Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny
Abstract
:1. Introduction
2. Geological Characteristics
2.1. Geological Background
2.2. Ore Deposit Geology
3. Sampling and Analytical Methods
3.1. Sampling
3.2. Oxygen and Hydrogen Isotope Analysis
3.3. Bulk Sulfur Isotope Analysis
3.4. In Situ Multiple Sulfur Isotope Analysis
3.5. Lead Isotope Analysis
4. Results
4.1. Oxygen and Hydrogen Isotope Results
4.2. Bulk Sulfur Isotope Results
4.3. In Situ Multiple Sulfur Isotope Results
4.4. Lead Isotope Results
5. Discussion
5.1. Origins of Ore-Forming Fluid
5.2. Sulfur Sources
5.3. Lead Sources
5.4. The Genetic Type and Possible Metallogenic Model
- (1)
- the tectonic location of the deposit located within the EKO, a Late Triassic orogenic belt;
- (2)
- the gold mineralization hosted by the contact between the phyllic brecciated granite and pyritized slate, and controlled by ductile faults within the contact;
- (3)
- the major sulfide minerals represented by pyrite and arsenopyrite, with minor chalcopyrite, galena, sphalerite, and pyrrhotite;
- (4)
- the alteration assemblage including silicification and sericitization, with minor carbonatization and chloritization;
- (5)
- the major ore-forming fluids showing CO2-bearing fluids with low salinity (0.21–17.36 equiv. wt% NaCl), and low–intermediate homogenization temperatures from 141 to 355 °C [22];
- (6)
- the estimated δD values (−107‰ to −63‰) and δ18O values (−4.6‰ to 11.3‰) for fluid, indicating a mixture of metamorphic water and meteoric water;
- (7)
- (8)
- the bulk Pb isotope compositions of sulfides, with 206Pb/204Pb ratios of 18.071–9.341, 207Pb/204Pb ratios of 15.530–15.673, and 208Pb/204Pb ratios of 37.908–38.702, indicating some affinities to an orogenic lead reservoir [68], which is consistent with the tectonic evolutionary history of the EKO.
6. Conclusions
- (1)
- The measured δ18O values of quartz and sericite from Phyllis rock ores in the Shenshuitan gold deposit ranged from 4.6‰ to 12.0‰, and the estimated δ18O values of fluids ranged from −3.8‰ to 3.6‰, calculated for the average homogenization temperature of 262 °C, or from −0.6‰ to 6.8‰, calculated for the highest homogenization temperature of 355 °C. The δD values of fluid inclusions in gold-bearing quartz or estimated δD values from sericite ranged from −113.9‰ to −73.1‰. The results suggest that the original metamorphic ore-forming fluids in the Shenshuitan gold deposit might have been metamorphic water similar to that in the Hongqigou gold deposit, which may have been mixed with meteoric water during phyllic alterations and corresponding gold mineralizations.
- (2)
- Bulk δ34S values of gold-associated hydrothermal sulfides in the Shenshuitan gold deposit ranged from −7.3‰ to 9.6‰, and in situ δ34S values ranged from −3.92‰ to 11.04‰, located within the extremely variable sulfur isotope range as low as −20‰ and as high as 25‰ for sulfide minerals from orogenic gold deposits [31]. The sulfur isotope composition of the original S-bearing metamorphic fluid in the Shenshuitan gold deposit may be similar to that of the Hongqigou gold deposit, suggesting that the sulfur sources of sulfides in the Shenshuitan gold deposit included those of original metamorphic ore-forming fluids with the heaviest δ34S values and others from host rocks of granite or slate with variable δ34S values. Because obvious water–rock reaction should happen during phyllic alteration and mineralization, these interations must have been accompanied by the mixing of S isotopes between the original metamorphic S-bearing fluid and different host rocks.
