Differential Fluid Activity in a Single Exhumed Continental Subduction Unit from Local P-T-M(H2O) Records of Zoned Amphiboles (North Muya, Eastern Siberia)
Abstract
:1. Introduction
2. Geological Background
3. Sample and Methods
4. Results
4.1. Petrography and Mineral Chemistry
4.2. Prograde and Peak Pressure—Temperature Modelling
4.3. Retrograde Evolution of Eclogites and Fluid Activity Modelling
5. Discussion
5.1. Sources and Scales of Potential Uncertainties in Characterizing Prograde-To-Peak P–T Calculations
- (1)
- Selecting the EBCs consistent with real equilibrated sample volumes;
- (2)
- Selecting the appropriate Fe3+/Fe2+, which affects stability of some phases (e.g., zoisite);
- (3)
- Assuming the equilibrium nature of amphibole relative to garnet-free bulk rock volume;
- (4)
- The effect of diffusional re-equilibration of dry eclogitic (garnet + omphacite) assemblages.
5.2. Styles of Retrograde Evolution and Rehydration Conditions of High-Pressure Assemblages
5.3. Implications to Fluid Effects onto Buoyancy of the Continental Crust and Crust-Mantle Interactions
6. Conclusions
- (1)
- The eclogites were subjected to burial at similar peak depths (at least up to ~19–21 kbar) but different peak temperatures (within ~600–730 °C) with or without notable heating and re-equilibration due to crustal thickening.
- (2)
- A variable degree of exhumation-induced pervasive rehydration led to growth of individual zoned porphyroblastic barroisite-hornblende amphibole ± zoisite over the primary eclogitic assemblage or after notable heating-driven development of symplectitic aggregate after omphacite. Amphibole compositions together with the zoisite presence/absence in different samples reflect continuous rehydration by addition of ~0.2–1.5 wt% of H2O, which controlled both the growth of hydrous minerals and the degree of omphacite decomposition.
- (3)
- Different exhumation conditions were revealed, from nearly peak eclogitic P–T (~17–18 kbar) to granulite- and amphibolite-facies depths within the plagioclase stability field (<14 kbar), as well as variable thermal regimes (with or without post-peak heating), that may reflect the effect of crustal thickness. These differences most likely reflect irregular distribution of internally sourced, low-volume, hydrous metamorphic fluid (i.e., from host felsic rocks or metasediments) acting at different depths of the subduction interface.
- (4)
- Nearly isochemical (i.e., without any significant modification of the bulk-rock composition other than incorporation of additional H2O), retrograde hydration at lower- to middle-crust conditions did not significantly influence the density and the rheology of the subducted continental slices due to both (1) limited abundance of dense metabasic and commonly more fluid-rich (e.g., due to chlorite or amphibole alteration), and (2) the initially dry nature of mafic and felsic continental rocks. The limited dehydration and rehydration scales exemplified by the North Muya eclogites and therefore low availability of hydrous metamorphic fluid may have accounted for high buoyancy of the eclogitic crust and explained the absence of contemporaneous suprasubduction magmatism in the regional context at ca. ~630 Ma.
