Mineralogy, Geochemistry, and Geochronology of the Yehe-Shigna Ophiolitic Massif, Tuva-Mongolian Microcontinent, Southern Siberia: Evidence for a Back-Arc Origin and Geodynamic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Mineralogical Methods
2.2. U–Pb Age Determination
2.3. 40Ar/39Ar Dating
3. Geology, Mineralogy, Geochemistry, and Geochronology of the Yehe–Shigna Ophiolite Massif
3.1. Geology Setting
3.2. Mineralogy
3.3. Geochemistry
3.4. Isotope Geochronological Dating
4. Results and Discussion
4.1. Genesis of Basite-Ultramafic Massif
4.2. Geodynamics of the Tuva-Mongolian Microcontinent in the Late Neoproterozoic
5. Conclusions
- The Yehe-Shigna ophiolite massif is composed of serpentinized ultramafic rocks and gabbro. Hornblende gabbro predominates; gabbro-diorites and diorites are also present. Rocks are subject to secondary changes to varying degrees, expressed in the appearance of amphibole of tremolite–actinolite composition, clinozoisite, epidote, and albite. According to geochemical characteristics, ophiolites correspond to suprasubduction ophiolites formed in the zone of back-arc spreading.
- Geochronological dating of U-Pb (by zircon) and Ar–Ar (by hornblende) methods showed the gabbro age (806.5 ± 9.4 Ma), and several values of superimposed processes (736 ± 10, 687.5 ± 7.6, 501.1 ± 16 and 288.8 ± 4.5 Ma). The large variation in the age values of zircons and amphibole is due to the influence of epigenetic tectonic-thermal events on ophiolite gabbro, reflecting the geodynamic evolution of the northern part of the Central Asian orogenic belt in the Paleozoic [57,58,59]. This issue requires further study.
- The Yehe-Shigna ophiolite massif is part of the Belsk-Dugda ophiolite belt and characterizes the Late Proterozoic back-arc basin of the Shishkid oceanic island arc. Together with the coeval formations of the Oka accretion wedge and the Sarkhoi active margin, they represent a fragment (Tuva-Mongolian microcontinent) of the convergent boundary of Gondwana.
- The gold-bearing Neoproterozoic deposits with dominant gold-telluride assemblages are localization in large ophiolites thrust zones along the frame of the “Gargan Glyba” are generally associated with Neoproterozoic granitoids of the Sumsunur tonalite complex of the Sarkhoi continental arc. They are allochthonous with respect to the Late Neoproterozoic–Cambrian Tuva–Mongolian island arc of the Siberian continent. A similar type of gold deposit is probably worth looking for ophiolites thrust zones in other Precambrian Gondwana-derived microcontinents, including granitoids of the Neoproterozoic active margin.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dobretsov, N.L. On nappe tectonics of Eastern Sayan. Geotectonics 1985, 1, 39–50. [Google Scholar]
- Sklyarov, E.V. Ophiolites and Blueschists of Southeast Sayan; First International Symposium on Geodynamic Evolution and Main Sutures of Central Asia; IGCP Project 283; Guidebook for Excursion; Geological Institute SB RAS: Ulan-Ude, Russia, 1990; p. 57. [Google Scholar]
- Belichenko, V.G.; Reznitskii, L.Z.; Geletii, N.K.; Barash, I.G. Tuva-Mongolia terrane (in the context of microcontinents in the Paleoasian Ocean Russian). Russ. Geol. Geophys. 2003, 44, 531–541. [Google Scholar]
- Fedotova, A.A.; Khain, E.V. Tektonika Yuga Vostochnogo Sayana i ego Polozhenie v Uralo-Mongol’skom Poyase (Tectonics of Southern East Sayan and Its Position in the Ural–Mongolian Belt); Nauchnyi Mir: Moscow, Russia, 2002; p. 170. [Google Scholar]
- Kuzmichev, A.B. The Tectonic History of the Tuva–MongolianMassif: Early Baikalian, late Baikalian, and Early Caledonian Stages; Probel Publishing House: Moscow, Russia, 2004; p. 192. (In Russian) [Google Scholar]