- (3)
- Lead isotope compositions of sulfides from gold-associated hydrothermal sulfides in the Shenshuitan gold deposit ranged from 18.071 to 19.341 for 206Pb/204Pb ratios, from 15.530 to 15.673 for 207Pb/204Pb ratios, and from 37.908 to 38.702 for 208Pb/204Pb ratios. These Pb isotope compositions of sulfides overlapped partly with those of the Hongqigou gold deposit or the granite host rock, and mostly lay within the values of the age (215 Ma)-corrected sedimentary wall rocks. We interpreted these data to reflect a mixed source for Pb, involving the original ore-forming metamorphic fluid and lead sources within host rocks of the granite or silicic slate. The lead isotope compositions for these sulfides obviously spanned the orogenic line, indicating some affinities to an orogenic lead reservoir, which is consistent with the tectonic evolutionary history of the EKO.
- (4)
- The Shenshuitan gold deposit can be classified as an orogenic gold deposit. Following deformation associated with the final soft collision between BH–SG and EKO in the Late Triassic, i.e., the final closure of the Paleo-Tethys Ocean, regional ductile faults, and subsequent ore-controlling subsidiary ductile faults were developed; original deep metamorphic ore-forming fluids were then channeled along these faults. During migration of fluids, sulfur, lead, and gold were leached from the host rocks and mixed with those in the original metamorphic water; eventually, the gold-bearing phyllic rocks were formed within subsidiary ductile faults via contact with granite and slate at higher crustal levels.
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.M.; Xue, C.J.; Wang, X.H.; Tang, H.; Tu, Q.J.; Teng, J.X.; Li, R.S. Features of regional mineralization and analysis of the exploration development in the Eastern Kunlun Mountains. Geol. Rev. 2007, 53, 708–718, (In Chinese with English Abstract). [Google Scholar]
- Du, Y.L.; Jia, Q.Z.; Han, S.F. Mesozoic tectono-magmatic-mineralization and copper-gold polymetallic ore prospecting research in East Kunlun Metallogenic Belt in Qinghai. Northwest. Geol. 2012, 69–75, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yuan, W.M.; Mo, X.X.; Zhang, A.K.; Chen, X.N.; Duan, H.W.; Li, X.; Hao, N.N.; Wang, X.M. Fission Track thermochronology evidence for multiple periods of mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai province. J. Earth Sci.-China 2013, 24, 471–478. [Google Scholar] [CrossRef]
- Ding, Q.F.; Jiang, S.Y.; Sun, F.Y. Zircon U–Pb geochronology, geochemical and Sr–Nd–Hf isotopic compositions of the Triassic granite and diorite dikes from the Wulonggou mining area in the Eastern Kunlun Orogen, NW China: Petrogenesis and tectonic implications. Lithos 2014, 205, 266–283. [Google Scholar] [CrossRef]
- Ding, Q.F.; Jiang, S.Y.; Sun, F.Y.; Qian, Y.; Wang, G. Origin of the Dachang gold deposit, NW China: Constraints from H, O, S, and Pb isotope data. Int. Geol. Rev. 2013, 55, 1885–1901. [Google Scholar] [CrossRef]
- Ding, Q.F.; Yan, W.; Zhang, B.L. Sulfur- and lead-isotope geochemistry of the Balugou Cu-Pb-Zn skarn deposit in the Wulonggou area in the eastern Kunlun Orogen, NW China. J. Earth Sci.-China 2016, 27, 740–750. [Google Scholar] [CrossRef]
