Geologists Memoir: Tulsa, OK, USA, 2006; Volume 84, pp. 11–46. [Google Scholar]
- Oszczypko, N. Late Jurassic–Miocene evolution of the Outer Carpathian fold-and thrust belt and its foredeep basin (Western Carpathians, Poland). Geol. Quart. 2006, 50, 169–194. [Google Scholar]
- Golonka, J.; Oszczypko, N.; Ślączka, A. Late Carboniferous–Neogene geodynamic evolution and palaeogeography of the circum-Carpathian region and adjacent areas. Ann. Soc. Geol. Polon. 2000, 70, 107–136. [Google Scholar]
- Książkiewicz, M. Stratigraphical-Facial Problems: Cretaceous and Older Palaeogene in Polish Outer Carpathians. In Geological Atlas of Poland; Geological Institute: Warsaw, Poland, 1962. [Google Scholar]
- Nemčok, M.; Nemčok, J.; Wojtaszek, M.; Ludhova, L.; Oszczypko, N.; Sercombe, W.J.; Cieszkowski, M.; Paul, Z.; Coward, M.P.; Ślączka, A. Reconstruction of Cretaceous rifts incorporated in the Outer West Carpathian wedge by balancing. Mar. Petrol. Geol. 2001, 18, 39–64. [Google Scholar] [CrossRef]
- Unrug, R. The Silesian cordillera as the source of clastic material of the Flysch sandstones of the Beskid Śląski and Beskid Wysoki ranges, Polish West Carpathians. Ann. Soc. Géol. Pol. 1968, 38, 81–164. [Google Scholar]
- Kowal-Kasprzyk, J.; Waśkowska, A.; Golonka, J.; Krobicki, M.; Skupien, P.; Słomka, T. The Late Jurassic–Palaeogene Carbonate Platforms in the Outer Western Carpathian Tethys—A Regional Overview. Minerals 2021, 11, 747. [Google Scholar] [CrossRef]
- Reid, R.E.H. A Monograph of the Upper Cretaceous Hexactinellida of Great Britain and Northern Ireland; Palaeontographical Society: London, UK, 1958; p. 26. [Google Scholar]
- Termier, G.; Termier, H. Spongiaires du Crétacé Moyen. Cret. Res. 1980, 2, 427–433. [Google Scholar] [CrossRef]
- Olszewska-Nejbert, D.; Świerczewska-Gładysz, E. Cenomanian (Late Cretaceous) siliceous sponges from Nezvys’ko and Rakovets’ (Pokuttian Podillia, western Ukraine). Cret. Res. 2013, 43, 116–144. [Google Scholar] [CrossRef]
- Bąk, K.; Bąk, M.; Górny, Z.; Wolska, A. Environmental conditions in a Carpathian deep sea basin during the period preceding Oceanic Anoxic Event 2—A case study from the Skole Nappe. Geol. Carpath. 2014, 65, 433–450. [Google Scholar] [CrossRef] [Green Version]
- Sujkowski, Z. Sur certains spongiolithes de la Tatra et des Karpates. Spraw. Państw. Inst. Geol. 1933, 7, 712–733. (In Polish) [Google Scholar]
- Książkiewicz, M. Geology of the Northern Carpathians. Geol. Rund. 1956, 45, 396–411. [Google Scholar] [CrossRef]
- Alexandrowicz, S.W. Gaize-type sediments in the Carpathian flysch. Neues J. Geol. Paläont. 1973, 1, 1–17. [Google Scholar]
- Bąk, M. Cretaceous radiolarian zonation in the Polish part of the Pieniny Klippen Belt (Western Carpathians). Geol. Carpath. 1999, 50, 21–31. [Google Scholar]
- Bąk, K. Environmental changes during the Cenomanian–Turonian boundary event in the Outer Carpathian basins: A synthesis of data from various tectonic-facies units. Ann. Soc. Geol. Polon. 2007, 77, 171–191. [Google Scholar]
- Bąk, M.; Bąk, K. Termination of Organic-Rich Accumulation of the Oceanic Anoxic Event 2 in the Deep-Water Carpathian Basins Based on Carbon Stable Isotope Data. Minerals 2021, 11, 420. [Google Scholar] [CrossRef]
- Bąk, M. Tethyan radiolarians at the Cenomanian–Turonian anoxic event from the Apennines (Umbria-Marche) and the Outer Carpathians: Palaeoecological and palaeoenvironmental implications. Studia Geol. Polon. 2011, 134, 7–279. [Google Scholar]