- Kuzmichev, A.B.; Bibikova, E.V.; Zhuravlev, D.Z. Neoproterozoic (~800 Ma) orogeny in the Tuva–Mongolia Massif (Siberia): Island arc–continent collision at the northeast Rodinia margin. Precambrian Res. 2001, 110, 109–126. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Kröner, A.; Hegner, E.; Dunyi, L.; Yusheng, W. The Shishkhid ophiolite, northern Mongolia: A key to the reconstruction of a Neoproterozoic island-arc system in central Asia. Precambrian Res. 2005, 138, 125–150. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Sklyarov, E.; Postnikov, A.; Bibikova, E. The Oka Belt (Southern Siberia and Northern Mongolia): A Neoproterozoic analog of the Japanese Shimanto Belt? Isl. Arc 2007, 16, 224–242. [Google Scholar] [CrossRef]
- Kuzmichev, A.B. Neoproterozoic accretion of the Tuva-Mongolian massif, one of the Precambrian terranes in the Central Asian Orogenic Belt. In Composition and Evolution of Central Asian Orogenic Belt: Geology, Evolution, Tectonics, and Models; Kroner, A., Ed.; Borntraeger Science Publishers: Stuttgart, Germany, 2015; pp. 66–92. [Google Scholar]
- Kuzmichev, A.; Larionov, A. The Sarkhoi Group in East Sayan: Neoproterozoic (∼770–800 Ma) volcanic belt of the Andean type. Russ. Geol. Geophys. 2011, 52, 685–700. [Google Scholar] [CrossRef]
- Kuzmichev, A.; Larionov, A. Neoproterozoic island arcs in East Sayan: Duration of magmatism (from U–Pb zircon dating of volcanic clastics). Russ. Geol. Geophys. 2013, 54, 34–43. [Google Scholar] [CrossRef]
- Khain, E.V.; Bibikova, E.V.; Kroner, A.; Zhuravlev, D.Z.; Sklyarov, E.V.; Fedotova, A.A.; Kravchenko-Berezhnoy, I.R. The most ancient ophiolite of the Central Asian fold belt: U-Pb and Pb-Pb zircon ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and geodynamic implications. Earth Planet. Sci. Lett. 2002, 199, 311–325. [Google Scholar] [CrossRef]
- Zhmodik, S.M.; Postnikov, A.A.; Buslov, M.M.; Mironov, A.G. Geodynamics of the Sayan–Baikal–Muya accretion–collision belt in the Neoproterozoic–Early Paleozoic and regularities of the formation and localization of precious-metal mineralization. Russ. Geol. Geophys. 2006, 47, 187–201. [Google Scholar]
- Gordienko, I.; Dobretsov, N.; Zhmodik, S.; Roshchektaev, P. Multistage Thrust and Nappe Tectonics in the Southeastern Part of East Sayan and Its Role in the Formation of Large Gold Deposits. Russ. Geol. Geophys. 2021, 62, 109–120. [Google Scholar] [CrossRef]
- Berzin, N.A.; Coleman, R.G.; Dobretsov, N.L.; Zonenshain, L.P.; Xiao, X.; Chang, E.Z. Geodynamic map of the western part of the Paleoasian Ocean. Russ. Geol. Geophys. 1994, 35, 5–22. [Google Scholar]
- Şengör, A.M.C.; Natal’In, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Sengor, A.M.C.; Natal’in, B.A. Palaeotectonics of Asia: Fragments of a synthesis. In Tectonic Evolution of Asia; Yin, A., Harrison, M., Eds.; Cambridge University Press: Cambridge, UK, 1996; pp. 486–640. [Google Scholar]
- Mossakovskiy, A.A.; Ruzhentsev, S.V.; Samygin, S.G.; Kheraskova, T.N. Geodynamic evolution of the Central-Asian folded belt, and history of its development. Geotectonics 1993, 6, 3–32. [Google Scholar]
- Didenko, A.N.; Mossakovskii, A.A.; Pecherskii, D.M.; Ruzhentsev, S.V.; Samygin, S.G.; Kheraskova, T.N. Geodynamics of the Central-Asian Paleozoic oceans. Russ. Geol. Geophys. 1994, 35, 59–75. [Google Scholar]
- Buslov, M.M.; Saphonova, I.Y.; Watanabe, T.; Obut, O.T.; Fujiwara, Y.; Iwata, K.; Semakov, N.N.; Sugai, Y.; Smirnova, L.V.; Kazansky, A.Y. Evolution of the Paleo-Asian Ocean (Altai-Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geosci. J. 2001, 5, 203–224. [Google Scholar] [CrossRef]