- Chen, G.J. Metallogenesis of Gold Deposits in Gouli Regional and Peripheral Area of East Kunlun, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Tian, C.S. Research on Gold Mineralization and Metallogenic Prognosis of Wulonggou Goldfield in the Eastern Kunlun Orogen. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2012. [Google Scholar]
- Zhang, J.Y.; Ma, C.Q.; Li, J.W.; Pan, Y.M. A possible genetic relationship between orogenic gold mineralization and post-collisional magmatism in the eastern Kunlun Orogen, western China. Ore Geol. Rev. 2017, 81, 342–357. [Google Scholar] [CrossRef]
- Ding, Q.F.; Liu, F.; Yan, W. Zircon U–Pb geochronology and Hf isotopic constraints on the petrogenesis of Early Triassic granites in the Wulonggou area of the Eastern Kunlun Orogen, Northwest China. Int. Geol. Rev. 2015, 57, 1735–1754. [Google Scholar] [CrossRef]
- Ding, Q.F.; Song, K.; Zhang, Q.; Yan, W.; Liu, F. Zircon U–Pb geochronology and Hf isotopic constraints on the petrogenesis of the Late Silurian Shidonggou granite from the Wulonggou area in the Eastern Kunlun Orogen, Northwest China. Int. Geol. Rev. 2019, 61, 1666–1689. [Google Scholar] [CrossRef]
- Qian, Z.Z.; Hu, Z.G.; Liu, J.Q. Northwest Ductile shear zones and their tectonic setting in the east of Kunlun Mountains. J. Chengdu Univ. Technol. 1998, 25, 201–205, (In Chinese with English Abstract). [Google Scholar]
- Qian, Z.Z.; Hu, Z.G.; Liu, J.Q.; Li, H.M.; Sun, J.D.; Zhang, X.G. Characteristics of tectonic deformation in Shihuigou ductile shear zone and its significance. Qinghai Geol. 1999, 8, 23–29, (In Chinese with English Abstract). [Google Scholar]
- Yu, X.H.; Mo, X.X.; Yuan, W.M.; Zeng, T.; Gan, W.D. Geological characteristics and genesis of Wulonggou gold deposit and evaluation of gold metallogenic potential in East Kunlun. J. China Univ. Geosci. 1999, 10, 62–66. [Google Scholar]
- FIQGS (First Institute of Qinghai Geology Survey). Exploration Report for Hongqigou–Shenshuitan Gold Deposits in Wulonggou Area in Dulan County in Qinghai Province; First Institute of Qinghai Geology Survey: Xining, China, 2010; pp. 1–161. (In Chinese) [Google Scholar]
- Li, H.M.; Shen, Y.C.; Hu, G.Z.; Qian, Z.Z. Minerogenetic mechanism and condition of Wulonggou gold deposit in East Kunlun Mountains, Qinghai Province. Geol. Prospect. 2001, 37, 65–69, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhao, C.S. Gold, Silver Metallogeny in Eastern Kunlun Orogenic Belt, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2004. [Google Scholar]
- Feng, C.Y. Mulitple Orogenic Processes and Mineralization of Orogenic Gold Deposit in the East Kunlun Orogen, Qinghai Province. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2002. [Google Scholar]
- Feng, C.Y.; Zhang, D.Q.; Li, D.X.; She, H.Q. Sulfur and lead isotope geochemistry of the orogenic gold deposits in East Kunlun area, Qinghai province. Acta Geosci. Sin. 2003, 24, 593–598, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, H.M.; Qian, Z.Z.; Hu, G.Z.; Liu, J.Q.; Sun, J.D.; Yan, Z. Type of Gold mineralization in Wulonggou area, Qinghai. Qinghai Geol. 1999, 8, 36–41, (In Chinese with English Abstract). [Google Scholar]
- Zhao, J.W. Study on Orogenic Gold Metallogenic Series in Eastern Kunlun Orogenic Belt, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2008. [Google Scholar]
- Zhang, Y.T. Research on Etallogenesis of Gold Deposits in the Wulongou Ore Concentration Area, Central Segment of the East Kunlun Mountains, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2018. [Google Scholar]