Funding
Acknowledgments
Conflicts of Interest
References
- Burov, E. Rheology and strength of the lithosphere. Marine Petrol. Geol. 2011, 28, 1402–1443. [Google Scholar] [CrossRef]
- Chen, W.-P.; Molnar, P. Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal and mechanical properties of the lithosphere. J. Geophys. Res. Atmosph. 1983, 88, 4183–4214. [Google Scholar] [CrossRef]
- Clark, M.-K.; Royden, L.-H. Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology 2000, 28, 703–706. [Google Scholar] [CrossRef]
- von Blanckenburg, F.H.; Davies, J.H. Slab breakoff: A model for syncollisional magmatism and tectonics in the Alps. Tectonics 1995, 14, 1320–1331. [Google Scholar] [CrossRef]
- Jamtveit, B.; Petley-Ragan, A.; Incel, S.; Dunkel, K.-G.; Aupart, C.; Austrheim, H.; Corfu, F.; Menegon, L.; Renard, F. The effects of earthquakes and fluids on the metamorphism of the lower continental crust. J. Geophys. Res. Solid Earth 2019, 124, 7725–7755. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, B.; Gong, B.; Li, L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: Implications for geodynamics and fluid regime. Earth-Sci. Rev. 2003, 62, 105–161. [Google Scholar] [CrossRef]
- Vitale Brovarone, A.; Groppo, C.; Hetenyi, G.; Compagnoni, R.; Malavielle, J. Coexistence of lawsonite-bearing eclogite and blueschist: Phase equilibria modelling of Alpine Corsica metabasalts and petrological evolution of subducting slabs. J. Metamorph. Geol. 2011, 29, 583–600. [Google Scholar] [CrossRef]
- Carson, C.J.; Clarke, G.; Powell, R. Hydration of eclogite, Pam Peninsular, New Caledonia. J. Metamorph. Geol. 2000, 18, 79–90. [Google Scholar] [CrossRef]
- van der Straaten, F.; Schenk, V.; John, T.; Gao, J. Blueschist-facies rehydration of eclogites (Tian Shan, NW-China): Implications for fluid–rock interaction in the subduction channel. Chem. Geol. 2008, 255, 195–219. [Google Scholar] [CrossRef]
- van der Straaten, F.; Halama, R.; John, T.; Schenk, V.; Hauff, F.; Andersen, N. Tracing the effects of high-pressure metasomatic fluids and seawater alteration in blueschist-facies overprinted eclogites: Implications for subduction channel processes. Chem. Geol. 2012, 292–293, 69–87. [Google Scholar] [CrossRef] [Green Version]
- Hacker, B.R.; Abers, G.A.; Peacock, S.M. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. J. Geophys. Res. Solid Earth 2003, 108, 2029. [Google Scholar] [CrossRef]
- Abers, G.A.; Nakajima, J.; van Keken, P.E.; Kita, S.; Hacker, B.R. Thermal–petrological controls on the location of earthquakes within subducting plates. Earth Planet. Sci. Lett. 2013, 369–370, 178–187. [Google Scholar] [CrossRef]
- Rubie, D.C. Role of kinetics in the formation and preservation of eclogites. In Eclogite Facies Rocks; Carswell, D.A., Ed.; Springer: Dordrecht, The Netherlands, 1990; pp. 111–140. [Google Scholar]
- Hernández-Uribe, D.; Palin, R.M. A revised petrological model for subducted oceanic crust: Insights from phase equilibrium modelling. J. Metamorph. Geol. 2019, 37, 745–768. [Google Scholar] [CrossRef]