- Olszewska, B. Foraminiferal biostratigraphy of the Polish Outer Carpathians: A record of basin geohistory. Ann. Soc. Geol. Polon. 1997, 67, 325–337. [Google Scholar]
- Bąk, K. Biostratigraphy of deep-water agglutinated Foraminifera in Scaglia Rossa-type deposits of the Pieniny Klippen Belt, Carpathians, Poland. In Proceedings of the Fifth International Workshop on Agglutinated Foraminifera, Plymouth, UK, 12–19 September 1997; Hart, M.B., Kaminski, M.A., Smart, C., Eds.; Grzybowski Foundation Special Publication: London, UK, 2000; Volume 7, pp. 15–40. [Google Scholar]
- Baccelle, L.; Bosellini, A. Diagrammi per la stima visiva della composizione percentuale nelle rocce sedimentarie. Ann. Univ. Ferrara (N. Serie) Sez. 9 Sci. Geol. Paleont. 1965, 1, 117–153. [Google Scholar]
- Bąk, M.; Górny, Z.; Bąk, K.; Wolska, A.; Stożek, B. Successive stages of calcitization and silicification of Cenomanian spicule-bearing turbidites based on microfacies analysis, Polish Outer Carpathians. Ann. Soc. Geol. Polon. 2015, 85, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Bąk, M.; Bąk, K.; Górny, Z.; Stożek, B. Evidence of bacteriogenic iron and manganese oxyhydroxides in Albian-Cenomanian marine sediments of the Carpathian realm (Poland). Ann. Soc. Geol. Polon. 2015, 85, 371–385. [Google Scholar] [CrossRef] [Green Version]
- Kostka, A.; Widz, D. Nowa metoda wydobywania mikroskamieniałości z twardych skałwęglanowych. Przegl. Geol. Warsaw 1986, 9, 461. (In Polish) [Google Scholar]
- Sanfilippo, A.; Riedel, W.R. Cretaceous Radiolaria. Plankton Stratigraphy. In Plankton Stratigraphy; Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., Eds.; Cambridge University Press: Cambridge, UK, 1985; pp. 573–630. [Google Scholar]
- Abelmann, A.; Gowing, M.M. Horizontal and vertical distribution pattern of living radiolarians along a transect from the Southern Ocean to the South Atlantic Subtropical region. Deep-Sea Res. I 1996, 43, 361–382. [Google Scholar] [CrossRef]
- Elderbak, K.; Leckie, R.M.; Tibert, N.E. Paleoenvironmental and paleoceanographic changes across the Cenomanian-Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea. Palaeogeogr. Palaeoecol. Palaeoclim. 2014, 413, 29–48. [Google Scholar] [CrossRef]
- Bijma, J.; Faber, W.W.; Hemleben, C. Temperature and salinity limits for growth and survival of some planktonic foraminifers in laboratory cultures. J. Foram. Res. 1990, 20, 95–116. [Google Scholar] [CrossRef] [Green Version]
- Rickaby, R.E.M.; Elderfield, H. Planktonic foraminiferal Cd/Ca: Paleonutrients or paleotemperature. Paleoceanography 1999, 14, 293–303. [Google Scholar] [CrossRef] [Green Version]
- Schiebel, R.; Waniek, J.; Bork, M.; Hemleben, C. Planktic foraminiferal production stimulated by chlorophyll redistribution and entrainment of nutrients. Deep-Sea Res. I 2001, 48, 721–740. [Google Scholar] [CrossRef]
- Sousa, S.H.M.; Godoi, S.S.; Amaral, P.G.C.; Vicente, T.M.; Martins, M.V.A.; Sorano, M.R.G.S.; Gaeta, S.A.; Passos, R.F.; Mahiques, M.M. Distribution of living planktonic foraminifera in relation to oceanic processes on the southeastern continental Brazilian margin (23◦ S–25◦ S and 40◦ W–44◦ W). Contin. Shelf Res. 2014, 89, 76–87. [Google Scholar] [CrossRef]
- Shackleton, N. Depth of pelagic foraminifera and isotopic changes in Pleistocene oceans. Nature 1968, 218, 79–80. [Google Scholar] [CrossRef]
