Role of Volatiles in the Evolution of a Carbonatitic Melt in Peridotitic Mantle: Experimental Constraints at 6.3 GPa and 1200–1450 °C
Abstract
:1. Introduction
2. Materials and Methods
2.1. Starting Compositions
2.2. High Pressure Apparatus
2.3. Analytical Techniques
3. Results
3.1. Sample Textures
3.2. Phase Composition
3.3. Chemical Composition of Phases
3.3.1. Melts in Water-Bearing Systems
3.3.2. Melts in Systems with Addition of CO2 and H2O
3.3.3. Solid Phases
4. Discussion
4.1. Carbonatite Melt-Peridotite Interaction
4.2. The Role of Volatiles in the Evolution of Melt Composition
5. Conclusions
- The metasomatic interaction with peridotite should occur in a limited volume, only near the walls of veins that form networks in the CLM. The walls of feeder channels are passivated from the interaction with an aggressive carbonatitic melt due to redox freezing.
- Temperature of the interaction should not exceed 1200–1350 °C, which corresponds to an undisturbed thermal regime of the CLM base with a heat flux of about 40 mW/m2. Elevation of temperature above this interval leads to a sharp increase in the melting volume of peridotite and a decrease in the SiO2 concentration of the resulting melt/fluid.
- The concentration of water in the melt should not inhibit local carbonation of olivine during peridotite metasomatism.
- The presence of dissolved molecular CO2 (at a molar water to molecular CO2 ratio of ~2:3) in a carbonatitic melt in amounts that enable complete carbonation of olivine in the contact zone, such that the orthopyroxene + magnesite assemblage or only magnesite should remain in the channel walls. Due to this, even at 1200 °C, the content of SiO2 in the melt formed upon the interaction with peridotite may reach 27–31 wt%. If olivine remains stable at the reaction front, the SiO2 concentration in the melt is less than 10–11 wt%.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wyllie, P.J. Magmas and volatile components. Am. Mineral. 1979, 64, 469–500. [Google Scholar]
- Wyllie, P.J. The origin of kimberlite. J. Geophys. Res. 1980, 85, 6902–6910. [Google Scholar] [CrossRef] [Green Version]
- Boyd, F.R.; Pokhilenko, N.P.; Pearson, D.G.; Mertzman, S.A.; Sobolev, N.V.; Finger, L.W. Composition of the Siberian cratonic mantle: Evidence from Udachnaya perido- tite xenoliths. Contrib. Mineral. Petrol. 1997, 128, 228–246. [Google Scholar] [CrossRef]
- Becker, M.; Le Roex, A.P. Geochemistry of South African on- and off-craton, group I and group II kimberlites: Petrogenesis and source region evolution. J. Petrol. 2006, 47, 673–703. [Google Scholar] [CrossRef] [Green Version]
- Pearson, D.G.; Wittig, N. The formation and evolution of cratonic mantle lithosphere—Evidence from mantle xenoliths. Treatise Geochem. 2014, 3, 255–292. [Google Scholar]
- Doucet, L.S.; Peslier, A.H.; Ionov, D.A.; Brandon, A.D.; Golovin, A.V.; Ashchepkov, I.V. High water content in the Siberian cratonic mantle linked to melt metasomatism: An FTIR study of Udachnaya peridotite xenoliths. Geochim. Cosmochim. Acta 2014, 137, 159–187. [Google Scholar] [CrossRef]
- Schrauder, M.; Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 1994, 58, 761–771. [Google Scholar] [CrossRef]
- Navon, O. Diamond formation in the Earth’s mantle. In Proceedings of the VII International Kimberlite Conference 2. Red Roof Design, Cape Town, South Africa, 11–17 April 1998; pp. 584–604. [Google Scholar]