- Buslov, M.M. Tectonics and geodynamics of the Central Asian Foldbelt: The role of Late Paleozoic large-amplitude strike-slip faults. Russ. Geol. Geophys. 2011, 52, 52–71. [Google Scholar] [CrossRef]
- Buslov, M.M. Terrane tectonics of the Central Asian Orogenic Belt. Geodyn. Tectonophys. 2014, 55, 641–665. [Google Scholar] [CrossRef] [Green Version]
- Buslov, M.M.; Cai, K. Tectonics and geodynamics of the Altai-Junggar orogen in the Vendian-Paleozoic: Implications for the continental evolution and growth of the Central Asian fold belt. Geodyn. Tectonophys. 2017, 8, 421–427. [Google Scholar] [CrossRef] [Green Version]
- Mironov, A.G.; Zhmodik, S.M. Gold deposits of the Urik–Kitoi metallogenic zone (Eastern Sayan, Russia). Geol. Ore Depos. 1999, 41, 46–60. [Google Scholar]
- Damdinov, B.B. Mineral Types of Gold Deposits and Regularities of Their Localization in Southeastern East Sayan. Geol. Ore Depos. 2019, 61, 118–132. [Google Scholar] [CrossRef]
- Damdinov, B.B.; Huang, X.-W.; Goryachev, N.A.; Zhmodik, S.M.; Mironov, A.G.; Damdinova, L.B.; Khubanov, V.B.; Reutsky, V.N.; Yudin, D.S.; Travin, A.V.; et al. Intrusion-hosted gold deposits of the southeastern East Sayan (northern Central Asian Orogenic Belt, Russia). Ore Geol. Rev. 2021, 139, 104541. [Google Scholar] [CrossRef]
- Nikolaeva, I.V.; Palesskii, S.V.; Koz’Menko, O.A.; Anoshin, G.N. Analysis of geologic reference materials for REE and HFSE by inductively coupled plasma-mass spectrometry (ICP-MS). Geochem. Int. 2008, 46, 1016–1022. [Google Scholar] [CrossRef]
- Khubanov, V.; Buyantuev, M.; Tsygankov, A. U–Pb dating of zircons from PZ3-MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: Technique and comparison with SHRIMP. Russ. Geol. Geophys. 2016, 57, 190–205. [Google Scholar] [CrossRef]
- Griffin, W.L.; Powell, W.J.; Pearson, N.J.; O’Reilly, S.Y. GLITTER: Data reduction software for laser ablation ICP-MS. In P.J. Sylvester. Laser ablation ICP-MS in the Earth sciences: Current practices and outstanding issues. Miner. Assoc. Can. Short Course 2008, 40, 308–311. [Google Scholar]
- Ludwig, K.R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Spec. Publ./Berkeley Geochronol. Cent. 2003, 4, 74. [Google Scholar]
- Travin, A.V.; Yudin, D.S.; Vladimirov, A.G.; Khromykh, S.; Volkova, N.I.; Mekhonoshin, A.; Kolotilina, T.B. Thermochronology of the Chernorud granulite zone, Ol’khon Region, Western Baikal area. Geochem. Int. 2009, 47, 1107–1124. [Google Scholar] [CrossRef] [Green Version]
- Baksi, A.K.; Archibald, D.; Farrar, E. Intercalibration of 40Ar39Ar dating standards. Chem. Geol. 1996, 129, 307–324. [Google Scholar] [CrossRef]
- Sekerin, A.P.; Men’shagin Yu, V.; Egorov, K.N. The Ekheshigna Hyperbasite Massif of the Belsko-Dugdinsky Ophiolite Belt of the Eastern Sayan; Otechestvennaya Geologiya: Moscow, Russia, 2002; pp. 45–51. (In Russian) [Google Scholar]
- Pavlov, N.V.; Kravchenko, G.G.; Chuprynina, I.I. Chromites of the Kempirsay Pluton; Nauka, M., Ed.; Nauka: Moscow, Russia, 1968; p. 197. (In Russian) [Google Scholar]
- Antsiferova, T. Deformation and Reaction (Melt/Rock) Changes in the Composition of Minerals of Restite Hyperbasites of Ophiolites (Eastern Sayan): Petrogenetic Aspects. Bull. Tomsk. Polytech. Univ. 2008, 312, 21–25. (In Russian) [Google Scholar]
- Sharkov, E.V.; Chistyakov, A.V.; Lazko, E.E. The structure of the layered complex of the Voikar ophiolite association (Polar Urals) as a reflection of mantle processes under the back-arc sea. Geochemistry 2001, 9, 915–932. [Google Scholar]