- Mortyn, P.G.; Charles, C.D. Planktonic foraminiferal depth habitat and δ18O calibrations: Plankton tow results from the Atlantic sector of the Southern Ocean. Paleoceanography 2003, 18, 1037. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.; Jonkers, L.; Kretschmer, K.; Bijma, J.; Kucera, M. Depth habitat of the planktonic foraminifera Neogloboquadrina pachyderma in the northern high latitudes explained by sea-ice and chlorophyll concentrations. Biogeoscience 2019, 16, 3425–3437. [Google Scholar] [CrossRef] [Green Version]
- Hart, M.B. A water depth model for the evolution of the planktonic Foraminiferida. Nature 1990, 286, 252–254. [Google Scholar] [CrossRef]
- Casey, R.; Gust, L.; Leavesley, A.; Williams, D.; Reynolds, R.; Duis, T.; Spaw, M. Ecological niches of radiolarians, planktonic foraminiferans and pteropods inferred from studies on living forms in the Gulf of Mexico and adjacent waters. Trans. Gulf Coast Assoc. Geolog. Soc. 1979, 24, 216–223. [Google Scholar]
- Premoli Silva, I.; Sliter, W.V. Cretaceous Paleoceanography: Evidence from Planktonic Foraminiferal Evolution. In Evolution of the Cretaceous Ocean-Climate System; Barrera, E., Johnson, C.C., Smart, C., Eds.; Geological Society of America: Boulder, CO, USA , 1999; Volume 332, pp. 301–328. [Google Scholar]
- Gasiński, M.A. Tethyan-Boreal connection: Influence on the evolution of mid-Cretaceous planktonic foraminiferids. Cret. Res. 1997, 18, 505–514. [Google Scholar] [CrossRef]
- Ando, A.; Huber, B.T.; MacLeod, K.G. Depth-habitat reorganization of planktonic foraminifera across the Albian/Cenomanian boundary. Paleobiology 2010, 36, 357–373. [Google Scholar] [CrossRef]
- Wilson, P.A.; Norris, R.D. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 2001, 412, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Leckie, R.M.; Bralower, T.J.; Cashman, J. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography 2002, 17, 1041. [Google Scholar] [CrossRef] [Green Version]
- Machalski, M.; Kennedy, W.J. Oyster-bioimmured ammonites from the Upper Albian of Annopol, Poland: Stratigraphie and palaeobiogeographic implications. Acta Geol. Polon. 2013, 63, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Dubicka, Z.; Machalski, M. Foraminiferal record in a condensed marine succession: A case study from the Albian and Cenomanian (mid-Cretaceous) of Annopol, Poland. Geol. Mag. 2017, 154, 399–418. [Google Scholar] [CrossRef]
- Nederbragt, A.J.; Erlich, R.N.; Fouke, B.W.; Ganssen, G.M. Palaeoecology of the biserial planktonic foraminifer Heterohelix moremani (Cushman) in the late Albian to middle Turonian Circum-North Atlantic. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 235, 66–92. [Google Scholar] [CrossRef]
- Keller, G.; Pardo, L. Disaster opportunists Guembelitrinidae: Index for environmental catastrophes. Mar. Micropal. 2004, 53, 83–116. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.K. Guembelitria (foraminifera) in the Upper Cretaceous-Lower Paleocene succession of the Langpar Formation, India and its paleoenvironmental implication. J. Geol. Soc. India 2012, 79, 627–651. [Google Scholar] [CrossRef]
- Coccioni, R.; Luciani, V.; Marsili, A. Cretaceous oceanic anoxic events and radially elongated chambered planktonic foraminifera: Paleoecological and paleoceanographic implications. Palaeogeogr. Palaeoclim. Palaeoecol. 2006, 235, 66–92. [Google Scholar] [CrossRef]
