Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix
Abstract
:1. Introduction
2. Geologic Setting
3. Methods
3.1. Sampling
3.2. Magnetic Properties
3.2.1. Low Field Susceptibility
3.2.2. AF Curves
3.2.3. Hysteresis Loops
3.2.4. Low-Temperature Magnetic Properties
3.2.5. Temperature-Dependent Susceptibility
3.3. Magnetic Fabrics
3.3.1. RT-AMS
3.3.2. LT-AMS
3.3.3. AARM
3.3.4. AMS Parameters
3.4. Microstructure Analyses
3.5. Chemical and Mineralogical Analyses
4. Results
4.1. Magnetic Properties
4.2. Magnetic Fabrics of the Lot Rocksalts
4.3. Microstructures and Geochemistry
5. Discussion
5.1. The Magnetic Mineralogy of the Rocksalts
5.2. Reliability of the AMS Results
5.3. Origin of the AMS
5.4. Microstructure of the Rocksalts
5.5. Implications of the AMS
6. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jackson, M.P.A.; Hudec, M.R. Salt Tectonics: Principles and Practice; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Urai, J.L.; Schléder, Z.; Spiers, C.J.; Kukla, P.A. Flow and Transport Properties of Salt Rocks. In Dynamics of Complex Intracontinental Basins: The Central European Basin System; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; pp. 277–290. [Google Scholar]
- Desbois, G.; Závada, P.; Schléder, Z.; Urai, J.L. Deformation and recrystallization mechanisms in actively extruding salt fountain: Microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran). J. Struct. Geol. 2010, 32, 580–594. [Google Scholar] [CrossRef]
- Archer, S.G.; Alsop, G.I.; Hartley, A.J.; Grant, N.T.; Hodgkinson, R. Salt tectonics, sediments and prospectivity: An introduction. Geol. Soc. Lond. Spec. Publ. 2012, 363, 1–6. [Google Scholar] [CrossRef]
- Warren, J.K. Salt usually seals, but sometimes leaks: Implications for mine and cavern stabilities in the short and long term. Earth-Sci. Rev. 2017, 165, 302–341. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites: A Geological Compendium, 2nd ed.; Springer: Berlin, Germany, 2016. [Google Scholar]
- Borradaile, G.J.; Jackson, M. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J. Struct. Geol. 2010, 32, 1519–1551. [Google Scholar] [CrossRef]
- Borradaile, G.J. Magnetic-susceptibility, petrofabrics and strain. Tectonophysics 1988, 156, 1–20. [Google Scholar] [CrossRef]
- Almqvist, B.S.G.; Hirt, A.M.; Herwegh, M.; Leiss, B. Magnetic anisotropy reveals Neogene tectonic overprint in highly strained carbonate mylonites from the Morcles nappe, Switzerland. J. Struct. Geol. 2011, 33, 1010–1022. [Google Scholar] [CrossRef]
- Almqvist, B.S.G.; Hirt, A.M.; Schmidt, V.; Dietrich, D. Magnetic fabrics of the Morcles Nappe complex. Tectonophysics 2009, 466, 89–100. [Google Scholar] [CrossRef]
- Renjith, A.R.; Mamtani, M.A.; Urai, J.L. Fabric analysis of quartzites with negative magnetic susceptibility—Does AMS provide information of SPO or CPO of quartz? J. Struct. Geol. 2016, 82, 48–59. [Google Scholar] [CrossRef]
- Borradaile, G.J.; Almqvist, B.S.G.; Geneviciene, I. Anisotropy of magnetic susceptibility (AMS) and diamagnetic fabrics in the Durness Limestone, NW Scotland. J. Struct. Geol. 2012, 34, 54–60. [Google Scholar] [CrossRef]
- Braun, D.; Weinberger, R.; Eyal, Y.; Feinstein, S.; Harlavan, Y.; Levi, T. Distinctive diamagnetic fabrics in dolostones evolved at fault cores, the Dead Sea Transform. J. Struct. Geol. 2015, 77, 11–26. [Google Scholar] [CrossRef]
- de Wall, H.; Bestmann, M.; Ullemeyer, K. Anisotropy of diamagnetic susceptibility in Thassos marble: A comparison between measured and modeled data. J. Struct. Geol. 2000, 22, 1761–1771. [Google Scholar] [CrossRef]