- Lu, L. Study on the Ore-Controlling Structure of Wulonggou Gold Deposit in East Kunlun Mountain. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2011. [Google Scholar]
- Qian, Z.Z.; Li, H.M.; Hu, Z.G.; Su, C.Q.; Sun, J.D.; Liu, J.Q. The relationship between the dioritic porphyritic dykes and the gold mineralization in the middle belt of East Kunlun Mountains. J. Xi’an Eng. Univ. 1999, 21, 1–4, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Feng, C.Y.; Zhang, D.Q.; Wang, F.C.; Li, D.X.; She, H.Q. Geochemical characteristics of ore-forming fluids from the orogenic Au (and Sb) deposits in the eastern Kunlun area, Qinghai province. Acta Petro Sin. 2004, 20, 949–960, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, D.Q.; Dang, X.Y.; She, H.Q.; Li, D.X.; Feng, C.Y.; Li, J.W. Ar–Ar dating of orogenic gold deposits in northern margin of Qaidam and East Kunlun Mountains and its geological significance. Miner. Depos. 2005, 24, 87–98, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Mo, X.X.; Yuan, W.M. Fission-track thermochronology evidence on Wulonggou gold mineralization, eastern Kunlun Mountains, northern Qinghai-Tibet Plateau. Geochim. Cosmochim Acta 2007, 71, A676. [Google Scholar]
- Ding, Q.F. Metallogenesis and Mineral Resources Assessment in Eastern Kunlun Orogenic Belt. Ph.D. Thesis, Jilin University, Changchun, China, 2004. [Google Scholar]
- Cheng, L. Study on the Geological and Geochemical Characteristics and Genesis of Hongqigou Gold Deposit, Wulonggou Ore Concentration Area, East Kunlun, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M.; Hagemann, S.G.; Robert, F. Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I. Orogenic gold: Common or evolving fluid and metal sources through time. Lithos 2015, 233, 2–26. [Google Scholar] [CrossRef]
- Jiang, C.F.; Yang, J.S.; Feng, B.G.; Zhu, Z.X.; Zhao, M.; Chai, Y.C.; Shi, X.D.; Wang, H.D. Opening Closing Tectonics of Kunlun Shan; Geological Publishing House: Beijing, China, 1992; Volume 5, pp. 1–217, (In Chinese with English Abstract). [Google Scholar]
- Yang, J.S.; Robinson, P.T.; Jiang, C.F.; Xu, Z.Q. Ophiolites of the Kunlun mountains, China and their tectonic implications. Tectonophysics 1996, 258, 215–231. [Google Scholar] [CrossRef]
- Yang, J.S.; Shi, R.D.; Wu, C.L.; Wang, X.B.; Robinson, P.T. Dur’ngoi Ophiolite in East Kunlun, Northeast Tibetan Plateau: Evidence for Paleo-Tethyan Suture in Northwest China. J. Earth Sci.-China 2009, 20, 303–331. [Google Scholar] [CrossRef]
- Pan, Y.S.; Zhou, W.M.; Xu, R.H.; Wang, D.A.; Zhang, Y.Q.; Xie, Y.W.; Chen, T.E.; Luo, H. Geological characteristics and evolution of the Kunlun Mountains region during the early Paleozoic. Sci. China Ser. D 1996, 39, 337–347. [Google Scholar] [CrossRef]
- Bian, Q.T.; Li, D.H.; Pospelov, I.; Yin, L.M.; Li, H.S.; Zhao, D.S.; Chang, C.F.; Luo, X.Q.; Gao, S.L.; Astrakhantsev, O.; et al. Age, geochemistry and tectonic setting of Buqingshan ophiolites, North Qinghai–Tibet Plateau, China. J. Asian Earth Sci. 2004, 23, 577–596. [Google Scholar] [CrossRef]
- Harrowfield, M.J.; Wilson, C.J.L. Indosinian deformation of the Songpan Garze Fold Belt, northeast Tibetan Plateau. J. Struct. Geol. 2005, 27, 101–117. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, C.Q.; Xiong, F.H.; Liu, B. Petrogenesis and tectonic significance of the Late Permian-Middle Triassic calc-alkaline granites in the Balong region, eastern Kunlun Orogen, China. Geol. Mag. 2012, 149, 892–908. [Google Scholar] [CrossRef]