- Shcheka, S.A.; Vysotskiy, S.V.; S’edin, V.T.; Tararin, I.A. Igneous rocks of the main geological structures of the Philippine Sea floor. In Geology and Geophysics of the Philippine Sea; Tokuyama, H., Isezaki, S., Eds.; Terra Scientific Publication: Tokyo, Japan, 1995; pp. 251–278. [Google Scholar]
- Dick, H.J.B.; Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Miner. Pet. 1984, 86, 54–76. [Google Scholar] [CrossRef]
- Arai, S. Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Miner. Mag. 1992, 56, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Kamenetsky, V.; Crawford, A.J.; Meffre, S. Factors Controlling Chemistry of Magmatic Spinel: An Empirical Study of Associated Olivine, Cr-spinel and Melt Inclusions from Primitive Rocks. J. Pet. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Juteau, T.; Cannat, M.; Lagabrielle, Y. Serpentinized Peridotites in the Upper Oceanic Crust Away from Transform Zones: A Comparison of the Results of Previous DSDP and ODP Legs. In Proceedings of the Ocean Drilling Program, Scientific Results; Detrick, R., Honnorez, J., Bryan, W.B., Juteau, T., Eds.; Texas A&M University: College Station, TX, USA, 1990; pp. 303–308. [Google Scholar]
- Ishii, T.; Robinson, P.T.; Maekawa, H.; Fiske, R. Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc, Leg 125. In Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 125; Fryer, P., Pearce, J.A., Stokking, L.B., Eds.; Texas A&M University: College Station, TX, USA, 1992; pp. 445–485. [Google Scholar] [CrossRef]
- Ohara, Y.; Ishii, T. Peridotites from the southern Mariana forearc: Heterogeneous fluid supply in mantle wedge. Isl. Arc 1998, 7, 541–558. [Google Scholar] [CrossRef]
- Metcalf, R.V.; Shervais, J.W. Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? In Special Paper 438: Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson; Wright, J.E., Shervais, J.W., Eds.; Geological Society of America: Boulder, CO, USA, 2008; Volume 438, pp. 191–222. [Google Scholar] [CrossRef] [Green Version]
- Dilek, Y.; Furnes, H. Ophiolites and Their Origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London: London, UK, 1989; pp. 313–345. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical Fingerprinting of the Earth’s Oldest Rocks. Geology 2014, 42, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Furnes, H.; Dilek, Y. Geochemical characterization and petrogenesis of intermediate to silicic rocks in ophiolites: A global synthesis. Earth-Sci. Rev. 2017, 166, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Bazylev, B.A.; Palandzhyan, S.A.; Ganelin, A.V.; Silantyev, S.A.; Ishivatari, A.; Dmitrenko, G.G. Petrology of peridotites of ophiolite melange at Cape Povorotny, Taigonos Peninsula, northeastern Russia: Processes in the mantle above the subduction zone. Petrology 2001, 9, 165–184. [Google Scholar]
- Akizawa, N.; Ohara, Y.; Okino, K.; Ishizuka, O.; Yamashita, H.; Machida, S.; Sanfilippo, A.; Basch, V.; Snow, J.E.; Sen, A.; et al. Geochemical characteristics of back-arc basin lower crust and upper mantle at final spreading stage of Shikoku Basin: An example of Mado Megamullion. Prog. Earth Planet. Sci. 2021, 8, 1–24. [Google Scholar] [CrossRef]
- Holm, R.J.; Rosenbaum, G.; Richards, S.W. Post 8 Ma reconstruction of Papua New Guinea and Solomon Islands: Microplate tectonics in a convergent plate boundary setting. Earth-Sci. Rev. 2016, 156, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.D.; Jiménez-Díaz, A.; Arenas, R.; Pereira, M.F.; Fernández-Suárez, J. Ediacaran obduction of a fore-arc ophiolite in SW Iberia: A turning point in the evolving geodynamic setting of peri-Gondwana. Tectonics 2019, 38, 95–119. [Google Scholar] [CrossRef]
