Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Geological Outline
4. Mineralogical Characteristics
5. Geochemical Characteristics
5.1. Bauxite Ores
5.2. Water Leachates of Bauxite Ore and Red Mud
6. Discussion
6.1. Biogeochemical Cycling of Metals/Metalloids in a Bauxite Profile
6.2. Mining/Smelting Processes and Environmental Implications
7. Conclusions
- Multicolor ores: grey-whitish (top), yellowish, deep red, and deep grey to brown-red color (bottom) are all associated with fossilized and present-day microorganisms, with TOC content showing the highest values in the deep grey ores and the lowest in the brown-red ores.
- The recorded compositional variations show that the Al enrichment is accompanied by an increase in the TOC, As, Pd, and U, while the chondrite-normalized REE patterns through the whole profile exhibit a similar trend and positive Ce anomalies.
- The lower (Pt + Pd) content and Pd/Pt ratio higher in the bauxite profile, compared to those in Fe-Ni laterite deposits, may reflect the higher solubility and mobility of Pd compared to that of Pt, and differences in their origin and genesis.
- A positive correlation between Pd and As and the elevated As content (up to 960 mg/kg) in multicolor ores compared to brown-red samples (average 10 mg/kg As) point to their mobilization and epigenetic enrichment.
- Geochemical characteristics of bauxite ores and smelting residues and their water leachates suggest that cycling of metals and metalloids during open-pit mining of bauxite and the large volume of red mud may cause changes to the land use, ecosystems, and the food quality.
- Microorganisms, by their reducing and/or oxidizing activity, catalyze redox reactions, resulting in the Fe(II) migration and precipitation of framboidal pyrite as veins crosscutting previous phases, and provide nucleation sites for the precipitation of secondary minerals.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gadd, M.G. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 2010, 156, 609–643. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Ehrlich, H.L. Selective and non-selective bioleaching of manganese containign silver ore. J. Biotechnol. 1989, 9, 287–304. [Google Scholar] [CrossRef]
- Banfield, J.F.; Nealson, K.H. (Eds.) Geomicrobiology: Interactions between Microbes and Minerals, Reviews in Mineralogy and Geochemistry; Mineralogical Society of America: Washington, DC, USA, 1997; Volume 35. [Google Scholar]
- Berthelin, J. Microbial Weathering Processes in Natural Environments. In Physical and Chemical Weathering in Geochemical Cycles; NATO ASI Series (Series C: Mathematical and Physical Sciences); Lerman, A., Meybeck, M., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 251, pp. 33–59. [Google Scholar] [CrossRef]