- Klein-BenDavid, O.; Izraeli, E.S.; Hauri, E.; Navon, O. Fluid inclusions in diamonds from the Diavik mine, Canada and the evolution of diamond-forming fluids. Geochim. Cosmochim. Acta 2007, 71, 723–744. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Logvinova, A.; Schrauder, M.; Spetius, Z.; Weiss, Y.; Hauri, E.; Kaminsky, F.V.; Sobolev, N.V.; Navon, O. High-Mg carbonatitic microinclusions in some Yakutian Diamonds- a new type of diamond-forming fluid. Lithos 2009, 112S, 648–659. [Google Scholar] [CrossRef]
- Klein-BenDavid, O.; Pearson, D.G.; Nowell, G.M.; Ottley, C.; McNeill, J.C.; Logvinova, A.; Sobolev, N.V. The sources and time-integrated evolution of diamond-forming fluids–Trace elements and isotopic evidence. Geochim. Cosmochim. Acta 2014, 125, 146–169. [Google Scholar] [CrossRef]
- Zedgenizov, D.A.; Ragozin, A.L.; Shatsky, V.S.; Araujo, D.; Griffin, W.L.; Kagi, H. Mg and Fe-rich carbonate-silicate high-density fluids in cuboid diamonds from the Internationalnaya kimberlite pipe (Yakutia). Lithos 2009, 112 (Suppl. 2), 638–647. [Google Scholar] [CrossRef]
- Kopylova, M.; Navon, O.; Dubrovinsky, L.; Khachatryan, G. Carbonatitic mineralogy of natural diamond-forming fluids. Earth Planet. Sci. Lett. 2010, 291, 126–137. [Google Scholar] [CrossRef]
- Weiss, Y.; McNeill, J.; Pearson, D.G.; Nowell, G.M.; Ottley, C.J. Highly saline fluids from a subducting slab as the source for fluid-rich diamonds. Nature 2015, 524, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Safonov, O.G.; Kamenetsky, V.S.; Perchuk, L.L. Links between carbonatite and kimberlite melts in chloride–carbonate–silicate systems: Experiments and application to natural assemblages. J. Petrol. 2011, 52, 1307–1331. [Google Scholar] [CrossRef] [Green Version]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 2009, 112, 249–259. [Google Scholar] [CrossRef]
- Girnis, A.V.; Bulatov, V.K.; Brey, G.P. Formation of primary kimberlite melts—Constraints from experiments at 6–12 GPa and variable CO2/H2O. Lithos 2011, 127, 401–413. [Google Scholar] [CrossRef]
- Sokol, A.G.; Kruk, A.N.; Chebotarev, D.A.; Palyanov, Y.N. Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: Implications for metasomatism in lithospheric mantle. Lithos 2016, 248, 66–79. [Google Scholar] [CrossRef]
- Sokol, A.G.; Kruk, A.N.; Palyanov, Y.N.; Sobolev, N.V. Stability of phlogopite in ultrapotassic kimberlite-like systems at 5.5–7.5 GPa. Contrib. Mineral. Petrol. 2017, 172, 21. [Google Scholar] [CrossRef]
- Kruk, A.N.; Sokol, A.G.; Palyanov, Y.N. Phase relations in the harzburgite–hydrous carbonate melt at 5.5–7.5 GPa and 1200–1350 °C. Petrology 2018, 26, 575–587. [Google Scholar] [CrossRef]
- Sun, C.; Dasgupta, R. Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 2019, 506, 38–52. [Google Scholar] [CrossRef]
- Sokol, A.G.; Kruk, A.N. Role of CO2 in the evolution of Kimberlite Magma: Experimental constraints at 5.5 GPa and 1200–1450 °C. Lithos 2021, 386, 106042. [Google Scholar] [CrossRef]
- Stamm, N.; Schmidt, M.W. Asthenospheric kimberlites: Volatile contents and bulk compositions at 7 GPa. Earth Planet. Sci. Lett. 2017, 474, 309–321. [Google Scholar] [CrossRef]
- Foley, S.F. A reappraisal of redox melting in the Earth’s mantle as a function of tectonic setting and time. J. Petrol. 2011, 52, 1363–1391. [Google Scholar] [CrossRef]