- Groppo, C.; Lombardo, B.; Castelli, D.; Compagnoni, R. Exhumation history of the UHPM Brossasco-Isasca unit, Dora-Maira massif, as inferred from a phengite-amphibole eclogite. Int. Geol. Rev. 2007, 49, 142–168. [Google Scholar] [CrossRef]
- Massonne, H.-J. Formation of amphibole and clinozoisite-epidote in eclogite owing to fluid infiltration during exhumation in a subduction channel. J. Petrol. 2012, 53, 1969–1998. [Google Scholar] [CrossRef]
- Palin, R.M.; St-Onge, M.; Waters, D.J.; Searle, M.P.; Dyck, B. Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: Constraining the P–T–M(H2O) conditions of exhumation. J. Metamorph. Geol. 2014, 32, 675–693. [Google Scholar] [CrossRef]
- Austrheim, H. Eclogitisation of lower crustal granulites by fluid migration through shear zones. Earth Planet. Sci. Lett. 1987, 81, 221–232. [Google Scholar] [CrossRef]
- Barnicoat, A.C. The mechanism of veining and retrograde alteration of Alpine eclogites. J. Metamorph. Geol. 1988, 6, 545–558. [Google Scholar] [CrossRef]
- Jamtveit, B.; Bucher-Nurminen, K.; Austrheim, H. Fluid controlled eclogitization of granulites in deep crustal shear zones, Bergen arcs, Western Norway. Contrib. Mineral. Petrol. 1990, 104, 184–193. [Google Scholar] [CrossRef]
- Yardley, B.W.D. The evolution of fluids through the metamorphic cycle. In Fluid Flow and Transport in Rocks; Jamtveit, B., Yardley, B.W.D., Eds.; Chapman & Hall: London, UK, 1997; pp. 99–117. [Google Scholar]
- Glodny, J.; Austrheim, H.; Molina, J.F.; Rusin, A.I.; Seward, D. Rb/Sr record of fluid-rock interaction in eclogites: The Marun-Keu complex, Polar Urals, Russia. Geochim. Cosmochim. Acta 2003, 67, 4353–4371. [Google Scholar] [CrossRef]
- de Sigoyer, J.; Guillot, S.; Lardeaux, J.-M.; Mascle, G. Glaucophane-bearing eclogites in the Tso Morari dome (eastern Ladakh, NW Himalaya). Eur. J. Mineral. 1997, 9, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- de Sigoyer, J.; Chavagnac, V.; Blichert-Toft, J.; Villa, I.M.; Luais, B.; Guillot, S.; Cosca, M.; Mascle, G. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 2000, 28, 487–490. [Google Scholar] [CrossRef]
- St-Onge, M.R.; Rayner, N.; Palin, R.M.; Searle, M.P.; Waters, D.J. Integrated pressure-temperature-time constraints for the Tso Morari dome (NW India): Implications for the burial and exhumation path of UHP units in the western Himalaya. J. Metamorph. Geol. 2013, 31, 469–504. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Wang, K.-L.; Shatsky, V.S.; Buslov, M.M. Geochemistry, zircon U-Pb age and Hf isotopes of the North Muya block granitoids (Central Asian Orogenic belt): Constraints on petrogenesis and geodynamic significance of felsic magmatism. Precambrian Res. 2016, 280, 14–30. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Wang, K.-L.; Dril, S.I.; Lee, H.-Y.; Iizuka, Y. Geochemistry, zircon U-Pb and Lu-Hf systematics of high-grade metasedimentary sequences from the South Muya block (northeastern Central Asian Orogenic Belt): Reconnaissance of polymetamorphism and accretion of Neoproterozoic exotic blocks in southern Siberia. Precambrian Res. 2019, 321, 34–53. [Google Scholar]