- Cassard, D.; Bertrand, G.; Billa, M.; Serrano, J.J.; Tourlière, B.; Angel, J.M.; Gaál, G. ProMine Mineral Databases: New Tools to Assess Primary and Secondary Mineral Resources in Europe. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe; Weihed, P., Ed.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- European Commission. Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee 2 and the Committee of the Regions COM(2020) 474 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Dixit, R.; Malaviya, D.; Pandiyan, K.; Singh, U.B.; Sahu, A.; Shukla, R.; Singh, B.P.; Rai, J.P.; Sharma, P.K.; Lade, H. Bioremediation of heavy metals from soil and aquatic environment: An overview of principles and criteria of fundamental processes. Sustainability 2015, 7, 2189–2212. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Putten, W.; Poesen, J.; Lisá, L.; Winding, A.; Moora, M.; Lemanceau, P.; Setälä, H.; Zaitsev, A.; Economou-Eliopoulos, M.; Hornung, E.; et al. Opportunities for Soil Sustainability in Europe; European Academies’ Science Advisory Council: Halle, Germany, 2018; p. 41. [Google Scholar]
- Laskou, M.; Economou-Eliopoulos, M. The role of microorganisms on the mineralogical and geochemical characteristics of the Parnassos-Ghiona bauxite deposits, Greece. J. Geochem. Explor. 2007, 93, 67–77. [Google Scholar] [CrossRef]
- Laskou, M.; Economou-Eliopoulos, M. Bio-mineralization and potential biogeochemical processes in bauxite deposits: Genetic and ore quality significance. Miner. Petrol. 2013, 407, 171–186. [Google Scholar] [CrossRef]
- Kontou, M. Iron Bio-Leaching of Bauxites. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2009; p. 141. [Google Scholar]
- Kalaitzidis, S.; Siavalas, G.; Skarpelis, N.; Araujo, C.V.; Christanis, C. Late Cretaceous coal overlying karstic bauxite deposits in the Parnassus-Ghiona Unit, Central Greece: Coal characteristics and depositional environment. Int. J. Coal Geol. 2010, 81, 211–226. [Google Scholar] [CrossRef]
- Gamaletsos, P. Mineralogy and Geochemistry of Bauxites from Parnassos-Ghiona Mines and the Impact on the Origin of the Deposits. Ph.D. Thesis, National and Kapodistrian University of Athens, Athens, Greece, 2014; p. 347. [Google Scholar]
- Combes, P.-J. Regards sur la géologie des bauxites; aspects récents sur la genése de quelques gisements à substratum carbonate–A look at the geology of bauxite; recent data on the genesis of some deposits in carbonate rock. Bulletin des Centres de Recherches Exploration—Production Elf-Aquitaine 1984, 8, 251–274. [Google Scholar]
- Radusinović, S.; Papadopoulos, A. The Potential for REE and Associated Critical Metals in Karstic Bauxites and Bauxite Residue of Montenegro. Minerals 2021, 11, 975. [Google Scholar] [CrossRef]
- Abedini, A.; Mehr, M.H.; Khosravi, M.; Calagari, A.A. Geochemical characteristics of the karst-type bauxites: An example from the Kanirash deposit, NW Iran. Arab. J. Geosci. 2019, 12, 1–16. [Google Scholar] [CrossRef]