- Petrizzo, M.R.; Huber, B.T.; Wilson, P.A.; MacLeod, K.G. Late Albian paleoceanography of the western subtropical north Atlantic. Paleoceanography 2008, 23, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bottini, C.; Erba, E. Mid-Cretaceous paleoenvironmental changes in the western Tethys. Clim. Past 2018, 14, 1147–1163. [Google Scholar] [CrossRef] [Green Version]
- Gibson, T.G. Planktonic benthonic foraminiferal ratios: Modern patterns and Tertiary applicability. Mar. Micropaleontol. 1989, 15, 29–52. [Google Scholar] [CrossRef]
- Van der Zwaan, G.J.; Jorissen, F.J.; de Stigter, H.C. The depth dependency of planktonic/benthic foraminiferal ratios: Constraints and applications. Mar. Geol. 1990, 95, 1–16. [Google Scholar] [CrossRef]
- Coccioni, R.; Galeotti, S. The mid-Cenomanian Event: Prelude to OAE 2. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 190, 427–440. [Google Scholar] [CrossRef]
- Bąk, M. Mid Cretaceous Radiolaria from the Pieniny Klippen Belt, Carpathians, Poland. Cret. Res. 1995, 16, 1–23. [Google Scholar] [CrossRef]
- Ciurej, A.; Bąk, M.; Szczerba, M. Biostratinomy and Diagenetic Impact on Exceptional Preservation of Coccospheres from Lower Oligocene Coccolith Limestones. Minerals 2020, 10, 616. [Google Scholar] [CrossRef]
- Boltovskoy, D.; Jankilevich, S.S. Radiolarian distribution in east Equatorial Pacific plankton. Oceanol. Acta 1985, 8, 101–123. [Google Scholar]
- Takahashi, K. Siliceous microplankton fluxes in the eastern subarctic Pacific, 1982–1986. J. Oceanogr. 1997, 53, 455–466. [Google Scholar]
- Bąk, M. Abdomen wall structure of Holocryptocanium barbui (Radiolaria). J. Micropal. 1996, 15, 131–134. [Google Scholar] [CrossRef]
- Boyle, E.A. Vertical oceanic nutrient fractionation and glacial/interglacial CO2 cycles. Nature 1988, 331, 55–56. [Google Scholar] [CrossRef]
- Bertrand, P.; Pedersen, T.F.P.; Martinez, P.; Calvert, S.; Shimmield, G. Sea level impact on nutrient cycling in coastal upwelling areas during deglaciation: Evidence from nitrogen isotopes. Glob. Biogeochem. Cycles 2000, 14, 341–355. [Google Scholar] [CrossRef]
- Leckie, R.M.; Olson, H. Foraminifera as proxies of sea-level change on siliciclastic margins. In Micropaleontologic Proxies of Sea-Level Change and Stratigraphic Discontinuities; Olson, H.C., Leckie, R.M., Eds.; Special Publication, SEPM (Society of Sedimentary Geology): Tulsa, OK, USA, 2003; pp. 5–19. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górny, Z.; Bąk, M.; Bąk, K.; Strzeboński, P. Planktonic Biota Constituents Responses to Global Sea-Level Changes Recorded in the Uppermost Albian to Middle Cenomanian Deep-Water Facies of the Outer Carpathians. Minerals 2022, 12, 152. https://doi.org/10.3390/min12020152
Górny Z, Bąk M, Bąk K, Strzeboński P. Planktonic Biota Constituents Responses to Global Sea-Level Changes Recorded in the Uppermost Albian to Middle Cenomanian Deep-Water Facies of the Outer Carpathians. Minerals. 2022; 12(2):152. https://doi.org/10.3390/min12020152
Chicago/Turabian StyleGórny, Zbigniew, Marta Bąk, Krzysztof Bąk, and Piotr Strzeboński. 2022. "Planktonic Biota Constituents Responses to Global Sea-Level Changes Recorded in the Uppermost Albian to Middle Cenomanian Deep-Water Facies of the Outer Carpathians" Minerals 12, no. 2: 152. https://doi.org/10.3390/min12020152
APA StyleGórny, Z., Bąk, M., Bąk, K., & Strzeboński, P. (2022). Planktonic Biota Constituents Responses to Global Sea-Level Changes Recorded in the Uppermost Albian to Middle Cenomanian Deep-Water Facies of the Outer Carpathians. Minerals, 12(2), 152. https://doi.org/10.3390/min12020152