- Evans, M.A.; Lewchuk, M.T.; Elmore, R.D. Strain partitioning of deformation mechanisms in limestones: Examining the relationship of strain and anisotropy of magnetic susceptibility (AMS). J. Struct. Geol. 2003, 25, 1525–1549. [Google Scholar] [CrossRef]
- Issachar, R.; Levi, T.; Marco, S.; Weinberger, R. Strain Field Associated With a Component of Divergent Motion Along the Southern Dead Sea Fault: Insights From Magnetic Fabrics. Tectonics 2019, 38, 335–353. [Google Scholar] [CrossRef] [Green Version]
- Issachar, R.; Levi, T.; Marco, S.; Weinberger, R. Anisotropy of magnetic susceptibility in diamagnetic limestones reveals deflection of the strain field near the Dead Sea Fault, northern Israel. Tectonophysics 2015, 656, 175–189. [Google Scholar] [CrossRef]
- Levi, T.; Weinberger, R. Magnetic fabrics of diamagnetic rocks and the strain field associated with the Dead Sea Fault, northern Israel. J. Struct. Geol. 2011, 33, 566–578. [Google Scholar] [CrossRef]
- Schmidt, V.; Gunther, D.; Hirt, A.M. Magnetic anisotropy of calcite at room-temperature. Tectonophysics 2006, 418, 63–73. [Google Scholar] [CrossRef]
- Hrouda, F. Problems in interpreting AMS parameters in diamagnetic rocks. Geol. Soc. Lond. Spec. Publ. 2004, 238, 49–59. [Google Scholar] [CrossRef]
- Rochette, P.; Jackson, M.; Aubourg, C. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys. 1992, 30, 209. [Google Scholar] [CrossRef]
- Owens, W.H. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics 1974, 24, 115–131. [Google Scholar] [CrossRef]
- Hrouda, F.; Jezek, J. Theoretical models for the relationship between magnetic anisotropy and strain: Effect of triaxial magnetic grains. Tectonophysics 1999, 301, 183–190. [Google Scholar] [CrossRef]
- Elhanati, D.; Issachar, R.; Levi, T.; Weinberger, R. A Practical Approach for Identification of Magnetic Fabric Carriers in Rocks. J. Geophys. Res. Solid Earth 2021, 126. [Google Scholar] [CrossRef]
- Biedermann, A.R. Magnetic anisotropy in single crystals: A review. Geosciences 2018, 8, 302. [Google Scholar] [CrossRef] [Green Version]
- Nye, J.F. Physical Properties of Crystals; Oxford University Press: London, UK, 1957. [Google Scholar]
- Hrouda, F. Magnetic-anisotropy of rocks and its application in geology and geophysics. Geophys. Surv. 1982, 5, 37–82. [Google Scholar] [CrossRef]
- Soto, R.; Beamud, E.; Oliva-Urcia, B.; Roca, E. Applicability of magnetic fabrics in rocks associated with the emplacement of salt structures (the Bicorb–Quesa and Navarrés salt walls, Prebetics, SE Spain). Tectonophysics 2014, 629, 319–334. [Google Scholar] [CrossRef]
- Issachar, R.; Weinberger, R.; Alsop, G.I.; Levi, T. Deformation of Intrasalt Beds Recorded by Magnetic Fabrics. J. Geophys. Res. Solid Earth 2019, 124, 12465–12483. [Google Scholar] [CrossRef]
- Santolaria, P.; Casas, A.M.; Soto, R. Anisotropy of magnetic susceptibility as a proxy to assess internal deformation in diapirs: Case study of the Naval salt wall (Southern Pyrenees). Geophys. J. Int. 2015, 202, 1207–1222. [Google Scholar] [CrossRef]
- Šmid, J.; Schulmann, K.; Hrouda, F. Preliminary data on the AMS fabric in salt domes from the SW part of Zagros Mts., Iran. GeoLines 2001, 13, 114–115. [Google Scholar]
- Heinrich, F.C.; Schmidt, V.; Schramm, M.; Mertineit, M. Anisotropy of magnetic susceptibility in salt rocks from the German Zechstein Basin, Sondershausen mine. Geophys. J. Int. 2019, 219, 690–712. [Google Scholar] [CrossRef]