- Laskou, M. Pyrite-rich bauxites from the Parnassos-Ghiona zone, Greece. In Mineral Deposit Research: Meeting the Global Challenge; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1007–1010. [Google Scholar]
- Laskou, M.; Economou-Eliopoulos, M.; Mitsis, I. Biomineralization of halotrichite and sulphates on bauxite ores. In Proceedings of the Goldschmidt 2010 Conference, Knoxville, TN, USA, 13–18 June 2010; p. A564. [Google Scholar]
- Walkley, A.; Black, L.A. An examination of the Dgtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Valeton, I.; Bierman, M.; Reche, R.; Rosenberg, F.F. Genesis of nickel laterites and bauxites in Greece during the Jurassic and the Cretaceous and their relation to ultrabasic rocks. Ore Geol. Rev. 1987, 2, 359–404. [Google Scholar] [CrossRef]
- Williams, R.J. Karst-associated bauxite deposits of Parnassos-Ghiona, Central Greece: Ore Genesis and Structural Evolution. Ph.D. Thesis, University of Brighton, Brighton, UK, June 2014. [Google Scholar]
- Economou-Eliopoulos, M.; Frei, R.; Megremi, I. Potential leaching of Cr(VI) from laterite mines and residues of metallurgical products (red mud and slag): An integrated approach. J. Geochem. Explor. 2016, 262, 40–49. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Boyce, A.J.; Fallick, A.E. 100th Anniversary special paper: On hydrothermal convection systems and the emergence of life. Econ. Geol. 2005, 100, 419–438. [Google Scholar]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The microbial engines that drive earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, H.; Witkowski, A. Biomineralization in Diatoms: The Organic Templates. In Evolution of Lightweight Structures. Biologically-Inspired Systems; Hamm, C., Ed.; Springer: Dordrecht, The Netherlands, 2015; Volume 6. [Google Scholar] [CrossRef]
- Fischer, A.; Schmitz, M.; Aichmayer, B.; Fratzl, P.; Faivre, D. Structural purity of magnetite nanoparticles in magnetotactic bacteria. J. R. Soc. Interface 2011, 8, 1011–1018. [Google Scholar] [CrossRef]
- Polgári, M.; Gyollai, I. Geochemical constraints on the element enrichments of microbially mediated manganese and iron ores—An overview. Ore Geol. Rev. 2021, 136, 104203. [Google Scholar] [CrossRef]
- Baskar, S.; Baskar, R.; Kaushik, A. Role of microorganisms in weathering of the Konkan-Goa laterite formation. Curr. Sci. 2003, 85, 1129–1134. [Google Scholar]
- Southam, G.; Saunders, J. The geomicrobiology of ore deposits. Econ. Geol. 2005, 100, 1067–1084. [Google Scholar] [CrossRef]
- Timotijević, S. Cretaceous Bauxites of Serbia; Special Editions of the Geo Institute No. 27; Geological Survey of Serbia: Belgrade, Serbia, 2001; pp. 1–183. [Google Scholar]
- Yalcin, M.G.; Ilhan, S. Major and Trace Element Geochemistry of Bauxites of Ayranci, Karaman, Central Bolkardag, Turkey. Asian J. Chem. 2013, 25, 2893–2904. [Google Scholar] [CrossRef]