- Skuzovatov, S.Y.; Shatsky, V.S.; Wang, K.-L. Continental subduction during arc-microcontinent collision in the southern Siberian craton: Constraints on protoliths and metamorphic evolution of the North Muya complex eclogites (Eastern Siberia). Lithos 2019, 342–343, 76–96. [Google Scholar] [CrossRef]
- Bulgatov, A.N. Tectonotype of Baikalids; Nauka: Novosibirsk, Russia, 1983; 193p. (In Russian) [Google Scholar]
- Bulgatov, A.G.; Gordienko, I.V. Terranes of the Baikal mountainous region and location of gold deposits. Geol. Ore Depos. 1999, 41, 230–240. (In Russian) [Google Scholar]
- Salop, L.I. Geology of Baikal Mountain Area; Nedra: Moscow, Russia, 1964; 517p. (In Russian) [Google Scholar]
- Rytsk, E.Y.; Amelin, Y.V.; Rizvanova, N.G.; Krimsky, R.S.; Mitrofanov, G.L.; Mitrofanova, N.N.; Perelyaev, V.I.; Shalaev, V.S. Age of Rocks in the Baikal-Muya Foldbelt. Stratigr. Geol. Correl. 2001, 9, 3–15. [Google Scholar]
- Mitrofanov, G.L. Evolution of tectonic structures and stages of the continental crust formation of North-Western Transbaikalia. In Tectonics and Metallogeny of Eastern Siberia; Irkutsk State University: Irkutsk, Russia, 1978; pp. 38–56. (In Russian) [Google Scholar]
- Rytsk, E.Y.; Kovach, V.P.; Yarmolyuk, V.V.; Kovalenko, V.I. Structure and evolution of the continental crust in the Baikal Fold Region. Geotectonics 2007, 41, 440–464. [Google Scholar] [CrossRef]
- Shatsky, V.S.; Malkovets, V.G.; Belousova, E.A.; Skuzovatov, S.Y. Evolution history of the Neoproterozoic eclogite-bearing complex of the Muya dome (Central Asian Orogenic Belt): Constraints from zircon U-Pb age, Hf and whole-rock Nd isotopes. Precambrian Res. 2015, 261, 1–11. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Sklyarov, E.V.; Shatsky, V.S.; Wang, K.-L.; Kulikova, K.V.; Zarubina, O.V. Granulites of the South-Muya block (Baikal-Muya Foldbelt): Age of metamorphism and nature of protolith. Russ. Geol. Geophys. 2016, 57, 451–463. [Google Scholar] [CrossRef]
- Skuzovatov, S.Y.; Shatsky, V.S.; Dril, S.I. High-pressure mafic granulites of the South Muya block (Central Asian Orogenic Belt). Doklady Earth Sci. 2017, 473, 423–426. [Google Scholar] [CrossRef] [Green Version]
- Shatsky, V.S.; Sitnikova, E.S.; Tomilenko, A.A.; Ragozin, A.L.; Koz’menko, O.A.; Jagoutz, E. Eclogite-gneiss complex of the Muya block (East Siberia): Age, mineralogy, geochemistry, and petrology. Russ. Geol. Geophys. 2012, 53, 501–521. [Google Scholar] [CrossRef]
- Shatskii, V.S.; Skuzovatov, S.Y.; Ragozin, A.L.; Dril, S.I. Evidence of Neoproterosoic continental subduction in the Baikal-Muya fold belt. Doklady Earth Sci. 2014, 495, 1442–1445. [Google Scholar] [CrossRef]
- Brandelik, A. CALCMIN—An EXCEL (TM) Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Comput. Geosci. 2009, 35, 1540–1551. [Google Scholar] [CrossRef]