- Xia, R.; Wang, C.M.; Qing, M.; Li, W.L.; Carranza, E.J.M.; Guo, X.D.; Ge, L.S.; Zeng, G.Z. Zircon U–Pb dating, geochemistry and Sr–Nd–Pb–Hf–O isotopes for the Nan'getan granodiorites and mafic microgranular enclaves in the East Kunlun Orogen: Record of closure of the Paleo-Tethys. Lithos 2015, 234, 47–60. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Wu, L.; Jiang, H.A.; Liu, B. Geochemistry, zircon U–Pb ages and Sr–Nd–Hf isotopes of an Ordovician appinitic pluton in the East Kunlun orogen: New evidence for Proto-Tethyan subduction. J. Asian Earth Sci. 2015, 111, 681–697. [Google Scholar] [CrossRef]
- Xiong, F.H.; Ma, C.Q.; Jiang, H.A.; Zhang, H. Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. J. Earth Sci.-China 2016, 27, 474–490. [Google Scholar] [CrossRef]
- Shao, F.L.; Niu, Y.L.; Liu, Y.; Chen, S.; Kong, J.J.; Duan, M. Petrogenesis of Triassic granitoids in the East Kunlun Orogenic Belt, northern Tibetan Plateau and their tectonic implications. Lithos 2017, 282, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Xin, W.; Sun, F.Y.; Li, L.; Yan, J.M.; Zhang, Y.T.; Wang, Y.C.; Shen, T.S.; Yang, Y.J. The Wulonggou metaluminous A2-type granites in the Eastern Kunlun Orogenic Belt, NW China: Rejuvenation of subduction-related felsic crust and implications for post-collision extension. Lithos 2018, 312–313, 108–127. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Dong, Y.J.; Pan, Y.M.; Liao, F.X.; Guo, X.W. Early Paleozoic Granulite-Facies Metamorphism and Magmatism in the Northern Wulan Terrane of the Quanji Massif: Implications for the Evolution of the Proto-Tethys Ocean in Northwestern China. J. Earth Sci.-China 2018, 29, 1081–1101. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Yang, J.S.; Li, H.B.; Zhang, J.X.; Wu, C.L. Terrane Amalgamation, Collision and Uplift in the Qinghai–Tibet Plateau; Geological Publishing House: Beijing, China, 2007; pp. 1–458, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.D.; Mo, X.X.; Luo, Z.H.; Yu, X.H.; Chen, H.W.; Li, S.W.; Zhao, X. Mixing events between the crust- and mantle-derived magmas in Eastern Kunlun: Evidence from zircon SHRIMP II chronology. Chin. Sci. Bull. 2004, 49, 828–834. [Google Scholar] [CrossRef]
- Huang, H.; Niu, Y.L.; Nowell, G.; Zhao, Z.D.; Yu, X.H.; Zhu, D.C.; Mo, X.X.; Ding, S. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 2014, 370, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.J.; Genser, J.; Neubauer, F.; Jin, W.; Ge, X.H.; Handler, R.; Takasu, A. Ar-40/Ar-39 mineral ages from basement rocks in the Eastern Kunlun Mountains, NW China, and their tectonic implications. Tectonophysics 2005, 398, 199–224. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, Y.L.; Wu, Z.H.; Hu, D.G. Zircon U–Pb dating of Early Paleozoic granites from the East Kunlun Mountains and its geological significance. Acta Geosci. Sin. 2013, 34, 447–454, (In Chinese with English Abstract). [Google Scholar]
- Yan, W.; Qiu, D.M.; Ding, Q.F.; Liu, F. Geochronology, petrogenesis, source and its structural significance of Houtougou monzogranite of Wulonggou area in Eastern Kunlun Orogen. J. Jilin Univ. Earth Sci. Ed. 2016, 46, 443–460, (In Chinese with English Abstract). [Google Scholar]