- Heinrich, F.C.; Schmidt, V.; Schramm, M.; Mertineit, M. Magnetic and mineralogical properties of salt rocks from the Zechstein of the Northern German Basin. Geophys. J. Int. 2017, 208, 1811–1831. [Google Scholar] [CrossRef]
- Garfunkel, Z. Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 1981, 80, 81–108. [Google Scholar] [CrossRef]
- Garfunkel, Z. Lateral motion and deformation along the Dead Sea Transform. In Dead Sea Transform Fault System: Reviews; Springer: Dordrecht, The Netherlands, 2014; Volume 6, pp. 109–145. ISBN 978-94-017-8871-7. [Google Scholar]
- Kashai, E.L.; Crocker, P.F. Structural geometry and evolution of the Dead Sea-Jordan rift system as deduced from new subsurface data. Tectonophysics 1987, 141, 33–60. [Google Scholar] [CrossRef]
- Matmon, A.; Fink, D.; Davis, M.; Niedermann, S.; Rood, D.; Frumkin, A. Unraveling rift margin evolution and escarpment development ages along the Dead Sea fault using cosmogenic burial ages. Quat. Res. 2014, 82, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Zak, I. The Geology of Mount Sedom. Ph.D. Thesis, Hebrew University, Jerusalem, Israel, 1967. [Google Scholar]
- Weinberger, R.; Agnon, A.; Ron, H. Paleomagnetic reconstruction of a diapir emplcement: A case study from Sedom diapir, the Dead Sea Rift. J. Geophys Res. 1997, 102, 5173–5192. [Google Scholar] [CrossRef]
- Alsop, G.I.; Weinberger, R.; Levi, T.; Marco, S. Deformation within an exposed salt wall: Recumbent folding and extrusion of evaporites in the Dead Sea Basin. J. Struct. Geol. 2015, 70, 95–118. [Google Scholar] [CrossRef]
- Weinberger, R.; Levi, T.; Alsop, G.I.; Marco, S. Kinematics of Mass Transport Deposits revealed by magnetic fabrics. Geophys. Res. Lett. 2017, 44, 7743–7749. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, R.; Lyakhovsky, V.; Baer, G.; Begin, Z.B. Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective viscosity of rock salt. Geochem. Geophys. Geosyst. 2006, 7. [Google Scholar] [CrossRef] [Green Version]
- Weinberger, R.; Begin, Z.B.; Waldmann, N.; Gardosh, M.; Baer, G.; Frumkin, A.; Wdowinski, S. Quaternary rise of the Sedom diapir, Dead Sea basin. In Special Paper 401: New Frontiers in Dead Sea Paleoenvironmental Research; Geological Society of America: Boulder, CO, USA, 2006; pp. 33–51. [Google Scholar]
- Weinberger, R.; Bar-Matthews, M.; Levi, T.; Begin, Z.B. Late-Pleistocene rise of the Sedom diapir on the backdrop of water-level fluctuations of Lake Lisan, Dead Sea basin. Quat. Int. 2007, 175, 53–61. [Google Scholar] [CrossRef]
- Zucker, E.; Frumkin, A.; Agnon, A.; Weinberger, R. Internal deformation and uplift-rate of salt walls detected by a displaced dissolution surface, Dead Sea basin. J. Struct. Geol. 2019, 127, 103870. [Google Scholar] [CrossRef]
- Alsop, G.I.; Weinberger, R.; Levi, T.; Marco, S. Cycles of passive versus active diapirism recorded along an exposed salt wall. J. Struct. Geol. 2016, 84, 47–67. [Google Scholar] [CrossRef] [Green Version]
- Schléder, Z.; János, A.E.; Urai, L.; Sofie, A.E.; Ae, N.; Hilgers, C.; Schléder, Z.; Urai, J.L.; Nollet, Á.S.; Hilgers, Á.C.; et al. Solution-precipitation creep and fluid flow in halite: A case study of Zechstein (Z1) rocksalt from Neuhof salt mine (Germany). Int. J. Earth Sci. 2008, 97, 1045–1056. [Google Scholar] [CrossRef]
- Sneh, A.; Weinberger, R. Major Structures of Israel and Environs, Scale 1: 500,000; Geological Survey of Israel: Jerusalem, Israel, 2014.
- Agnon, A.; Weinberger, R.; Zak, I.; Sneh, A. Geological Map of Israel, Sheet 20-I Sedom, Scale 1: 50,000; Geological Survey of Israel: Jerusalem, Israel, 2006.