- Holland, T.; Blundy, J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib. Mineral. Petrol. 1994, 116, 433–447. [Google Scholar] [CrossRef]
- Connolly, J.A.D. Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 2005, 236, 524–541. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally-consistent thermodynamic dataset for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–344. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 2007, 25, 511–527. [Google Scholar] [CrossRef]
- Green, E.C.R.; Holland, T.J.B.; Powell, R. An order-disorder model for omphacitic pyroxenes in the system jadeite-diopside-hedenbergite-acmite, with applications to eclogite rocks. Am. Mineral. 2007, 92, 1181–1189. [Google Scholar] [CrossRef]
- Dale, J.; Powell, R.; White, R.W.; Elmer, F.L.; Holland, T.B.J. A thermodynamic model for Ca–Na clinoamphiboles in Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O for petrological calculations. J. Metamorph. Geol. 2005, 23, 771–791. [Google Scholar] [CrossRef]
- Holland, T.; Powell, R. A Compensated-Redlich-Kwong (CORK) equation for volumes and fugacities of CO2 and H2O in the range 1 bar to 50 kbar and 100–1600 °C. Contrib. Mineral. Petrol. 1991, 109, 265–273. [Google Scholar] [CrossRef]
- Leake, B.E.; Woolley, A.R.; Arps, C.E.S.; Birch, W.D.; Gilbert, M.C.; Grice, J.D.; Hawthorne, F.C.; Kato, A.; Kisch, H.J.; Krivovichev, V.G.; et al. Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the International Mineralogical Association commission on new minerals and mineral names. Mineral. Mag. 1997, 61, 295–321. [Google Scholar] [CrossRef]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Li, J.-L.; Klemd, R.; Gao, J.; Jiang, T.; Song, Y.-H. A common high-pressure metamorphic evolution of interlayered eclogites and metasediments from the ‘ultrahigh-pressure unit’ of the Tianshan metamorphic belt in China. Lithos 2015, 226, 169–182. [Google Scholar] [CrossRef]
- Viete, D.R.; Hacker, B.R.; Allen, M.B.; Seward, G.G.E.; Tobin, M.J.; Kelley, C.S.; Cinque, G.; Duckworth, A.R. Metamorphic records of multiple seismic cycles during subduction. Sci. Adv. 2018, 4, eaaq0234. [Google Scholar] [CrossRef] [Green Version]
- Carlson, W.D. Rates of Fe, Mg, Mn, and Ca diffusion in garnet. Am. Mineral. 2006, 91, 1–11. [Google Scholar] [CrossRef]
- Kelley, K.A.; Cottrell, E. Water and the oxidation state of subduction zone magmas. Science 2009, 325, 605–607. [Google Scholar] [CrossRef] [Green Version]
- Heinrich, C.A. Kyanite-eclogite to amphibolite facies evolution of hydrous mafic and pelitic rocks, Adula nappe, Central Alps. Contrib. Mineral. Petrol. 1982, 81, 30–38. [Google Scholar] [CrossRef]
- Yardley, B.W.D.; Baltatzis, E. Retrogression of staurolite schists and the sources of infiltrating fluids during metamorphism. Contrib. Mineral. Petrol. 1985, 89, 59–68. [Google Scholar] [CrossRef]