- Kai, S.; Qingfeng, D.; Qiang, Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of Carnian Huanglonggou granodiorites in Wulonggou area of Eastern Kunlun Orogen, NW China. Global Geol. 2018, 21, 91–107. [Google Scholar]
- FIQGS (First Institute of Qinghai Geology Survey). Work Plan of 2015 of Deep Resource Survey in Hongqigou-Shenshuitan in Wulonggou Area in Dulan County, Qinghai Province; First Institute of Qinghai Geology Survey: Xining, China, 2015; pp. 1–168. [Google Scholar]
- Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys.Res. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Sheppard, S.M.F.; Gilg, H.A. Stable Isotope Geochemistry of Clay Minerals. Clay Miner. 1996, 31, 1–24. [Google Scholar] [CrossRef]
- Khashgerel, B.E.; Rye, R.O.; Kavalieris, I.; Hayashi, K.I. The Sericitic to advanced argillic transition: Stable isotope and mineralogical characteristics from the Hugo Dummett Porphyry Cu-Au deposit, Oyu Tolgoi district, Mongolia. Econ. Geol. 2009, 104, 1087–1110. [Google Scholar] [CrossRef]
- Marumo, K.; Nagasawa, K.; Kuroda, Y. Mineralogy and hydrogen isotope geochemistry of clay minerals in the Ohnuma Geothermal area, Northeastern Japan. Earth. Planet. Sci. Lett. 1980, 47, 255–262. [Google Scholar] [CrossRef]
- Robinson, B.W.; Kusakabe, M. Quantitative preparation of sulfur dioxide, for sulfur-34/sulfur-32 analyses, from sulfides by combustion with cuprous oxide. Anal. Chem. 1975, 47, 1179–1181. [Google Scholar] [CrossRef]
- Liu, H.B.; Jin, G.S.; Li, J.J.; Han, J.; Zhang, J.F.; Zhang, J.; Zhong, G.W.; Guo, D.Q. Determination of stable isotope composition in uranium geological samples. World Nucl. Geosci. 2013, 30, 174–179, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- LaFlamme, C.; Martin, L.; Jeon, H.; Reddy, S.M.; Selvaraja, V.; Caruso, S.; Thi, H.B.; Roberts, M.P.; Voute, F.; Hagemann, S.; et al. In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models. Chem. Geol. 2016, 444, 1–15. [Google Scholar] [CrossRef] [Green Version]
- LaFlamme, C.; Sugiono, D.; Thebaud, N.; Caruso, S.; Fiorentini, M.; Selvaraja, V.; Jeon, H.; Voute, F.; Martin, L. Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit. Geochim. Cosmochim. Acta 2018, 222, 436–446. [Google Scholar] [CrossRef]
- Farquhar, J.; Wing, B.A. Multiple sulfur isotopes and the evolution of the atmosphere. Earth. Planet. Sci. Lett. 2003, 213, 1–13. [Google Scholar] [CrossRef]
- Jiang, S.H.; Nie, F.J.; Hu, P.; Lai, X.R.; Liu, Y.F. Mayum: An orogenic gold deposit in Tibet, China. Ore Geol. Rev. 2009, 36, 160–173. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Ayuso, R.; Miller, M.L.; Ebert, S.W.; Marsh, E.E.; Petsel, S.A.; Miller, L.D.; Bradley, D.; Johnson, C.; McClelland, W. The Late Cretaceous donlin creek gold deposit, southwestern Alaska: Controls on epizonal ore formation. Econ. Geol. 2004, 99, 643–671. [Google Scholar] [CrossRef]
- Sheppard, S. Characterization and isotopic variations in natural waters. Rev. Mineral. Geochem. 1986, 16, 165–183. [Google Scholar]
- Song, K. Research on the Metallogenic Geological Background and Genesis of Huanglonggou Ore Block in Shenshuitan Gold Deposit in the Wulonggou Ore Concentration Area in the Eastern Kunlun Orogenic Belt, Qinghai Province. Ph.D. Thesis, Jilin University, Changchun, China, 2019. [Google Scholar]
