Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Sample Preparation
2.2. High-Pressure Cell and Impedance Measurements
3. Results
4. Discussions
4.1. Influence of Pressure on Electrical Conductivity
4.2. Influence of Mineralogical Proportions on Electrical Conductivity
5. Comparisons with Previous Studies
6. Conduction Mechanism
7. Geophysical Implications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baba, K. Electrical structure in marine tectonic settings. Surv. Geophys. 2005, 26, 701–731. [Google Scholar] [CrossRef]
- Kaya, T.; Kasaya, T.; Tank, S.B.; Ogawa, Y.; Tuncer, M.K.; Oshiman, N.; Honkura, Y.; Matsushima, M. Electrical characterization of the north anatolian fault zone underneath the Marmara Sea, turkey by ocean bottom magnetotellurics. Geophys. J. Int. 2013, 193, 664–677. [Google Scholar] [CrossRef] [Green Version]
- Usui, Y.; Kasaya, T.; Ogawa, Y.; Iwamoto, H. Marine magnetotelluric inversion with an unstructured tetrahedral mesh. Geophys. J. Int. 2018, 214, 952–974. [Google Scholar] [CrossRef]
- Le Pape, F.; Jones, A.G.; Jessell, M.W.; Perrouty, S.; Gallardo, L.A.; Baratoux, L.; Hogg, C.; Siebenaller, L.; Toure, A.; Ouiya, P.; et al. Crustal structure of southern Burkina Faso inferred from magnetotelluric, gravity and magnetic data. Precambrian Res. 2017, 300, 261–272. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Green, D.H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics 1966, 3, 383–427. [Google Scholar] [CrossRef]
- Christensen, N.I.; Salisbury, M.H. Structure and constitution of the lower oceanic crust. Rev. Geophys. 1975, 13, 57–86. [Google Scholar] [CrossRef]
- Wang, D.J.; Liu, C.Q.; Li, H.P.; Yi, L.; Su, G.L.; Ding, D.Y. Impedance spectra of hot, dry gabbro at high temperature and pressure. Prog. Nat. Sci. 2002, 12, 397–400. [Google Scholar]
- Bai, L.P.; Du, J.G.; Liu, W.; Zhou, W.G. Experimental studies of electrical conductivities and P-wave velocities of gabbro at high pressures and high temperatures. Sci. China Ser. D 2003, 46, 895–908. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; Li, H.P.; Hui, K.S.; Jiang, J.J.; Li, J.; Sun, W.Q. Electrical conductivity of gabbro: The effects of temperature, pressure and oxygen fugacity. Eur. J. Mineral. 2015, 27, 215–224. [Google Scholar] [CrossRef]
- Saito, S.; Bagdassarov, N.S. Laboratory measurements of electrical conductivity in a gabbro of the Oman ophiolite at high–pressures and high–temperatures: Implications for interpretation of resistivity structures of lower oceanic crust. J. Miner. Petrol. Sci. 2018, 113, 112–117. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.Z.; Keppler, H.; McCammon, C.; Ni, H.W.; Xia, Q.K.; Fan, Q.C. Effect of water on the electrical conductivity of lower crustal clinopyroxene. J. Geophys. Res. Solid Earth 2011, 116, B04208. [Google Scholar] [CrossRef]
- Zhao, C.C.; Yoshino, T. Electrical conductivity of mantle clinopyroxene as a function of water content and its implication on electrical structure of uppermost mantle. Earth Planet. Sci. Lett. 2016, 447, 1–9. [Google Scholar] [CrossRef]
- Hinze, E.; Will, G.; Cemic, L. Electrical conductivity measurements on synthetic olivines and on olivine, enstatite and diopside from Dreiser Weiher, Eifel (Germany) under defined thermodynamic activities as a function of temperature and pressure. Phys. Earth Planet. Inter. 1981, 25, 245–254. [Google Scholar] [CrossRef]
- Liu, H.Y.; Zhang, K.; Ingrin, J.; Yang, X.Z. Electrical conductivity of omphacite and garnet indicates limited deep water recycling by crust subduction. Earth Planet. Sci. Lett. 2021, 559, 116784. [Google Scholar] [CrossRef]