- Litasov, K.D.; Ohtani, E. Phase relations in the peridotite–carbonate–chloride system at 7.0–16.5 GPa and the role of chlorides in the origin of kimberlite and diamond. Chem. Geol. 2009, 262, 29–41. [Google Scholar] [CrossRef]
- Navon, O.; Hutcheon, I.D.; Rossman, G.R.; Wasserburg, G.J. Mantle-derived fluids in diamond micro-inclusions. Nature 1988, 335, 784–789. [Google Scholar] [CrossRef]
- Tomilenko, A.A.; Ragozin, A.L.; Shatskii, V.S.; Shebanin, A.P. Variation in the fluid phase composition in the process of natural diamond crystallization. Dokl. Earth Sci. 2001, 379, 571–574. [Google Scholar]
- Smith, E.M.; Kopylova, M.G.; Frezzotti, M.L.; Afanasiev, V.P. Fluid inclusions in Ebelyakh diamonds: Evidence of CO2 liberation in eclogite and the effect of H2O on diamond habit. Lithos 2015, 216, 106–117. [Google Scholar] [CrossRef]
- Tsuno, K.; Dasgupta, R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: Relative efficiency of H2O and CO2 subduction. Earth Planet. Sci. Lett. 2012, 319, 185–196. [Google Scholar] [CrossRef]
- Tsuno, K.; Dasgupta, R.; Danielson, L.; Righter, K. Flux of carbonate melt from deeply subducted pelitic sediments: Geophysical and geochemical implications for the source of Central American volcanic arc. Geophys. Res. Lett. 2012, 39, L16307. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Min. Geochem. 2013, 75, 183–229. [Google Scholar] [CrossRef]
- Grassi, D.; Schmidt, M.W. Melting of carbonated pelites at 8–13 GPa: Generating K- rich carbonatites for mantle metasomatism. Contrib. Mineral. Petrol. 2011, 162, 169–191. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.W.; Poli, S. Devolatilization During Subduction. Treatise Geochem. 2014, 4, 669–701. [Google Scholar] [CrossRef]
- Shatskiy, A.F.; Arefiev, A.V.; Podborodnikov, I.V.; Litasov, K.D. Origin of K-rich diamond-forming immiscible melts and CO2 fluid via partial melting of carbonated pelites at a depth of 180–200 km. Gondwana Res. 2019, 75, 154–171. [Google Scholar] [CrossRef]
- Berman, R.G. Thermobarometry using multiequilibrium calculations: A new technique with petrologic applications. Can. Miner. 1991, 29, 833–855. [Google Scholar]
- Luth, R.W. Carbon and carbonates in mantle. In Mantle Petrology: Field Observation and High Pressure Experimentation: A Tribute to Francis, R. (Joe) Boyd; Fei, Y., Bertka, M.C., Mysen, B.O., Eds.; The Geochemical Society: Washington, DC, USA, 1999; pp. 297–316. ISBN 0-941809-05-6. [Google Scholar]
- Ogasawara, Y.; Liou, J.G.; Zhang, R.Y. Thermochemical calculation of logfO2-T-P stability relations of diamond-bearing assemblages in the model system CaO-MgO-SiO2-CO2-H2O. Russ. Geol. Geophys. 1997, 2, 587–598. [Google Scholar]
- Bataleva, Y.V.; Kruk, A.N.; Novoselov, I.D.; Furman, O.V.; Palyanov, Y.N. Decarbonation reactions involving ankerite and dolomite under upper mantle P, T-parameters: Experimental modeling. Minerals 2020, 10, 715. [Google Scholar] [CrossRef]
- Tao, R.; Fei, Y.; Zhang, L. Experimental determination of siderite stability at high pressure. Am. Min. 2013, 98, 1565–1572. [Google Scholar] [CrossRef]
- Mukherjee, B.K.; Sachan, H.K. Carbonate-bearing UHPM rocks from the Tso-Morari Region, Ladakh, India: Petrological implications. Int. Geol. Rev. 2003, 45, 49–69. [Google Scholar] [CrossRef]