- Rubie, D.C. The catalysis of mineral reactions by water and restrictions on the presence of aqueous fluid during metamorphism. Mineral. Mag. 1986, 50, 399–415. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.F.; Austrheim, H.; Glodny, J.; Rusin, A. The eclogites of the Marun-Keu Complex (Polar Urals, Russia). Lithos 2002, 61, 55–78. [Google Scholar] [CrossRef]
- Guiraud, M.; Powell, R.; Rebay, G. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol. 2001, 19, 445–454. [Google Scholar] [CrossRef]
- Martin, C.; Duchêne, S. Residual water in hydrous minerals as a kinetic factor for omphacite destabilization into symplectite in the eclogites of Vårdalsneset (WGR, Norway). Lithos 2015, 232, 162–173. [Google Scholar] [CrossRef]
- Spear, F.S. Metamorphic Phase Equilibria and Presure-Temperature-Time-Paths; Mineralogical Society of America: Chantilly, VA, USA, 1993; 799p, ISBN 0-939950-34-0. [Google Scholar]
- Avchenko, O.V.; Gabov, N.F.; Kozyreva, I.V.; Konikov, A.Z.; Travin, L.V. Composition and origin of eclogites of the North Muya block. Int. Geol. Rev. 1995, 31, 792–805. [Google Scholar] [CrossRef]
- Manning, C.E. Fluid composition at the blueschist-eclogite transition in the model system Na2O-MgO-Al2O3-SiO2-H2O-HCl. Swiss Bull. Mineral. Petrol. 1998, 78, 225–242. [Google Scholar]
- Miller, J.A.; Buick, I.S.; Cartwright, I.; Barnicoat, A. Fluid processes during the exhumation of high-P metamorphic belts. Mineral. Mag. 2002, 66, 93–119. [Google Scholar] [CrossRef]
- Philippot, P.; Selverstone, J. Trace-element-rich brines in eclogitic veins: Implications for fluid composition and transport during subduction. Contrib. Mineral. Petrol. 1991, 106, 417–430. [Google Scholar] [CrossRef]
- Davies, J.H.; Stevenson, D.J. Physical model of source region of subduction zone volcanics. J. Geophys. Res. 1992, 97, 2037–2070. [Google Scholar] [CrossRef]
Component | Sample Mu-93-21 | |||||||||
Grt 1 (c) | Grt 1 (rim) | Grt 2 (c) | Grt 2 (rim) | Omp 1 | Omp 2 | Amp 1 | Amp 2 | Amp 3 | Zo | |
SiO2 | 39.9 | 40.3 | 39.4 | 39.8 | 55.9 | 56.4 | 50.6 | 47.0 | 49.0 | 39.3 |
TiO2 | 0.05 | 0.00 | 0.07 | 0.04 | 0.02 | 0.13 | 0.23 | 0.34 | 0.16 | 0.01 |
Al2O3 | 23.1 | 23.8 | 23.2 | 23.0 | 11.0 | 11.4 | 10.9 | 13.1 | 11.4 | 32.9 |
Cr2O3 | 0.01 | 0.05 | 0.00 | 0.08 | 0.06 | 0.06 | 0.00 | 0.00 | 0.00 | 0.04 |
FeO | 20.1 | 19.5 | 20.3 | 20.5 | 2.66 | 2.54 | 5.86 | 7.98 | 8.61 | 1.54 |
MnO | 0.41 | 0.38 | 0.42 | 0.42 | 0.01 | 0.01 | 0.03 | 0.05 | 0.04 | 0.00 |
MgO | 9.28 | 8.96 | 8.94 | 8.96 | 9.63 | 9.73 | 17.4 | 16.1 | 18.1 | 0.16 |
CaO | 8.49 | 8.77 | 8.61 | 8.34 | 14.0 | 14.1 | 8.03 | 8.32 | 7.93 | 22.7 |
Na2O | 0.05 | 0.00 | 0.03 | 0.03 | 6.51 | 6.44 | 3.72 | 3.64 | 2.92 | 0.01 |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.25 | 0.32 | 0.19 | 0.01 |
Sum | 101.4 | 101.7 | 101.0 | 101.1 | 99.9 | 100.8 | 97.1 | 97.1 | 98.4 | 96.7 |
Si | 5.92 | 5.98 | 5.85 | 5.94 | 1.97 | 1.97 | 7.06 | 6.67 | 6.84 | 3.01 |
Ti | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.02 | 0.04 | 0.02 | 0.00 |
Al | 4.04 | 4.16 | 4.06 | 4.05 | 0.46 | 0.47 | 1.80 | 2.19 | 1.87 | 2.97 |