- Sun, W.Q.; Dai, L.D.; Li, H.P.; Hu, H.Y.; Jiang, J.J.; Wang, M.Q. Electrical conductivity of clinopyroxene–NaCl–H2O system at high temperatures and pressures: Implications for high-conductivity anomalies in the deep crust and subduction zone. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019093. [Google Scholar] [CrossRef]
- Yang, X.Z.; Keppler, H.; McCammon, C.; Ni, H.W. Electrical conductivity of orthopyroxene and plagioclase in the lower crust. Contrib. Mineral. Petrol. 2012, 163, 33–48. [Google Scholar] [CrossRef]
- Hu, H.Y.; Li, H.P.; Dai, L.D.; Shan, S.M.; Zhu, C.M. Electrical conductivity of albite at high temperatures and high pressures. Am. Mineral. 2011, 96, 1821–1827. [Google Scholar] [CrossRef]
- Hu, H.Y.; Dai, L.P.; Li, H.P.; Hui, K.S.; Li, J. Temperature and pressure dependence of electrical conductivity in synthetic anorthite. Solid State Ionics 2015, 276, 136–141. [Google Scholar] [CrossRef]
- Yang, X.Z.; Heidelbach, F. Grain size effect on the electrical conductivity of clinopyroxene. Contrib. Mineral. Petrol. 2011, 163, 939–947. [Google Scholar] [CrossRef]
- Bell, D.R.; Ihinger, P.D.; Rossman, G.R. Quantitative analysis of trace OH in garnet and pyroxenes. Am. Mineral. 1995, 80, 465–474. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; Li, H.P.; Wu, L.; Hui, K.S.; Jiang, J.J.; Sun, W.Q. Influence of temperature, pressure, and oxygen fugacity on the electrical conductivity of dry eclogite, and geophysical implications. Geochem. Geophys. Geosyst. 2016, 17, 2394–2407. [Google Scholar] [CrossRef]
- Dai, L.D.; Li, H.P.; Hu, H.Y.; Shan, S.M. Experimental study of grain boundary electrical conductivities of dry synthetic peridotite under high-temperature, high-pressure, and different oxygen fugacity conditions. J. Geophys. Res. Solid Earth 2008, 113, B12211. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.Y.; Dai, L.D.; Li, H.P.; Sun, W.Q.; Li, B. Effect of dehydrogenation on the electrical conductivity of Fe-bearing amphibole and its implications for the high conductivity anomalies in subduction zones and continental crust. Earth Planet. Sci. Lett. 2018, 498, 27–37. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; Sun, W.Q.; Li, H.P.; Liu, C.C.; Wang, M.Q. Influence of high conductive magnetite impurity on the electrical conductivity of dry olivine aggregates at high temperature and high pressure. Minerals 2019, 9, 44. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.D.; Li, H.P.; Hu, H.Y.; Shan, S.M.; Jiang, J.J.; Hui, K.S. The effect of chemical composition and oxygen fugacity on the electrical conductivity of dry and hydrous garnet at high temperatures and pressures. Contrib. Mineral. Petrol. 2012, 163, 689–700. [Google Scholar] [CrossRef]
- Dai, L.D.; Li, H.P.; Hu, H.Y.; Jiang, J.J.; Hui, K.S.; Shan, S.M. Electrical conductivity of Alm82Py15Grs3 almandine-rich garnet determined by impedance spectroscopy at high temperatures and high pressures. Tectonophysics 2013, 608, 1086–1093. [Google Scholar] [CrossRef]
- Dai, L.D.; Karato, S.I. Electrical conductivity of orthopyroxene: Implications for the water content of the asthenosphere. Proc. Jpn. Acad. B 2009, 85, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.D.; Karato, S.I. Electrical conductivity of wadsleyite at high temperatures and high pressures. Earth Planet. Sci. Lett. 2009, 287, 277–283. [Google Scholar] [CrossRef]
- Dai, L.D.; Karato, S.I. Influence of FeO and H on the electrical conductivity of olivine. Phys. Earth Planet. Inter. 2014, 237, 73–79. [Google Scholar] [CrossRef]