- Liu, F. Research on the geological, geochemical characteristics and genesis of Shenshuitan gold deposit in the Wulonggou ore concentration district in the Eastern Kunlun Orogenic Belt, Qinghai province. Ph.D. Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Zartman, R.E.; Doe, B.R. Plumbotectonics–the model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Jia, Y.F.; Kerrich, R.; Goldfarb, R. Metamorphic origin of ore-forming fluids for orogenic gold-bearing quartz vein systems in the North American Cordillera: Constraints from a reconnaissance study of delta N-15, delta D, and delta O-18. Econ. Geol. 2003, 98, 109–123. [Google Scholar] [CrossRef]
- Gray, D.; Gregory, R.T.; Durney, D. Rockbuffered fluid-rock interaction in deformed quartz-rich turbidite sequences, eastern Australia. J. Geophys. Res. 1991, 96, 19681–19704. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Leach, D.L.; Rose, S.C.; Landis, G.P.; Keays, R.R.; Ramsay, W.R.H.; Groves, D.I. Fluid Inclusion Geochemistry of Gold-Bearing Quartz Veins of the Juneau Gold Belt, Southeastern Alaska: Implications for Ore Genesis. In The Geology of Gold Deposits: The Perspective in 1988; Society of Economic Geologists: Reston, VA, USA, 1989. [Google Scholar]
- McCuaig, T.C.; Kerrich, R. P–T–t-deformation-fluid characteristics of lode gold deposits: Evidence from alteration systematics. Ore Geol. Rev. 1998, 12, 381–453. [Google Scholar] [CrossRef]
- Jia, Y.F.; Li, X.; Kerrich, R. Stable Isotope (O, H, S, C, and N) Systematics of Quartz vein systems in the turbidite-hosted central and north deborah gold deposits of the bendigo gold field, Central Victoria, Australia: Constraints on the origin of ore-forming fluids. Econ. Geol. 2001, 96, 705–721. [Google Scholar] [CrossRef] [Green Version]
- Pickthorn, W.J.; Goldfarb, R.J.; Leach, D.L. Comment and Reply on “Dual origins of lode gold deposits in the Canadian Cordillera”: Comment. Geology 1987, 15, 471–472. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Snee, L.W.; Miller, L.D.; Newberry, R.J. Rapid dewatering of the crust deduced from ages of mesothermal gold deposits. Nature 1991, 354, 296–298. [Google Scholar] [CrossRef]
- Fyon, J.A.; Crocket, J.H.; Schwartz, H.P. The Carshaw and Malga Iron-FormationHosted Gold Deposits of the Timmins Area. In The Geology of Gold in Ontario; Colvine, A.C., Ed.; Ontario Geological Survey: Ontario, ON, Canada, 1984; pp. 98–110. [Google Scholar]
- Kerrich, R.; Goldfarb, R.; Groves, D.; Garwin, S.; Jia, Y. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces. Sci. China Ser. D 2000, 43, 1–68. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Chang, Z.; Large, R.R.; Maslennikov, V. Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source. Geology 2008, 36, 971–974. [Google Scholar] [CrossRef] [Green Version]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; Barnes, H.L., Ed.; John Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Ohmoto, H.; Goldhaber, M.B. Sulfur and carbon Isotopes. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley: New York, NY, USA, 1997; pp. 517–611. [Google Scholar]
- Lambert, I.; Phillips, G.; Groves, D. Sulfur isotope compositions and genesis of Archean gold mineralization. In Proceedings of the Australia and Zimbabwe. Gold ߣ82, Rotterdam, The Netherlands, 4–28 May 1982; pp. 373–388. [Google Scholar]
- Saravanan, C.S.; Mishra, B. Uniformity in sulfur isotope composition in the orogenic gold deposits from the Dharwar Craton, southern India. Miner Depos. 2009, 44, 597–605. [Google Scholar] [CrossRef]