Cr | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2+ | 2.50 | 2.42 | 2.53 | 2.55 | 0.04 | 0.07 | 0.47 | 0.64 | 0.78 | 0.00 |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.22 | 0.31 | 0.22 | 0.10 |
Mn | 0.05 | 0.05 | 0.05 | 0.05 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Mg | 2.05 | 1.98 | 1.98 | 2.0 | 0.51 | 0.51 | 3.62 | 3.40 | 3.76 | 0.02 |
Ca | 1.35 | 1.39 | 1.37 | 1.34 | 0.53 | 0.53 | 1.20 | 1.26 | 1.19 | 1.86 |
Na | 0.01 | 0.00 | 0.01 | 0.01 | 0.45 | 0.44 | 1.01 | 1.00 | 0.79 | 0.00 |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.06 | 0.03 | 0.00 |
Component | Sample Mu-93-71 | |||||||||
Grt 1 (c) | Grt 1 (rim) | Grt 2 (c) | Grt 2 (rim) | Omp 1 | Omp 2 | Amp 1 | Amp 2 | Amp 3 | ||
SiO2 | 38.8 | 38.8 | 38.2 | 38.8 | 56.1 | 56.2 | 45.0 | 47.4 | 44.1 | |
TiO2 | 0.14 | 0.08 | 0.07 | 0.00 | 0.03 | 0.22 | 0.51 | 0.46 | 0.60 | |
Al2O3 | 22.2 | 22.4 | 22.4 | 22.1 | 10.5 | 10.3 | 12.5 | 13.1 | 14.1 | |
Cr2O3 | 0.03 | 0.02 | 0.04 | 0.01 | 0.02 | 0.04 | 0.00 | 0.00 | 0.00 | |
FeO | 26.4 | 26.4 | 25.9 | 26.3 | 5.23 | 5.94 | 11.7 | 12.0 | 13.8 | |
MnO | 0.60 | 0.68 | 0.63 | 0.67 | 0.03 | 0.03 | 0.04 | 0.05 | 0.06 | |
MgO | 4.41 | 4.66 | 4.46 | 4.49 | 8.55 | 8.01 | 12.9 | 12.0 | 11.9 | |
CaO | 8.71 | 8.31 | 8.61 | 8.92 | 13.3 | 12.4 | 7.64 | 7.21 | 8.50 | |
Na2O | 0.00 | 0.07 | 0.00 | 0.12 | 6.74 | 7.58 | 4.47 | 5.03 | 4.38 | |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.56 | 0.59 | 0.57 | |
Sum | 100.5 | 101.3 | 100.3 | 101.4 | 100.6 | 100.7 | 95.4 | 97.9 | 97.9 | |
Si | 6.00 | 5.96 | 5.93 | 5.96 | 1.99 | 1.98 | 6.61 | 6.76 | 6.37 | |
Ti | 0.02 | 0.01 | 0.01 | 0.00 | 0.00 | 0.01 | 0.06 | 0.05 | 0.07 | |
Al | 4.04 | 4.06 | 4.10 | 4.00 | 0.44 | 0.43 | 2.16 | 2.21 | 2.40 | |
Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Fe2+ | 3.42 | 3.39 | 3.36 | 3.38 | 0.11 | 0.06 | 0.84 | 1.01 | 1.06 | |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.05 | 0.11 | 0.60 | 0.42 | 0.61 | |
Mn | 0.08 | 0.09 | 0.08 | 0.09 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | |
Mg | 1.02 | 1.07 | 1.03 | 1.03 | 0.45 | 0.42 | 2.81 | 2.56 | 2.56 | |
Ca | 1.44 | 1.37 | 1.43 | 1.47 | 0.50 | 0.47 | 1.20 | 1.01 | 1.06 | |
Na | 0.00 | 0.02 | 0.00 | 0.04 | 0.46 | 0.52 | 1.27 | 1.39 | 1.23 | |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.11 | 0.10 | |
Component | Sample Mu-13-22 | |||||||||
Grt 1 (c) | Grt 1 (rim) | Grt 2 (c) | Grt 2 (rim) | Cpx 1 | Cpx 2 | Amp 1 | Amp 2 | Amp 3 | ||
SiO2 | 39.0 | 39.0 | 38.6 | 38.8 | 53.1 | 53.6 | 45.8 | 46.1 | 42.5 | |
TiO2 | 0.01 | 0.06 | 0.00 | 0.04 | 0.16 | 0.11 | 0.38 | 0.40 | 0.37 | |
Al2O3 | 23.0 | 22.6 | 22.7 | 22.9 | 6.04 | 5.26 | 13.0 | 12.9 | 16.0 | |
Cr2O3 | 0.00 | 0.02 | 0.01 | 0.01 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | |
FeO | 23.7 | 23.2 | 22.8 | 23.7 | 6.68 | 6.71 | 11.4 | 11.6 | 13.0 | |
MnO | 0.51 | 0.57 | 0.49 | 0.51 | 0.10 | 0.10 | 0.09 | 0.09 | 0.07 | |
MgO | 6.37 | 5.74 | 5.90 | 6.13 | 11.6 | 12.0 | 14.9 | 14.6 | 12.9 | |