- Fernández, R.D.; Arenas, R.; Rojo-Pérez, E.; Martínez, S.S.; Fuenlabrada, J.M. Tectonostratigraphy of the Mérida Massif reveals a new Cadomian suture zone exposure in Gondwana (SW Iberia). Int. Geol. Rev. 2022, 64, 405–424. [Google Scholar] [CrossRef]
- Buslov, M.M.; Ryabinin, A.B.; Zhimulev, F.I.; Travin, A.V. Manifestations of the Late Carboniferous and Early Permian stages of formation of nappe-fold structures in the southern framework of the Siberian platform (East Sayany, South Siberia). Dokl. Earth Sci. 2009, 428, 1105–1108. [Google Scholar] [CrossRef]
- Ryabinin, A.; Buslov, M.; Zhimulev, F.; Travin, A. The late Paleozoic fold-thrust structure of the Tunka Goltsy. East Sayan. Russ. Geol. Geophys. 2011, 52, 1605–1623. [Google Scholar] [CrossRef]
- Zhimulev, F.; Buslov, M.; Glorie, S.; De Grave, J.; Fidler, M.; Izmer, A. Relationship between the Ordovician and Carboniferous–Permian collisional events in the southeastern Tunka bald mountains, East Sayan (southwestern framing of the Siberian Platform). Russ. Geol. Geophys. 2011, 52, 1634–1642. [Google Scholar] [CrossRef]
- Dobretsov, N.; Buslov, M. Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russ. Geol. Geophys. 2007, 48, 71–82. [Google Scholar] [CrossRef]
- Buslov, M.M.; Fujiwara, Y.; Iwata, K.; Semakov, N.N. Late Paleozoic-Early Mesozoic geodynamics of Central Asia. Gond. Res. 2004, 7, 791–808. [Google Scholar] [CrossRef]
- Buslov, M.; Watanabe, T.; Fujiwara, Y.; Iwata, K.; Smirnova, L.; Safonova, I.; Semakov, N.; Kiryanova, A. Late Paleozoic faults of the Altai region, Central Asia: Tectonic pattern and model of formation. J. Southeast Asian Earth Sci. 2004, 23, 655–671. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhmodik, S.M.; Buslov, M.M.; Damdinov, B.B.; Mironov, A.G.; Khubanov, V.B.; Buyantuyev, M.G.; Damdinova, L.B.; Airiyants, E.V.; Kiseleva, O.N.; Belyanin, D.K. Mineralogy, Geochemistry, and Geochronology of the Yehe-Shigna Ophiolitic Massif, Tuva-Mongolian Microcontinent, Southern Siberia: Evidence for a Back-Arc Origin and Geodynamic Implications. Minerals 2022, 12, 390. https://doi.org/10.3390/min12040390
Zhmodik SM, Buslov MM, Damdinov BB, Mironov AG, Khubanov VB, Buyantuyev MG, Damdinova LB, Airiyants EV, Kiseleva ON, Belyanin DK. Mineralogy, Geochemistry, and Geochronology of the Yehe-Shigna Ophiolitic Massif, Tuva-Mongolian Microcontinent, Southern Siberia: Evidence for a Back-Arc Origin and Geodynamic Implications. Minerals. 2022; 12(4):390. https://doi.org/10.3390/min12040390
Chicago/Turabian StyleZhmodik, Sergey Mikhailovich, Mikhail Mikhailovich Buslov, Bulat Batuevich Damdinov, Anatoli Georgievich Mironov, Valentin Borisovich Khubanov, Molon Gimitovich Buyantuyev, Ludmila Borisovna Damdinova, Evgeniya Vladimirovna Airiyants, Olga Nikolaevna Kiseleva, and Dmitriy Konstantinovich Belyanin. 2022. "Mineralogy, Geochemistry, and Geochronology of the Yehe-Shigna Ophiolitic Massif, Tuva-Mongolian Microcontinent, Southern Siberia: Evidence for a Back-Arc Origin and Geodynamic Implications" Minerals 12, no. 4: 390. https://doi.org/10.3390/min12040390
APA StyleZhmodik, S. M., Buslov, M. M., Damdinov, B. B., Mironov, A. G., Khubanov, V. B., Buyantuyev, M. G., Damdinova, L. B., Airiyants, E. V., Kiseleva, O. N., & Belyanin, D. K. (2022). Mineralogy, Geochemistry, and Geochronology of the Yehe-Shigna Ophiolitic Massif, Tuva-Mongolian Microcontinent, Southern Siberia: Evidence for a Back-Arc Origin and Geodynamic Implications. Minerals, 12(4), 390. https://doi.org/10.3390/min12040390