- Huang, J.H. Impact of Microorganisms on Arsenic Biogeochemistry: A Review. Water Air Soil Pollut. 2014, 225, 1848. [Google Scholar] [CrossRef]
- Campbell, B.J.; Engel, A.S.; Porter, M.L.; Takai, K. The versatile epsilon-proteobacteria: Key players in sulphidic habitats. Nat. Rev. Microbiol. 2006, 4, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, L.; Huang, K. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils. ISME J. 2019, 13, 2523–2535. [Google Scholar] [CrossRef]
- Gamaletsos, P.N.; Kalatha, S.; Godelitsas, A.; Economou-Eliopoulos, M.; Göttlicher, J.; Steininger, R. Arsenic distribution and speciation in the bauxitic Fe-Ni-laterite ore deposit of the Patitira mine, Lokris area (Greece). J. Geochem. Explor. 2018, 194, 189–197. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Laskou, M.; Eliopoulos, D.G.; Megremi, I.; Kalatha, S.; Eliopoulos, G.D. Origin of Critical Metals in Fe-Ni Laterites from the Balkan Peninsula: Opportunities and Environmental Risk. Minerals 2021, 11, 1009. [Google Scholar] [CrossRef]
- Laskou, M.; Economou, M. Palladium, Pt, Rh and Au Contents in Some Bauxite Occurrences of Greece. In Proceedings of the Balkan-Carpathian Congress, Sofia, Bulgaria, 11–13 December 1989; pp. 1367–1371. [Google Scholar]
- Eliopoulos, D.G.; Economou-Eliopoulos, M. Geochemical and mineralogical characteristics of Fe-Ni and bauxitic-laterite deposits of Greece. Ore Geol. Rev. 2000, 16, 41–58. [Google Scholar] [CrossRef]
- Grey, J.D.; Schorin, K.H.; Butt, C.R.M. Mineral associations of platinum and palladium in lateritic regolith, Ora Banda Sill, Western Australia. J. Geochem. Explor. 1996, 57, 245–255. [Google Scholar] [CrossRef]
- Reith, F.; Zammit, C.M.; Shar, S.S.; Etschmann, B.; Bottrill, R.; Southam, G.; Ta, C.; Kilburn, M.; Oberthür, T.; Ball, A.S.; et al. Biological role in the transformation of platinum-group mineral grains. Nat. Geosci. 2016, 9, 294–298. [Google Scholar] [CrossRef]
- Aiglsperger, T.; Proenza, J.A.; Lewis, J.F.; Labrador, M.; Svojtka, M.; Rojas-Purón, A.; Longo, F.; Ďurišová, J. Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol. Rev. 2016, 73, 127–147. [Google Scholar] [CrossRef]
- Kumar, M. An approach towards green alumina refinery and sustainable development. Travaux 2011, 36, 11–22. [Google Scholar]
- Gamaletsos, P.N.; Godelitsas, A.; Filippidis, A.; Pontikes, Y. The Rare Earth Elements Potential of Greek Bauxite Active Mines in the Light of a Sustainable REE Demand. J. Sustain. Met. 2018, 5, 20–47. [Google Scholar] [CrossRef]
- Macías-Pérez, L.A.; Levard, C.; Barakat, M.; Angeletti, B.; Borschnek, D. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. J. Hazard. Mater. 2022, 424, 127470. [Google Scholar] [CrossRef]