- Omori, S.; Liou, J.G.; Zhang, R.Y.; Ogasawara, Y. Petrogenesis of impure dolomitic marble from the Dabie mountains, central China. Isl. Arc 1998, 7, 98–114. [Google Scholar] [CrossRef]
- Zhang, L.; Ellis, D.J.; Arculus, R.J.; Jiang, W.; Wei, C. ‘Forbidden zone’ subduction of sediments to 150 km depth-the reaction of dolomite to magnesite + aragonite in the UHPM metapelites from western Tianshan, China. J. Metamorp. Geol. 2003, 21, 523–529. [Google Scholar] [CrossRef]
- Plank, T.; Manning, C.E. Subducting carbon. Nature 2019, 574, 343–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brey, G.P.; Bulatov, V.K.; Girnis, A.V. Melting of K-rich carbonated peridotite at 6–10 GPa and the stability of K-phases in the upper mantle. Chem. Geol. 2011, 281, 333–342. [Google Scholar] [CrossRef]
- Shatskiy, A.; Bekhtenova, A.; Podborodnikov, I.V.; Arefiev, A.V.; Litasov, K.D. Metasomatic interaction of the eutectic Na-and K-bearing carbonate melts with natural garnet lherzolite at 6 GPa and 1100–1200 °C: Toward carbonatite melt composition in SCLM. Lithos 2020, 374, 105725. [Google Scholar] [CrossRef]
- Takahashi, E. Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle. J. Geophys. Res. Solid Earth 1986, 91, 9367–9382. [Google Scholar] [CrossRef]
- Hart, S.R.; Zindler, A. In search of a bulk-earth composition. Chem. Geol. 1986, 57, 247–267. [Google Scholar] [CrossRef]
- Sokol, A.G.; Pal’yanov, Y.N.; Pal’yanova, G.A.; Tomilenko, A.A. Diamond crystallization in fluid and carbonate-fluid systems under mantle PT conditions: 1. Fluid composition. Geochem. Intern. 2004, 42, 830–838. [Google Scholar]
- Palyanov, Y.N.; Kupriyanov, I.N.; Khokhryakov, A.F.; Borzdov, Y.M. High-pressure crystallization and properties of diamond from magnesium-based catalysts. CrystEngCommu. 2017, 19, 4459–4475. [Google Scholar] [CrossRef] [Green Version]
- Sokol, A.G.; Borzdov, Y.M.; Palyanov, Y.N.; Khokhryakov, A.F. High temperature calibration a multi-anvil high-pressure apparatus. High Press. Res. 2015, 35, 139–147. [Google Scholar] [CrossRef]
- Aulbach, S.; Griffin, W.L.; Pearson, N.J.; O’Reilly, S.Y. Nature and timing of metasomatism in the stratified mantle lithosphere beneath the central Slave craton (Canada). Chem. Geol. 2013, 352, 153–169. [Google Scholar] [CrossRef]
- Brooker, R.A.; Kohn, S.C.; Holloway, J.R.; McMillan, P.F.; Carroll, M.R. Solubility, speciation and dissolution mechanisms for CO2 in melts on the NaAlO2–2 join. Geochim. Cosmochim. Acta 1999, 63, 3549–3565. [Google Scholar] [CrossRef]
- Mysen, B. Structure–property relationships of COHN-saturated silicate melt coexisting with COHN fluid: A review of in-situ, high-temperature, high-pressure experiments. Chem. Geol. 2013, 346, 113–124. [Google Scholar] [CrossRef]
- Eggler, D.H. The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O–CO2 system. Am. J. Sci. 1978, 278, 305–343. [Google Scholar] [CrossRef]
- Morizet, Y.; Vuilleumier, R.; Paris, M. A NMR and molecular dynamics study of CO2-bearing basaltic melts and glasses. Chem. Geol. 2015, 418, 89–103. [Google Scholar] [CrossRef] [Green Version]
- Konschak, A.; Keppler, H. The speciation of carbon dioxide in silicate melts. Contrib. Mineral. Petrol. 2014, 167, 998. [Google Scholar] [CrossRef]
- Yaxley, G.M.; Berry, A.J.; Kamenetsky, V.S.; Woodland, A.B.; Golovin, A.V. An oxygen fugacity profile through the Siberian Craton–Fe K-edge XANES determinations of Fe3+/ΣFe in garnets in peridotite xenoliths from the Udachnaya East kimberlite. Lithos 2012, 140, 142–151. [Google Scholar] [CrossRef]