- Issachar, R.; Levi, T.; Lyakhovsky, V.; Marco, S.; Weinberger, R. Improving the method of low-temperature anisotropy of magnetic susceptibility (LT-AMS) measurements in air. Geochem. Geophys. Geosyst. 2016, 17, 2940–2950. [Google Scholar] [CrossRef]
- Jelinek, V. Measuring anisotropy of magnetic susceptibility on a slowly spinning specimen-basic theory. In AGICO Print No 10; Agico, Inc.: Brno, Czech Republic, 1995. [Google Scholar]
- Jackson, M.; Tauxe, L. Anisotropy of magnetic susceptibility and remanence: Developments in the characterization of tectonic, sedimentary and igneous fabric. Rev. Geophys. 1991, 29, 371–376. [Google Scholar] [CrossRef]
- Jelinek, V. Characterization of the magnetic fabric of rocks. Tectonophysics 1981, 79, T63–T67. [Google Scholar] [CrossRef]
- Jelinek, V. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and Its Application; Geofyzika: Brno, Czech Republic, 1977; pp. 1–88. [Google Scholar]
- Urai, J.L.; Spiers, C.J.; Peach, C.J.; Franssen, R.C.M.W.; Liezenberg, J.L. Deformation mechanisms operating in naturally deformed halite rocks as deduced from microstructural investigations. Geol. Mijnb. 1987, 66, 165–176. [Google Scholar]
- Schléder, Z.; Urai, J.L. Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int. J. Earth Sci. 2005, 94, 941–955. [Google Scholar] [CrossRef]
- Schléder, Z.; Urai, J.L. Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene–Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J. Struct. Geol. 2007, 29, 241–255. [Google Scholar] [CrossRef]
- Urai, J.L.; Spiers, C.J.; Zwart, H.J.; Lister, G.S. Weakening of rock salt by water during long-term creep. Nature 1986, 324, 554–557. [Google Scholar] [CrossRef]
- Tarling, D.H.; Hrouda, F.H. The Magnetic Anisotropy of Rocks; Chapman and Hall: London, UK, 1993; ISBN 0412498804. [Google Scholar]
- Zak, I.; Freund, R. Strain measurements in eastren marginal shear zone of Mount Sedom salt diapir. AAPG Bull. 1980, 64, 568–581. [Google Scholar] [CrossRef]
- Biedermann, A.R.; Lowrie, W.; Hirt, A.M. A method for improving the measurement of low-field magnetic susceptibility anisotropy in weak samples. J. Appl. Geophys. 2013, 88, 122–130. [Google Scholar] [CrossRef]
- Ivakhnenko, O.P.; Abirov, R.; Logvinenko, A. New Method for Characterisation of Petroleum Reservoir Fluidmineral Deposits Using Magnetic Analysis. Energy Procedia 2015, 76, 454–462. [Google Scholar] [CrossRef] [Green Version]
- Eugene, C.R.; Richard, A.R.; Kenneth, G.B. Physical Properties of Salt, Anhydrite and Gypsum—Preliminary Report; US Geological Survey: Denver, CO, USA, 1958.