- Prematuri, R.; Turjaman, M.; Sato, T.; Tawaraya, K. Post Bauxite Mining Land Soil Characteristics and Its Effects on the Growth of Falcataria moluccana (Miq.) Barneby & J. W. Grimes and Albizia saman (Jacq.). Merr. Appl. Environ. Soil Sci. 2020, 2020, 6764380. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Baumgartl, T.; Mulligan, D. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings? Ann. Bot. 2012, 110, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, L.C.; Mortimer, J.G.R.; Stewart, I.D.; Mayes, M.W.; Peacock, L.C.; Polya, A.D.; Lythgoe, R.P.; Lehoux, P.A.; Gruiz, K.; Burke, T.I. Mobilisation of arsenic from bauxite residue (red mud) affected soils: Effect of pH and redox conditions. Appl. Geochem. 2014, 51, 268–277. [Google Scholar] [CrossRef]
- Ruyters, S.; Mertens, J.; Vassilieva, E.; Dehandschutter, B.; Poffijn, A.; Smolders, E. The red mud accident in Ajka (Hungary): Plant toxicity and trace metal bioavailability in red mud contaminated soil. Environ. Sci. Technol. 2010, 45, 1616–1622. [Google Scholar] [CrossRef]
- Liesack, W.; Schnell, S.; Revsbech, N.P. Microbiology of flooded rice paddies. FEMS Microbiol. Rev. 2000, 24, 624–645. [Google Scholar] [CrossRef] [PubMed]
- Megremi, I.; Vasilatos, C.; Vassilakis, E.; Economou-Eliopoulos, M. Spatial diversity of Cr distribution in soil and groundwater sites in relation with land use management in a Mediterranean region: The case of C. Evia and Assopos-Thiva Basins, Greece. Sci. Total Environ. 2019, 651, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Raptis, S.; Gasparatos, D.; Economou-Eliopoulos, M.; Petridis, A. Chromium uptake by lettuce as affected by the application of organic matter and Cr (VI)-irrigation water: Implications to the land use and water management. Chemosphere 2018, 210, 597–606. [Google Scholar] [CrossRef] [PubMed]
Grey-Whitish | White-Yellow | Deep Red | Deep Grey | Brown-Red | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Samples | B1.1 | B1.2 | B1.3 | B2.1 | B2.2 | B2.3 | B2.4 | B3 | B4.1 | B4.2 | B4.3 | B5.1 | B5.2 | B5.3 |
mg/kg | ||||||||||||||
As | 25 | 78 | 17 | 540 | 240 | 220 | 960 | 380 | 520 | 220 | 34 | 7.2 | 16 | 8 |
Co | 16 | 6 | 16 | 11 | 12 | 7 | 16 | 10 | 61 | 47 | 36 | 20 | 29 | 9 |
Cr | 1230 | 1000 | 980 | 1140 | 3280 | 1140 | 1100 | 940 | 960 | 990 | 980 | 1230 | 1220 | 1140 |
Hf | 18 | 16 | 13 | 14 | 17 | 17 | 15 | 16 | 12 | 13 | 13 | 15 | 14 | 16 |
Sc | 61 | 36 | 66 | 51 | 55 | 53 | 33 | 57 | 37 | 46 | 54 | 44 | 77 | 60 |
Sb | 14 | 7.8 | 1.7 | 28 | 25 | 25 | 21 | 8.4 | 25 | 16 | 5.4 | 1.3 | 4.9 | 1.5 |
Ta | 5.4 | 5 | 4.8 | 3.6 | 5.3 | 4.7 | 2.8 | 3.6 | 3.5 | 3.7 | 4.7 | 4.9 | 5.9 | 4.9 |
Th | 31 | 45 | 53 | 34 | 36 | 28 | 59 | 45 | 42 | 49 | 47 | 54 | 58 | 50 |
U | 5.5 | 5.2 | 5.6 | 5.8 | 4.5 | 5.7 | 6.5 | 6.4 | 8.2 | 6.3 | 4.5 | 6.4 | 6.1 | 4.8 |
La | 13 | 15 | 9 | 27 | 30 | 25 | 17 | 21 | 33 | 16 | 7 | 23 | 25 | 26 |
Ce | 110 | 95 | 130 | 100 | 80 | 170 | 96 | 76 | 83 | 42 | 120 | 130 | 140 | 120 |
Sm | 1.7 | 2.9 | 2.2 | 1.8 | 2.7 | 2.6 | 3.4 | 3.5 | 3.2 | 4.1 | 2.2 | 3.8 | 5.8 | 2.7 |
Eu | 0.4 | 0.6 | 0.5 | 0.6 | 0.6 | 0.5 | 0.7 | 0.7 | 0.8 | 0.9 | 0.4 | 0.9 | 1 | 0.5 |