- Goncharov, A.G.; Ionov, D.A.; Doucet, L.S.; Pokhilenko, L.N. Thermal state, oxygen fugacity and C–O–H fluid speciation in cratonic lithospheric mantle: New data on peri- dotite xenoliths from the Udachnaya kimberlite, Siberia. Earth Planet. Sci. Lett. 2012, 357, 99–110. [Google Scholar] [CrossRef]
- Stagno, V.; Ojwang, D.O.; McCammon, C.A.; Frost, D.J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 2013, 493, 84–88. [Google Scholar] [CrossRef]
- Tappe, S.; Foley, S.F.; Kjarsgaard, B.A.; Romer, R.L.; Heaman, L.M.; Stracke, A.; Jenner, G.A. Between carbonatite and lamproite—diamondiferous Torngat ultramafic lamprophyres formed by carbonate-fluxed melting of cratonic MARID-type metasomes. Geochim. Cosmochim. Acta 2008, 72, 3258–3286. [Google Scholar] [CrossRef] [Green Version]
- Tappe, S.; Romer, R.L.; Stracke, A.; Steenfelt, A.; Smart, K.A.; Muehlenbachs, K.; Torsvik, T.H. Sources and mobility of carbonate melts beneath cratons, with implications for deep carbon cycling, metasomatism and rift initiation. Earth Planet. Sci. Lett. 2017, 466, 152–167. [Google Scholar] [CrossRef]
- Creighton, S.; Stachel, T.; Matveev, S.; Hofer, H.; McCammon, C.; Luth, R.W. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 2009, 157, 491–504. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Shatsky, V.S.; Sobolev, N.V.; Sokol, A.G. The role of mantle ultrapotassic fluids in diamond formation. Proc. Nat. Acad. Sci. USA 2007, 104, 9122–9127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palyanov, Y.N.; Sokol, A.G. The effect of composition of mantle fluids/melts on diamond formation processes. Lithos 2009, 112, 690–700. [Google Scholar] [CrossRef]
- Palyanov, Y.N.; Sokol, A.G.; Khokhryakov, A.F.; Kruk, A.N. Conditions of diamond crystallization in kimberlite melt: Experimental data. Rus. Geol. Geophys. 2015, 56, 196–210. [Google Scholar] [CrossRef]
- Wyllie, P.J.; Huang, W.L.; Otto, J.; Byrnes, A.P. Carbonation of peridotites and decarbonation of siliceous dolomites represented in the system CaO-MgO-SiO2-CO2 to 30 kbar. Tectonophysics 1983, 100, 359–388. [Google Scholar] [CrossRef]
- Stone, R.S.; Luth, R.W. Orthopyroxene survival in deep carbonatite melts: Implications for kimberlites. Contrib. Mineral. Petrol. 2016, 171, 63. [Google Scholar] [CrossRef]
- Zhang, G.L.; Chen, L.H.; Jackson, M.G.; Hofmann, A.W. Evolution of carbonated melt to alkali basalt in the South China Sea. Nat. Geosci. 2017, 10, 229–235. [Google Scholar] [CrossRef]
- Luth, R.W. The activity of silica in kimberlites, revisited. Contrib. Mineral. Petrol. 2009, 158, 283–294. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Yaxley, G.M. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 2015, 158, 48–56. [Google Scholar] [CrossRef]
- Pearson, D.G.; Canil, D.; Shirey, S.B. Mantle samples included in volcanic rocks: Xenoliths and diamonds. Treatise Geochem. Ed. 2014, 2, 170–253. [Google Scholar]
- Liu, Z.; Ionov, D.A.; Nimis, P.; Xu, Y.; He, P.; Golovin, A.V. Thermal and compositional anomalies in a detailed xenolith-based lithospheric mantle profile of the Siberian craton and the origin of seismic midlithosphere discontinuities. Geology 2022, 49, 947. [Google Scholar] [CrossRef]
Lc (Ud-05-05) | Lc (HZ86) | B10 | GS | Lc-B10 | Lc-GS | Lc (HZ86)-B10 * | Lc (HZ86)-GS * | |