- Talbot, C.J. Extrusions of Hormuz salt in Iran. Geol. Soc. Spec. Publ. 1998, 143, 315–334. [Google Scholar] [CrossRef]
- Schoenherr, J.; Schléder, Z.; Urai, J.L.; Littke, R.; Kukla, P.A. Deformation mechanisms of deeply buried and surface-piercing Late Pre-Cambrian to Early Cambrian Ara Salt from interior Oman. Int. J. Earth Sci. 2010, 99, 1007–1025. [Google Scholar] [CrossRef]
- Zulauf, G.; Zulauf, J.; Bornemann, O.; Kihm, N.; Peinl, M.; Zanella, F. Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction. Part 1: Geometric and kinematic aspects. J. Struct. Geol. 2009, 31, 460–474. [Google Scholar] [CrossRef]
- Zulauf, G.; Zulauf, J.; Bornemann, O.; Brenker, F.E.; Höfer, H.E.; Peinl, M.; Woodland, A.B. Experimental deformation of a single-layer anhydrite in halite matrix under bulk constriction. Part 2: Deformation mechanisms and the role of fluids. J. Struct. Geol. 2010, 32, 264–277. [Google Scholar] [CrossRef]
- Thiemeyer, N.; Zulauf, G.; Mertineit, M.; Linckens, J.; Pusch, M.; Hammer, J. Microfabrics and 3D grain shape of Gorleben rock salt: Constraints on deformation mechanisms and paleodifferential stress. Tectonophysics 2016, 676, 1–19. [Google Scholar] [CrossRef]
- Linckens, J.; Zulauf, G.; Mertineit, M. The influence of a grain-shape fabric on the mechanical behaviour of rock salt: Results from deformation experiments. Tectonophysics 2019, 751, 73–82. [Google Scholar] [CrossRef]
- Vargas-Meleza, L.; Healy, D.; Alsop, G.I.; Timms, N.E. Exploring the relative contribution of mineralogy and CPO to the seismic velocity anisotropy of evaporites. J. Struct. Geol. 2015, 70, 39–55. [Google Scholar] [CrossRef] [Green Version]
Specimen | kmRT (× 10−6 SI) | P | T | L | F | F-Test |
---|---|---|---|---|---|---|
LS1-1 | −13.9 | 1.005 | 0.07 | 1.003 | 1.003 | 9.7 |
LS1-2 | −14.0 | 1.004 | 0.00 | 1.002 | 1.002 | 23.0 |
LS1-3 | −13.7 | 1.004 | 0.50 | 1.001 | 1.003 | 7.3 |
LS1-4 | −13.5 | 1.004 | 0.14 | 1.002 | 1.002 | 2.8 |
LS1-5 | −13.8 | 1.005 | 0.02 | 1.002 | 1.002 | 6.4 |
LS1-6 | −14.0 | 1.008 | 0.43 | 1.002 | 1.006 | 5.4 |
LS1-7 | −13.8 | 1.008 | −0.43 | 1.006 | 1.002 | 3.3 |
LS1-8 | −14.0 | 1.003 | −0.06 | 1.002 | 1.001 | 7.0 |
LS1-9 | −14.2 | 1.003 | 0.75 | 1.000 | 1.003 | 10.2 |
LS1-10 | −12.8 | 1.003 | 0.20 | 1.001 | 1.002 | 3.6 |
LS1-12 | −14.1 | 1.002 | 0.64 | 1.000 | 1.002 | 7.5 |
LS1-13 | −14.1 | 1.004 | −0.08 | 1.002 | 1.002 | 11.9 |
LS6-45 | −11.8 | 1.004 | −0.39 | 1.003 | 1.001 | 11.6 |
LS6-47 | −11.9 | 1.005 | −0.58 | 1.004 | 1.001 | 18.8 |
LS6-48 | −13.3 | 1.003 | −0.67 | 1.002 | 1.000 | 4.8 |
LS6-50 | −13.4 | 1.005 | 0.36 | 1.002 | 1.003 | 2.4 |
LS6-52 | −12.9 | 1.002 | 0.34 | 1.001 | 1.001 | 1.6 |
LS6-53 | −12.7 | 1.005 | 0.05 | 1.003 | 1.003 | 8.8 |
LS6-54 | −13.4 | 1.004 | −0.13 | 1.002 | 1.002 | 4.6 |
LS6-55 | −13.4 | 1.002 | −0.77 | 1.002 | 1.000 | 4.2 |
LS6-56 | −11.9 | 1.003 | 0.03 | 1.002 | 1.002 | 5.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issachar, R.; Weinberger, R.; Levi, T.; Barabasch, J.; Urai, J.L. Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix. Minerals 2022, 12, 192. https://doi.org/10.3390/min12020192
Issachar R, Weinberger R, Levi T, Barabasch J, Urai JL. Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix. Minerals. 2022; 12(2):192. https://doi.org/10.3390/min12020192
Chicago/Turabian StyleIssachar, Ran, Ram Weinberger, Tsafrir Levi, Jessica Barabasch, and Janos L. Urai. 2022. "Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix" Minerals 12, no. 2: 192. https://doi.org/10.3390/min12020192
APA StyleIssachar, R., Weinberger, R., Levi, T., Barabasch, J., & Urai, J. L. (2022). Magnetic Fabrics and Petrography of Rocksalts Reveal Preferred Orientation of Anhydrites within a Halite Matrix. Minerals, 12(2), 192. https://doi.org/10.3390/min12020192