CaO | 8.61 | 9.67 | 9.86 | 9.16 | 19.0 | 19.7 | 8.69 | 8.52 | 10.2 | |
Na2O | 0.00 | 0.05 | 0.11 | 0.03 | 3.04 | 2.57 | 2.99 | 2.99 | 2.95 | |
K2O | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.60 | 0.63 | 0.82 | |
Sum | 101.2 | 100.9 | 100.7 | 101.7 | 99.8 | 100.1 | 98.0 | 98.0 | 98.9 | |
Si | 5.91 | 5.95 | 5.91 | 5.92 | 1.94 | 1.95 | 6.54 | 6.57 | 6.09 | |
Ti | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.04 | 0.04 | 0.04 | |
Al | 4.10 | 4.07 | 4.06 | 4.07 | 0.26 | 0.23 | 2.18 | 2.18 | 2.70 | |
Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Fe2+ | 3.01 | 2.97 | 2.90 | 3.00 | 0.14 | 0.16 | 0.89 | 0.90 | 0.93 | |
Fe3+ | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.04 | 0.47 | 0.49 | 0.63 | |
Mn | 0.07 | 0.08 | 0.07 | 0.07 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | |
Mg | 1.44 | 1.31 | 1.34 | 1.38 | 0.63 | 0.66 | 3.16 | 3.10 | 2.75 | |
Ca | 1.40 | 1.58 | 1.61 | 1.48 | 0.74 | 0.77 | 1.33 | 1.30 | 1.57 | |
Na | 0.00 | 0.02 | 0.03 | 0.01 | 0.21 | 0.18 | 0.83 | 0.83 | 0.82 | |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.11 | 0.11 | 0.15 |
Component | Sample Mu-93-21 | Sample Mu-93-71 | Sample Mu-13-22 | ||||||
---|---|---|---|---|---|---|---|---|---|
EBC1 | av. Grt | EBC2 | EBC1 | av. Grt | EBC2 | EBC1 | av. Grt | EBC2 | |
SiO2 | 47.8 | 40.0 | 49.3 | 48.0 | 38.6 | 49.4 | 48.2 | 39.0 | 49.7 |
TiO2 | 1.23 | 0.06 | 1.43 | 2.65 | 0.09 | 3.04 | 1.98 | 0.06 | 2.27 |
Al2O3 | 15.8 | 23.2 | 14.6 | 14.2 | 22.3 | 13.0 | 14.8 | 22.6 | 13.7 |
FeO | 11.6 | 20.1 | 10.1 | 13.3 | 26.0 | 11.9 | 13.3 | 23.6 | 11.7 |
Fe2O3 | 0.00 | 0.00 | 0.00 | 0.77 | 0.00 | 0.36 | 0.00 | 0.00 | |
MnO | 0.20 | 0.41 | 0.17 | 0.20 | 0.64 | 0.14 | 0.24 | 0.52 | 0.20 |
MgO | 9.30 | 9.13 | 9.35 | 6.31 | 4.52 | 6.59 | 6.63 | 5.86 | 6.75 |
CaO | 11.2 | 8.14 | 11.8 | 10.7 | 8.62 | 11.0 | 11.2 | 9.14 | 11.6 |
Na2O | 2.76 | 0.04 | 3.25 | 3.97 | 0.04 | 4.57 | 3.55 | 0.04 | 4.08 |
H2O | exc. | exc. | exc. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skuzovatov, S.Y. Differential Fluid Activity in a Single Exhumed Continental Subduction Unit from Local P-T-M(H2O) Records of Zoned Amphiboles (North Muya, Eastern Siberia). Minerals 2022, 12, 217. https://doi.org/10.3390/min12020217
Skuzovatov SY. Differential Fluid Activity in a Single Exhumed Continental Subduction Unit from Local P-T-M(H2O) Records of Zoned Amphiboles (North Muya, Eastern Siberia). Minerals. 2022; 12(2):217. https://doi.org/10.3390/min12020217
Chicago/Turabian StyleSkuzovatov, Sergei Y. 2022. "Differential Fluid Activity in a Single Exhumed Continental Subduction Unit from Local P-T-M(H2O) Records of Zoned Amphiboles (North Muya, Eastern Siberia)" Minerals 12, no. 2: 217. https://doi.org/10.3390/min12020217
APA StyleSkuzovatov, S. Y. (2022). Differential Fluid Activity in a Single Exhumed Continental Subduction Unit from Local P-T-M(H2O) Records of Zoned Amphiboles (North Muya, Eastern Siberia). Minerals, 12(2), 217. https://doi.org/10.3390/min12020217