---|---|---|---|---|---|---|---|---|
SiO2 | 43.24 | 45.75 | 16.01 | 0.62 | 34.25 | 29.18 | 32.17 | 29.5 |
TiO2 | 0.13 | 0.18 | 0.19 | 0.02 | 0.15 | 0.09 | 0.18 | 0.12 |
Al2O3 | 2.25 | 4.06 | 0.3 | 0.73 | 1.61 | 1.75 | 2.71 | 2.86 |
Cr2O3 | 0.68 | 0.47 | 0.11 | 0 | 0.49 | 0.46 | 0.34 | 0.3 |
FeO | 11.19 | 7.53 | 18.31 | 3.97 | 13.54 | 8.81 | 11.41 | 6.25 |
MnO | 0.11 | 0.11 | 0.34 | 0 | 0.19 | 0.07 | 0.19 | 0.07 |
NiO | 0.25 | 0.35 | 0.08 | 0 | 0.19 | 0.17 | 0.25 | 0.22 |
MgO | 39.02 | 37.73 | 22.21 | 4.77 | 33.47 | 27.72 | 32.14 | 25.86 |
CaO | 2.72 | 3.21 | 8.3 | 15.67 | 4.56 | 6.99 | 5.04 | 7.7 |
Na2O | 0.23 | 0.33 | 0.47 | 0.18 | 0.31 | 0.21 | 0.38 | 0.28 |
K2O | 0.19 | - | 5.8 | 31.3 | 2.04 | 10.46 | 2.09 | 11.27 |
CO2 | - | - | 27.88 | 42.74 | 9.2 | 14.1 | 13.1 | 15.57 |
Total | 100.01 | 99.69 | 100 | 100 | 100 | 100.01 | 100 | 100 |
Run ID | System | H2C2O4, wt% | H2O, wt% | Capsule Material | T, °C | t, h. | Phase Proportions, wt% | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ol | Grt | Opx | Cpx | Mst | Liq | |||||||
2200_2_1 | Lc-B10 | 15.2 | - | Au | 1200 | 150 | 20 | 9 | 9 | - | 26 | 36 |
2200_2_2 | Lc-B10 | 31.8 | - | Au | 1200 | 150 | - | 12 | 13 | - | 33 | 42 |
2200_2_3 | Lc-GS | 13.9 | - | Au | 1200 | 150 | - | 6 | 30 | 6 | 21 | 37 |
2200_2_4 | Lc-GS | 33.6 | - | Au | 1200 | 150 | - | - | - | - | 41 | 59 |
2215_2_3 | Lc-B10 | - | 3 | Au | 1200 | 150 | 58 | 8 | - | 2 | - | 32 |
2200_2_6 | Lc-GS | - | 2.7 | Au | 1200 | 150 | 37 | 5 | - | 12 | - | 46 |
2200_2_7 | Lc-B10 | - | 8 | Au | 1200 | 150 | 56 | 6 | - | 1 | - | 37 |
2200_2_8 | Lc-GS | - | 8.2 | Au | 1200 | 150 | 39 | 3 | - | 5 | - | 53 |
2190_2_1 | Lc-B10 | 12.6 | - | Pt + Re | 1350 | 60 | 17 | 3 | 34 | - | 10 | 36 |
2190_2_2 | Lc-GS | 12.7 | - | Pt + Re | 1350 | 60 | - | 4 | 27 | - | - | 69 |
2190_2_3 | Lc-B10 | 29.3 | - | Pt + Re | 1350 | 60 | - | - | 5 | - | 25 | 70 |
2211_2_1 | Lc-GS | 29.3 | - | Pt + Re | 1350 | 60 | 26 | - | 2 | - | - | 72 |
2192_2_1 | Lc-B10 | - | 2.3 | Pt + Re | 1350 | 60 | 58 | 6 | - | 1 | - | 35 |
2192_2_2 | Lc-GS | - | 2.3 | Pt + Re | 1350 | 60 | 36 | 4 | - | 2 | - | 58 |
2192_2_3 | Lc-B10 | - | 7.1 | Pt + Re | 1350 | 60 | 44 | 3 | - | - | - | 53 |
2192_2_4 | Lc-GS | - | 7.1 | Pt + Re | 1350 | 60 | 21 | 2 | - | 5 | - | 72 |
702_8_1 | Lc-B10 | 12.7 | - | Pt + Re | 1450 | 40 | 3 | 10 | 36 | - | - | 51 |
702_8_2 | Lc-GS | 12.7 | - | Pt + Re | 1450 | 40 | - | 3 | 16 | - | - | 81 |
702_8_3 | Lc-B10 | - | 3.2 | Pt + Re | 1450 | 40 | 44 | 5 | - | - | - | 51 |
702_8_4 | Lc-GS | - | 3 | Pt + Re | 1450 | 40 | 32 | 1 | - | - | - | 67 |
Run | Phase | SiO2 | TiO2 | Al2O3 | Cr2O3 | FeO | MnO | NiO | MgO | CaO | Na2O | K2O | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2200_2_1 | Ol [8] | 39.9 (2) | - | - | - | 16.6 (3) | 0.23 (6) | 0.25 (6) | 43.6 (3) | - | - | - | 100.58 |
Opx [7] | 56.4 (3) | - | 0.4 (1) | 0.14 (3) | 9.5 (10) | 0.22 (4) | 0.11 (2) | 32.3 (7) | 0.9 (2) | - | - | 99.97 | |
Grt [5] | 41.3 (1) | 0.6 (2) | 19.7 (1) | 2.7 (3) | 12 (2) | 0.4 (1) | - | 19 (1) | 4.6 (4) | - | - | 100.34 | |
Mst [6] | - | - | - | - | 9.2 (6) | 0.25 (2) | - | 37.4 (4) | 1.4 (2) | - | - | 48.25 | |
Liq [8] | 7 (2) | 0.36 (9) | 1.1 (4) | - | 8.1 (8) | 0.23 (4) | - | 9 (3) | 13 (4) | 2.1 (7) | 8 (2) | 48.89 | |
2200_2_2 | Opx [5] | 56.5 (4) | - | 0.45 (5) | 0.15 (4) | 11 (1) | 0.16 (1) | 0.2 (3) | 31.7 (9) | 0.33 (4) | - | - | 100.49 |