- Dai, L.D.; Karato, S.I. High and highly anisotropic electrical conductivity of the asthenosphere due to hydrogen diffusion in olivine. Earth Planet. Sci. Lett. 2014, 408, 79–86. [Google Scholar] [CrossRef]
- Li, P.; Guo, X.Z.; Chen, S.B.; Wang, C.; Yang, J.L.; Zhou, X.F. Electrical conductivity of the plagioclase–NaCl–water system and its implication for the high conductivity anomalies in the mid-lower crust of Tibet Plateau. Contrib. Mineral. Petrol. 2018, 173, 16. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; Li, H.P.; Sun, W.Q.; Jiang, J.J. Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications for the mechanism of conduction. Chin. Phys. B 2018, 27, 028703. [Google Scholar] [CrossRef]
- Behrens, H.; Johannes, W.; Schmalzried, H. On the mechanisms of cation diffusion processes in ternary feldspars. Phys. Chem. Minerals 1990, 17, 62–78. [Google Scholar] [CrossRef]
- Boudier, F.; Nicolas, A.; Ildefonse, B. Magma chambers in the Oman ophiolite: Fed from the top and the bottom. Earth Planet. Sci. Lett. 1996, 144, 239–250. [Google Scholar] [CrossRef]
- Ilboudo, H.; Sawadogo, S.; Traoré, A.S.; Sama, M.; Wenmenga, U.; Lompo, M. Intrusion-related gold mineralization: Inata gold deposit, Bélahourou district, Northern Burkina Faso (West-Africa). J. Afr. Earth Sci. 2018, 148, 52–58. [Google Scholar] [CrossRef]
- Saito, S.; Ishikawa, M.; Arima, M.; Tatsumi, Y. Laboratory measurements of ‘porosity–free’ intrinsic Vp and Vs in an olivine gabbro of the Oman ophiolite: Implication for interpretation of the seismic structure of lower oceanic crust. Island Arc. 2015, 24, 131–144. [Google Scholar] [CrossRef]
- Huebner, J.S.; Voigt, D.E. Electrical conductivity of diopside: Evidence for oxygen vacancies. Am. Mineral. 1988, 73, 1235–1254. [Google Scholar]
- Poe, B.T.; Romano, C.; Varchi, V.; Misiti, V.; Scarlato, P. Electrical conductivity of a phonotephrite from Mt. Vesuvius: The importance of chemical composition on the electrical conductivity of silicate melts. Chem. Geol. 2008, 256, 193–202. [Google Scholar] [CrossRef]
- Hu, H.Y.; Li, H.P.; Dai, L.D.; Shan, S.M.; Zhu, C.M. Electrical conductivity of alkali feldspar solid solutions at high temperatures and high pressures. Phys. Chem. Minerals 2013, 40, 51–62. [Google Scholar] [CrossRef]
- Wiebe, R.A. The pleasant bay layered gabbro-diorite, coastal maine: Ponding and crystallization of basaltic injections into a silicic magma chamber. J. Petrol. 1993, 34, 461–489. [Google Scholar] [CrossRef]
- Khromykh, S.V.; Izokh, A.E.; Gurova, A.V.; Cherdantseva, M.V.; Savinsky, I.A.; Vishnevsky, A.V. Syncollisional gabbro in the Irtysh shear zone, Eastern Kazakhstan: Compositions, geochronology, and geodynamic implications. Lithos 2019, 346–347, 105144. [Google Scholar] [CrossRef]
- Selway, K.; Yi, J.; Karato, S.I. Water content of the Tanzanian lithosphere from magnetotelluric data: Implications for cratonic growth and stability. Earth Planet. Sci. Lett. 2014, 388, 175–186. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; Li, H.P.; Jiang, J.J.; Hui, K.S. Influence of temperature, pressure, and chemical composition on the electrical conductivity of granite. Am. Mineral. 2014, 99, 1420–1428. [Google Scholar] [CrossRef]
- Sun, W.Q.; Dai, L.D.; Li, H.P.; Hu, H.Y.; Liu, C.C.; Wang, M.Q. Effect of temperature, pressure and chemical compositions on the electrical conductivity of schist: Implications for electrical structures under the Tibetan plateau. Materials 2019, 12, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drury, M.J. Electrical resistivity models of the oceanic crust based on laboratory measurements on basalts and gabbros. Geophys. J. R. Astron. Soc. 1979, 56, 241–253. [Google Scholar] [CrossRef] [Green Version]