- Large, R.R.; Bull, S.W.; Maslennikov, V.V. A Carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits. Econ. Geol. 2011, 106, 331–358. [Google Scholar] [CrossRef]
- Farquhar, J.; Bao, H.M.; Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 2000, 289, 756–758. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.G. Present status and aspects of lead isotope geology. Geol. Prospect. 1992, 28, 21–29, (In Chinese with English Abstract). [Google Scholar]
- McNaughton, N.J.; Groves, D. A review of Pb-isotope constraints on the genesis of lode-gold deposits in the Yilgarn Craton, Western Australia. J. R. Soc. West. Aust. 1996, 79, 123–129. [Google Scholar]
- Qiu, Y.; McNaughton, N.J. Source of Pb in orogenic lode-gold mineralisation: Pb isotope constraints from deep crustal rocks from the southwestern Archaean Yilgarn Craton, Australia. Miner. Depos. 1999, 34, 366–381. [Google Scholar] [CrossRef]
- Zhao, K.D.; Jiang, S.Y.; Ni, P.; Ling, H.F.; Jiang, Y.H. Sulfur, lead and helium isotopic compositions of sulfide minerals from the Dachang Sn-polymetallic ore district in South China: Implication for ore genesis. Miner. Petrol. 2007, 89, 251–273. [Google Scholar] [CrossRef]
- Mortensen, J.K.; Craw, D.; MacKenzie, D.J.; Gabites, J.E.; Ullrich, T. Age and Origin of orogenic gold mineralization in the otago schist belt, South Island, New Zealand: Constraints from lead isotope and Ar-40/Ar-39 dating studies. Econ. Geol. 2010, 105, 777–793. [Google Scholar] [CrossRef]
- Mortensen, J.K.; Hall, B.V.; Bissig, T.; Friedman, R.M.; Danielson, T.; Oliver, J.; Rins, D.A.; Ross, K.V.; Gabites, J.E. Age and paleotectonic setting of volcanogenic massive sulfide deposits in the Guerrero terrane of central Mexico: Constraints from U–Pb age and Pb isotope studies. Econ. Geol. 2008, 103, 117–140. [Google Scholar] [CrossRef]
- Groves, D.I.; Santosh, M. The giant Jiaodong gold province: The key to a unified model for orogenic gold deposits? Geosci. Front. 2016, 7, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.F.; Zhang, K.X. Characteristics of the eastern Kunlun orogenic belt. Earth Sci.–J. China Univ. Geosci. 1997, 22, 339–342, (In Chinese with English Abstract). [Google Scholar]
- Xu, Z.Q.; Li, H.B.; Yang, J.S.; Chen, W. A large transpression zone at the south margin of the East Kunlun Mountains and oblique subduction. Acta Geol. Sin. 2001, 75, 156–164, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Pan, T.; Ding, Q.-F.; Cheng, L.; Song, K.; Liu, F.; Gao, Y. Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny. Minerals 2022, 12, 339. https://doi.org/10.3390/min12030339
Zhou X, Pan T, Ding Q-F, Cheng L, Song K, Liu F, Gao Y. Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny. Minerals. 2022; 12(3):339. https://doi.org/10.3390/min12030339
Chicago/Turabian StyleZhou, Xuan, Tong Pan, Qing-Feng Ding, Long Cheng, Kai Song, Fei Liu, and Yang Gao. 2022. "Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny" Minerals 12, no. 3: 339. https://doi.org/10.3390/min12030339
APA StyleZhou, X., Pan, T., Ding, Q. -F., Cheng, L., Song, K., Liu, F., & Gao, Y. (2022). Isotope Geochemistry of the Shenshuitan Gold Deposit within the Wulonggou Gold Field in the Eastern Kunlun Orogen, Northwest China: Implications for Metallogeny. Minerals, 12(3), 339. https://doi.org/10.3390/min12030339