Yb | 5.9 | 6.9 | 4.5 | 6.9 | 9.2 | 5.3 | 6.6 | 8.4 | 5.3 | 6.9 | 3.8 | 8.5 | 8.4 | 8.1 |
Lu | 0.9 | 1.1 | 0.7 | 1 | 1.6 | 0.8 | 1 | 1.3 | 0.9 | 1.1 | 0.6 | 1.4 | 1.4 | 1.3 |
μg/kg | ||||||||||||||
Au | 80 | 26 | 89 | 26 | 35 | 7 | 88 | 5 | 40 | 37 | 50 | 28 | 24 | 42 |
Pt | 0.8 | <0.1 | 0.4 | 0.6 | <0.1 | 0.5 | 0.4 | 1.9 | <0.1 | 0.8 | <0.1 | 0.1 | 0.4 | 0.4 |
Pd | 2.6 | 1.8 | 0.5 | 3 | 1.7 | 0.5 | 2.2 | 2 | 1.6 | 2.1 | 0.7 | 1.3 | <0.5 | 0.8 |
wt.% | ||||||||||||||
Al2O3 | 69.1 | 58.1 | 55.8 | 58.6 | 59.9 | 63.7 | 63.7 | 49.9 | 65.3 | 52 | 51 | 56.9 | 50.6 | 48 |
FeO | 0.56 | 0.31 | 6.9 | 0.22 | 0.52 | 0.3 | 0.17 | 0.45 | 2.5 | 26.42 | 3.1 | 2.21 | 2.12 | 1.79 |
S | 0.26 | 0.15 | 0.36 | 0.19 | 0.17 | 0.2 | 0.17 | 0.16 | 10.64 | 8.4 | 4.02 | 0.16 | 0.15 | 0.17 |
TOC | 2.28 | 2.06 | 2.73 | 2.23 | 1.67 | 1.68 | 2.56 | 2.21 | 5.4 | 1.8 | 2.98 | 0.08 | 0.19 | 0.26 |
As | Co | Cr | Hf | Sc | Sb | Ta | Th | U | La | Ce | Sm | Eu | Yb | Lu | Au | Pt | Pd | Al2O3 | FeO | S | TOC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
As | 1.00 | |||||||||||||||||||||
Co | 0.09 | 1.00 | ||||||||||||||||||||
Cr | −0.03 | −0.22 | 1.00 | |||||||||||||||||||
Hf | −0.14 | −0.74 | 0.40 | 1.00 | ||||||||||||||||||
Sc | −0.58 | −0.18 | 0.12 | 0.11 | 1.00 | |||||||||||||||||
Sb | 0.67 | 0.11 | 0.33 | 0.08 | −0.39 | 1.00 | ||||||||||||||||
Ta | −0.85 | −0.25 | 0.34 | 0.37 | 0.64 | −0.45 | 1.00 | |||||||||||||||
Th | 0.02 | 0.21 | −0.28 | −0.47 | 0.00 | −0.61 | −0.09 | 1.00 | ||||||||||||||
U | 0.50 | 0.57 | −0.41 | −0.45 | −0.37 | 0.26 | −0.55 | 0.18 | 1.00 | |||||||||||||
La | 0.28 | 0.07 | 0.39 | 0.09 | −0.08 | 0.49 | −0.08 | −0.24 | 0.36 | 1.00 | ||||||||||||
Ce | −0.37 | −0.37 | −0.14 | 0.20 | 0.41 | −0.26 | 0.50 | −0.05 | −0.23 | −0.04 | 1.00 | |||||||||||
Sm | −0.02 | 0.33 | −0.07 | −0.25 | 0.14 | −0.25 | 0.09 | 0.62 | 0.39 | 0.25 | −0.07 | 1.00 | ||||||||||
Eu | 0.16 | 0.44 | −0.06 | −0.39 | −0.11 | −0.03 | −0.14 | 0.52 | 0.62 | 0.40 | −0.27 | 0.89 | 1.00 | |||||||||
Yb | −0.01 | −0.31 | 0.48 | 0.39 | 0.11 | −0.07 | 0.17 | 0.17 | −0.04 | 0.54 | −0.24 | 0.49 | 0.51 | 1.00 | ||||||||
Lu | −0.07 | −0.22 | 0.56 | 0.35 | 0.12 | −0.09 | 0.25 | 0.19 | −0.05 | 0.56 | −0.24 | 0.52 | 0.53 | 0.98 | 1.00 | |||||||
Au | 0.13 | 0.08 | −0.06 | −0.13 | −0.02 | −0.11 | −0.08 | 0.28 | −0.06 | −0.53 | −0.03 | −0.33 | −0.33 | −0.44 | −0.42 | 1.00 | ||||||
Pt | 0.16 | −0.21 | −0.27 | 0.23 | 0.26 | −0.03 | −0.31 | −0.11 | 0.17 | −0.08 | −0.27 | 0.07 | 0.04 | 0.21 | 0.09 | −0.22 | 1.00 | |||||
Pd | 0.53 | −0.07 | 0.06 | 0.19 | −0.49 | 0.51 | −0.53 | −0.35 | 0.19 | 0.06 | −0.66 | −0.35 | −0.05 | 0.15 | 0.06 | 0.11 | 0.32 | 1.00 | ||||
Al2O3 | 0.37 | 0.00 | 0.15 | 0.29 | −0.40 | 0.63 | −0.13 | −0.52 | 0.29 | 0.13 | 0.07 | −0.40 | −0.22 | −0.29 | −0.29 | 0.33 | −0.22 | 0.41 | 1.00 | |||