Grt [4] | 41.3 (3) | 0.7 (3) | 19.5 (3) | 2.2 (4) | 14 (3) | 0.42 (8) | - | 18 (2) | 4.3 (2) | - | - | 100.42 | |
Mst [7] | - | - | - | - | 12 (3) | 0.25 (6) | 0.17 (2) | 37 (2) | 1 (3) | - | - | 50.42 | |
Liq [7] | 27 (4) | 0.2 (1) | 2.4 (10) | - | 5 (1) | 0.12 (3) | - | 5 (1) | 7 (2) | 0.6 (2) | 3 (1) | 50.32 | |
2200_2_3 | Cpx [4] | 55.5 (4) | - | 0.7 (2) | 0.28 (4) | 4.1 (5) | - | - | 18.9 (2) | 20 (1) | 0.32 (8) | 0.19 (1) | 100.06 |
Opx [9] | 57 (1) | - | 0.7 (3) | 0.3 (2) | 7.8 (4) | 0.12 (2) | 0.11 (4) | 33 (1) | 1.4 (5) | 0.15 (8) | 0 (1) | 100.58 | |
Grt [8] | 42.2 (2) | 0.3 (1) | 20.4 (4) | 2.1 (5) | 11 (2) | 0.3 (3) | - | 19 (1) | 5.2 (7) | - | - | 100.5 | |
Mst [7] | - | - | - | - | 6.69 (9) | 0.11 (2) | - | 38.2 (4) | 1.36 (8) | - | - | 46.36 | |
Liq [7] | 6 (3) | 0.2 (1) | 0.7 (3) | - | 5.7 (9) | 0.11 (2) | - | 10 (4) | 9.6 (1) | 0.9 (4) | 19 (7) | 52.21 | |
2200_2_4 | Mst [7] | 0.1 (3) | - | - | - | 9 (2) | 0.14 (2) | 0.14 (6) | 37 (1) | 1.8 (4) | - | - | 48.18 |
Liq [6] | 31 (4) | 0.14 (3) | 2.9 (4) | 0.23 (6) | 4.4 (1) | - | - | 7 (2) | 11 (3) | 0.1 (4) | 9 (4) | 65.77 | |
2215_2_3 | Ol [7] | 40.7 (2) | - | - | - | 11 (8) | - | - | 48.3 (4) | - | - | - | 100 |
Cpx [5] | 54.4 (3) | - | 0.9 (1) | 0.41 (7) | 2.3 (1) | - | - | 17.2 (3) | 24.8 (5) | - | - | 100.01 | |
Grt [5] | 39.8 (3) | 0.4 (1) | 18 (1) | 4.53 (8) | 10.5 (9) | 0.43 (1) | - | 18.7 (7) | 7.56 (3) | - | - | 99.92 | |
Liq [7] | 14 (1) | 0.58 (3) | 2.6 (2) | - | 6 (1) | 0.33 (4) | - | 8 (5) | 11 (2) | 1.3 (4) | 10 (4) | 53.81 | |
2200_2_6 | Ol [7] | 40.5 (1) | - | - | - | 10.8 (4) | 0.11 (2) | 0.16 (6) | 48.5 (4) | - | - | - | 100.07 |
Cpx [6] | 55.3 (5) | - | 0.54 (4) | 0.18 (4) | 3.2 (1) | - | - | 19.1 (3) | 21 (2) | 0.2 (4) | 0.22 (3) | 99.74 | |
Grt [4] | 42.2 (9) | 0.5 (1) | 20 (2) | 3 (2) | 9.4 (1) | 0.34 (4) | - | 19 (1) | 5 (2) | - | - | 99.44 | |
Liq [8] | 10 (4) | 0.18 (5) | 1.2 (6) | - | 6.1 (10) | 0.12 (4) | - | 12 (3) | 8 (3) | 0.8 (3) | 19 (5) | 57.4 | |
2200_2_7 | Ol [7] | 40.5 (2) | - | - | - | 14 (8) | 0.18 (2) | 0.22 (7) | 44.9 (7) | - | - | - | 99.8 |
Cpx [5] | 55.8 (3) | - | 0.6 (5) | 0.34 (5) | 4.4 (2) | 0.16 (1) | - | 18.1 (5) | 20.8 (1) | 0.44 (7) | - | 100.64 | |
Grt [7] | 41.9 (4) | 0.3 (2) | 19.1 (8) | 3.4 (5) | 12 (1) | 0.5 (1) | - | 17 (2) | 6 (1) | - | - | 100.2 | |
Liq [8] | 14 (3) | 0.4 (1) | 1.9 (3) | - | 10 (1) | 0.29 (7) | - | 12 (2) | 11 (2) | 1.2 (6) | 6 (2) | 56.79 | |
2200_2_8 | Ol [8] | 41.3 (2) | - | - | - | 10.3 (6) | 0.1 (2) | 0.14 (6) | 47.8 (5) | - | - | - | 99.64 |
Grt [9] | 42.6 (3) | 0.2 (1) | 19.9 (4) | 3.5 (4) | 8.1 (4) | 0.3 (2) | - | 19 (1) | 7 (2) | - | - | 100.6 | |
Cpx [8] | 55.9 (8) | - | 0.56 (9) | 0.25 (4) | 2.7 (2) | - | - | 18.4 (1) | 21.7 (3) | 0.18 (4) | 0.3 (4) | 99.99 | |
Liq [7] | 12 (2) | 0.14 (6) | 2.4 (6) | - | 5 (2) | 0.13 (7) | - | 10 (4) | 10 (6) | 0.7 (2) | 13 (9) | 53.37 | |
2190_2_1 | Ol [5] | 39.9 (3) | - | - | - | 12.7 (2) | 0.15 (1) | 0.37 (3) | 47.4 (3) | - | - | - | 100.52 |
Opx [9] | 57.4 (3) | - | 0.54 (4) | 0.15 (4) | 7.4 (2) | 0.15 (1) | 0.11 (2) | 34.1 (1) | 0.38 (3) | - | - | 100.27 | |
Grt [7] | 42.2 (1) | 0.2 (4) | 19.6 (5) | 2.9 (1) | 11 (4) | 0.37 (1) | - | 21.3 (2) | 2.2 (2) | - | - | 99.77 | |
Mst [7] | - | - | - | - | 6.8 (1) | 0.19 (2) | 0.1 (1) | 38.2 (2) | 0.91 (2) | - | - | 46.2 | |