- Hyndman, R.D.; Drury, M.J. The physical properties of oceanic basement rocks from deep drilling on the mid-Atlantic ridge. J. Geophys. Res. 1976, 81, 4042–4052. [Google Scholar] [CrossRef]
- Nehlig, P.; Juteau, T. Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Sumail ophiolite (Oman). Tectonophysics 1988, 151, 199–221. [Google Scholar] [CrossRef]
- Lucazeau, F.; Lesquer, A.; Vasseur, G. Trends of Heat Flow Density from West Africa. Terrestrial Heat Flow and the Lithosphere Structure. Exploration of the Deep Continental Crust; Čermák, V., Rybach, L., Eds.; Springer: Berlin, Germany, 1991; pp. 417–425. [Google Scholar]
- Le Pape, F.; Jones, A.G.; Jessell, M.W.; Hogg, C.; Siebenaller, L.; Perrouty, S.; Touré, A.; Ouiya, P.; Boren, G. The nature of the southern West African craton lithosphere inferred from its electrical resistivity. Precambrian Res. 2021, 358, 106190. [Google Scholar] [CrossRef]
- Dai, L.D.; Hu, H.Y.; He, Y.; Sun, W.Q. Some new progress in the experimental measurements on electrical property of main minerals in the upper mantle at high temperatures and high pressures. In Mineralogy; René, M., Ed.; IntechOpen: London, UK, 2022; in press. [Google Scholar] [CrossRef]
- Dai, L.D.; Karato, S.I. Electrical conductivity of Ti-bearing hydrous olivine aggregates at high temperature and high pressure. J. Geophys. Res. Solid Earth 2020, 125, e2020JB020309. [Google Scholar] [CrossRef]
- Manthilake, G.; Mookherjee, M.; Bolfan-Casanova, N.; Andrault, D. Electrical conductivity of lawsonite and dehydrating fluids at high pressures and temperatures. Geophys. Res. Lett. 2015, 42, 7398–7405. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.Y.; Dai, L.D.; Li, H.P.; Hui, K.S.; Sun, W.Q. Influence of dehydration on the electrical conductivity of epidote and implications for high conductivity anomalies in subduction zones. J. Geophys. Res. Solid Earth 2017, 122, 2751–2762. [Google Scholar] [CrossRef]
- Maumus, J.; Bagdassarov, N.; Schmeling, H. Electrical conductivity and partial melting of mafic rocks under pressure. Geochim. Cosmochim. Acta 2005, 69, 4703–4718. [Google Scholar] [CrossRef]
- Pommier, A.; Leinenweber, K.; Kohlstedt, D.L.; Qi, C.; Garnero, E.J.; Mackwell, S.J.; Tyburczy, J.A. Experimental constraints on the electrical anisotropy of lithosphere-asthenosphere system. Nature 2015, 522, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhang, L.; Su, X.; Mao, Z.; Gao, X.Y.; Yang, X.Z.; Ni, H.W. Melting inside the Tibetan crust? Constraint from electrical conductivity of peraluminous granitic melt. Geophys. Res. Lett. 2018, 45, 3906–3913. [Google Scholar] [CrossRef]
- Freitas, D.; Manthilake, G.; Chantel, J.; Bouhifd, M.A.; Andrault, D. Simultaneous measurements of electrical conductivity and seismic wave velocity of partially molten geological materials: Effect of evolving melt texture. Phys. Chem. Minerals 2019, 46, 535–551. [Google Scholar] [CrossRef] [Green Version]