FeO | −0.12 | 0.52 | −0.17 | −0.45 | −0.05 | −0.06 | −0.19 | 0.22 | 0.14 | −0.26 | −0.50 | 0.27 | 0.35 | −0.10 | −0.08 | 0.07 | 0.13 | 0.05 | −0.30 | 1.00 | ||
S | 0.16 | 0.93 | −0.22 | −0.66 | −0.36 | 0.26 | −0.40 | 0.02 | 0.54 | 0.11 | −0.50 | 0.14 | 0.30 | −0.36 | −0.28 | 0.00 | −0.14 | 0.08 | 0.06 | 0.58 | 1.00 | |
TOC | 0.46 | 0.51 | −0.18 | −0.42 | −0.42 | 0.46 | −0.52 | −0.25 | 0.44 | −0.06 | −0.34 | −0.38 | −0.22 | −0.64 | −0.60 | 0.28 | −0.06 | 0.28 | 0.46 | 0.00 | 0.62 | 1.00 |
μg/L | B5.2 | L.R.mud | Detection | μg/L | B5.2 | L.R.mud | Detection |
---|---|---|---|---|---|---|---|
Al | 30 | 13,700 | 1 | V | 0.4 | 6160 | 0.2 |
As | <0.5 | 280 | 0.5 | W | 110 | 1290 | 0.02 |
Cd | <0.05 | <0.05 | 0.05 | Y | 0.02 | <0.01 | 0.01 |
Co | 0.22 | 1 | 0.02 | Zn | 7.8 | 1.0 | 0.5 |
Cr | 2.1 | 2200 | 0.5 | Zr | <0.02 | <0.02 | 0.02 |
Cr(VI) | 1.1 | 2100 | 0.5 | La | <0.01 | <0.01 | 0.01 |
Cu | 0.6 | 5 | 0.1 | Ce | <0.01 | <0.01 | 0.01 |
Fe | <10 | <10 | 10 | Pr | <0.01 | <0.01 | 0.01 |
Ga | 0.08 | 90 | 0.05 | Nd | <0.01 | <0.01 | 0.01 |
Ge | <0.05 | <0.05 | 0.05 | Sm | <0.02 | <0.02 | 0.02 |
Hg | <0.1 | <0.1 | 0.1 | Eu | <0.01 | <0.01 | 0.01 |
In | <0.01 | <0.01 | 0.01 | Gd | <0.01 | <0.01 | 0.01 |
Li | 1.5 | 7 | 0.1 | Tb | <0.01 | <0.01 | 0.01 |
Mn | 0.99 | <0.05 | 0.05 | Dy | <0.01 | <0.01 | 0.01 |
Mo | 4.6 | 740 | 0.1 | Ho | <0.01 | <0.01 | 0.01 |
Nb | <0.01 | <0.01 | 0.01 | Er | <0.01 | <0.01 | 0.01 |
Ni | 2.4 | 0 | 0.2 | Tm | <0.01 | <0.01 | 0.01 |
P | <10 | 15 | 10 | Yb | <0.01 | <0.01 | 0.01 |
Pb | 62 | <0.1 | 0.1 | Lu | <0.01 | <0.01 | 0.01 |
Rb | 0.45 | 19 | 0.01 | Ru | <0.05 | <0.05 | 0.05 |
Re | 0.04 | 0.12 | 0.01 | Rh | <0.01 | <0.01 | 0.01 |
Sb | 2.13 | 2.2 | 0.05 | Pt | <0.01 | 0.06 | 0.01 |
Sc | <1 | <1 | 1 | Pd | <0.2 | <0.2 | 0.2 |
Se | 7.3 | 110 | 0.5 | Au | <0.05 | <0.05 | 0.05 |
Si | 3190 | 430 | 40 | mg/L | |||
Sr | 140 | 0.05 | 0.01 | Ca | 61 | 0.32 | 0.05 |
Ta | <0.02 | <0.02 | 0.02 | Mg | 1.6 | 0.08 | 0.05 |
Th | <0.05 | <0.05 | 0.05 | Na | 15 | 310 | 0.05 |
Ti | <10 | <10 | 10 | K | 0.6 | 11 | 0.05 |
Tl | 0.07 | <0.01 | 0.01 | Cl | 13 | 38 | 1 |
U | 1.34 | <0.02 | 0.02 | S | 13 | 65 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Economou-Eliopoulos, M.; Kontou, M.; Megremi, I. Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece. Minerals 2022, 12, 446. https://doi.org/10.3390/min12040446
Economou-Eliopoulos M, Kontou M, Megremi I. Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece. Minerals. 2022; 12(4):446. https://doi.org/10.3390/min12040446
Chicago/Turabian StyleEconomou-Eliopoulos, Maria, Marioka Kontou, and Ifigeneia Megremi. 2022. "Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece" Minerals 12, no. 4: 446. https://doi.org/10.3390/min12040446
APA StyleEconomou-Eliopoulos, M., Kontou, M., & Megremi, I. (2022). Biogeochemical Redox Processes Controlling the Element Cycling: Insights from Karst-Type Bauxite, Greece. Minerals, 12(4), 446. https://doi.org/10.3390/min12040446