- Jödicke, H.; Nover, G.; Kruhl, J.H.; Markfort, R. Electrical properties of a graphite-rich quartzite from a former lower continental crust exposed in the Serre San Bruno, Calabria (southern Italy). Phys. Earth Planet. Inter. 2007, 165, 56–67. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.Q.; Jiang, J.J.; Dai, L.D.; Hu, H.Y.; Wang, M.Q.; Qi, Y.Q.; Li, H.P. Electrical properties of dry polycrystalline olivine mixed with various chromite contents: Implications for the high conductivity anomalies in subduction zones. Geosci. Front. 2021, 12, 101178. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, H.; Nakatani, T.; Uesugi, K.; Nakamura, M.; Keppler, H. Electrical conductivity in texturally equilibrated fluid-bearing forsterite aggregates at 800 °C and 1 GPa: Implications for the high electrical conductivity anomalies in mantle wedges. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021343. [Google Scholar] [CrossRef]
- Hu, H.Y.; Dai, L.D.; Sun, W.Q.; Zhuang, Y.K.; Liu, K.X.; Yang, L.F.; Pu, C.; Hong, M.L.; Wang, M.Q.; Hu, Z.M.; et al. Some remarks on the electrical conductivity of hydrous silicate minerals in the Earth crust, upper mantle and subduction zone at high temperatures and high pressures. Minerals 2022, 12, 161. [Google Scholar] [CrossRef]
- Sun, W.Q.; Jiang, J.J.; Dai, L.D.; Hu, H.Y.; Wang, M.Q.; Qi, Y.Q.; Li, H.P. Influence of saline fluids on the electrical conductivity of olivine aggregates at High temperature and high pressure and its geological implications. Front. Earth Sci. 2021, 9, 749896. [Google Scholar] [CrossRef]
Oxides (wt%) | Clinopyroxene (Cpx) | Plagioclase (Pl) |
---|---|---|
SiO2 | 53.90 | 52.94 |
TiO2 | 0.13 | 0.03 |
Al2O3 | 0.25 | 26.72 |
FeO | 1.62 | 0.85 |
MnO | 0.06 | 0.01 |
MgO | 17.90 | 0.03 |
CaO | 24.71 | 13.22 |
Na2O | 0.22 | 5.39 |
K2O | 0.00 | 0.06 |
NiO | 0.02 | 0.00 |
Cr2O3 | 0.23 | 0.00 |
Total | 99.04 | 99.25 |
Run No. | Sample | P (GPa) | T (K) | Log [σ0 (S/m)] | ΔH (eV) | R2 |
---|---|---|---|---|---|---|
DW02 | Dry Pl | 1 | 773–1073 | 2.43 ± 0.16 | 1.28 ± 0.03 | 99.68 |
DW04 | Cpx10Pl90 | 1 | 773–1073 | 2.36 ± 0.07 | 1.26 ± 0.01 | 99.94 |
DW06 | Cpx20Pl80 | 1 | 773–1073 | 2.36 ± 0.09 | 1.25 ± 0.02 | 99.90 |
DW08 | Cpx30Pl70 | 1 | 773–1073 | 2.38 ± 0.12 | 1.24 ± 0.02 | 99.81 |
DW10 | Cpx40Pl60 | 1 | 773–1073 | 2.40 ± 0.07 | 1.23 ± 0.01 | 99.93 |
DW12 | Cpx50Pl50 | 1 | 773–1073 | 2.46 ± 0.06 | 1.23 ± 0.01 | 99.91 |
DW26 | Cpx50Pl50 | 2 | 773–1073 | 2.77 ± 0.21 | 1.32 ± 0.04 | 99.52 |
DW28 | Cpx50Pl50 | 3 | 773–1073 | 2.88 ± 0.23 | 1.37 ± 0.05 | 99.33 |
DW14 | Cpx60Pl40 | 1 | 773–1073 | 2.52 ± 0.08 | 1.23 ± 0.01 | 99.78 |
DW16 | Cpx70Pl30 | 1 | 773–1073 | 2.56 ± 0.11 | 1.22 ± 0.01 | 99.96 |
DW18 | Cpx80Pl20 | 1 | 773–1073 | 2.53 ± 0.06 | 1.21 ± 0.01 | 99.95 |
DW20 | Cpx90Pl10 | 1 | 773–1073 | 2.31 ± 0.07 | 1.15 ± 0.01 | 99.93 |
DW22 | Dry Cpx | 1 | 773–1073 | 2.02 ± 0.01 | 1.09 ± 0.01 | 99.95 |
σ0 | ||
---|---|---|
A0 = 92.40 ± 14 (S/m) B = 0.23 ± 0.02 (1/GPa) | 102 ± 12 | 6.00 ± 2.00 |
XCpx | log C | D | α | β | γ |
---|---|---|---|---|---|
0.1 ≤ XCpx ≤ 0.9 | 2.47 ± 1.34 | 1.25 ± 0.01 | 0.12 ± 0.05 | −8.31 ± 0.91 | 1.60 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Dai, L.; Hu, H.; Sun, W.; Hu, Z.; Jing, C. Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures. Minerals 2022, 12, 336. https://doi.org/10.3390/min12030336
Wang M, Dai L, Hu H, Sun W, Hu Z, Jing C. Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures. Minerals. 2022; 12(3):336. https://doi.org/10.3390/min12030336
Chicago/Turabian StyleWang, Mengqi, Lidong Dai, Haiying Hu, Wenqing Sun, Ziming Hu, and Chenxin Jing. 2022. "Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures" Minerals 12, no. 3: 336. https://doi.org/10.3390/min12030336
APA StyleWang, M., Dai, L., Hu, H., Sun, W., Hu, Z., & Jing, C. (2022). Effect of Different Mineralogical Proportions on the Electrical Conductivity of Dry Hot-Pressed Sintering Gabbro at High Temperatures and Pressures. Minerals, 12(3), 336. https://doi.org/10.3390/min12030336