Liq [8] | 9 (2) | 0.36 (8) | 0.8 (6) | - | 11 (1) | 0.34 (2) | - | 21 (4) | 12 (1) | 0.4 (1) | 2.4 (8) | 57.3 | |
2190_2_2 | Opx [9] | 58.4 (4) | - | 0.6 (9) | 0.2 (5) | 3.5 (2) | - | - | 36.9 (3) | 0.44 (4) | - | - | 100.04 |
Grt [9] | 43.2 (3) | 0.12 (3) | 20.7 (3) | 2.6 (1) | 5.8 (4) | 0.21 (2) | - | 24.3 (3) | 2.8 (2) | - | - | 99.73 | |
Liq [8] | 11 (2) | 0.13 (9) | 1.4 (5) | - | 4 (1) | 0.14 (1) | - | 19 (5) | 10 (2) | 0.36 (10) | 11 (3) | 57.03 | |
2190_2_3 | Opx [8] | 57.9 (6) | - | 0.39 (2) | 0.21 (1) | 7.5 (1) | 0.13 (1) | 0.18 (4) | 33.9 (2) | 0.17 (1) | - | - | 100.38 |
Mst [6] | - | - | - | - | 7.1 (1) | 0.15 (1) | 0.16 (4) | 38.5 (4) | 0.43 (2) | - | - | 46.34 | |
Liq [6] | 31 (4) | 0.13 (6) | 1.6 (5) | 0.14 (6) | 8 (1) | 0.2 (3) | - | 18 (4) | 4.5 (9) | 0.23 (8) | 0.7 (2) | 64.5 | |
2211_2_1 | Ol [9] | 41.6 (2) | - | - | - | 8.2 (7) | 0.1 (1) | 0.18 (4) | 50 (6) | - | - | - | 100.08 |
Opx [8] | 56.1 (8) | - | 0.67 (4) | 0.31 (8) | 2.6 (3) | - | - | 18.9 (5) | 21.1 (7) | 0.2 (4) | 0.3 (3) | 100.18 | |
Liq [7] | 11.2 (9) | 0.19 (5) | 1.4 (2) | - | 4.3 (1) | 0.14 (0) | - | 10 (1) | 9 (1) | 0.38 (4) | 19 (1) | 55.61 | |
2192_2_1 | Ol [8] | 39.9 (2) | - | - | - | 13.8 (2) | 0.22 (1) | 0.25 (2) | 46.2 (2) | - | - | - | 100.37 |
Cpx [6] | 53.9 (4) | - | 1 (6) | 0.34 (4) | 4.3 (2) | 0.17 (1) | - | 18.3 (3) | 20.5 (3) | 0.55 (5) | - | 99.06 | |
Grt [6] | 40.9 (7) | 0.4 (2) | 19 (1) | 2 (1) | 12 (2) | 0.47 (7) | - | 17 (2) | 7 (2) | - | - | 98.77 | |
Liq [9] | 19 (3) | 0.5 (1) | 2 (3) | 0.1 (3) | 12 (2) | 0.34 (4) | - | 15 (2) | 14 (4) | 0.8 (3) | 5.5 (9) | 69.3 | |
2192_2_2 | Ol [7] | 40.5 (4) | - | - | - | 8.7 (6) | 0.1 (1) | 0.19 (3) | 50.1 (5) | - | - | - | 99.59 |
Cpx [6] | 54.3 (8) | - | 1.1 (4) | 0.4 (1) | 3.7 (5) | 0.12 (1) | - | 20 (1) | 18.3 (6) | 0.5 (5) | 0.17 (8) | 98.59 | |
Grt [5] | 41.8 (8) | 0.3 (1) | 20.1 (5) | 2.8 (3) | 7.8 (8) | 0.29 (5) | - | 21 (7) | 5 (1) | - | - | 99.09 | |
Liq [7] | 18 (4) | 0.2 (5) | 1.8 (3) | - | 7.7 (6) | 0.17 (1) | - | 18.2 (8) | 12 (1) | 0.61 (8) | 11 (2) | 69.68 | |
2192_2_3 | Ol [8] | 39.6 (4) | - | - | - | 11.15 (9) | 0.18 (1) | 0.25 (1) | 48.4 (1) | - | - | - | 99.58 |
Grt [5] | 41.7 (3) | 0.11 (2) | 18.5 (2) | 3.8 (2) | 9.8 (1) | 0.46 (1) | - | 20.3 (1) | 5.1 (1) | - | - | 99.77 | |
Liq [7] | 23 (3) | 0.25 (4) | 2 (1) | 0.19 (2) | 11 (2) | 0.33 (8) | - | 17 (5) | 9 (2) | 0.3 (10) | 2 (1) | 65.07 | |
2192_2_4 | Ol [10] | 40.9 (4) | - | - | - | 6.7 (4) | - | 0.16 (4) | 52 (4) | - | - | - | 99.76 |
Cpx [6] | 55.5 (1) | - | 0.82 (5) | 0.35 (5) | 2.8 (1) | 0.1 (1) | - | 21.4 (6) | 18.5 (8) | 0.25 (6) | 0.23 (4) | 99.94 | |
Grt [9] | 41.6 (6) | 0.3 (2) | 19.7 (6) | 3.3 (7) | 7 (1) | 0.26 (5) | - | 21.1 (6) | 5.6 (8) | - | - | 98.86 | |
Liq [7] | 20.9 (8) | 0.21 (2) | 2 (2) | 0.13 (1) | 6.4 (4) | 0.16 (1) | - | 19 (1) | 11.6 (7) | 0.5 (1) | 12.2 (5) | 73.13 | |
702_8_1 | Ol [5] | 42.8 (4) | - | 0.19 (3) | - | 10.9 (1) | 0.14 (2) | 0.39 (3) | 46 (1) | 0.17 (2) | - | - | 100.76 |
Grt [9] | 43.4 (4) | - | 20.6 (3) | 2.7 (8) | 7.3 (4) | 0.28 (2) | - | 24.7 (3) | 1.09 (6) | - | - | 100.07 | |
Opx [8] | 57 (2) | - | 0.9 (1) | 0.2 (3) | 5.4 (6) | 0.14 (2) | - | 35.5 (6) | 0.3 (1) | - | - | 99.44 | |
Liq [8] | 15 (2) | 0.27 (6) | 1.8 (4) | 0.12 (1) | 9.7 (5) | 0.36 (2) | - | 29 (1) | 8 (1) | 0.47 (8) | 3.2 (5) | 67.92 | |
702_8_2 | Opx [9] | 57.7 (5) | - | 0.95 (5) | 0.24 (4) | 4 (8) | - | - | 36.3 (3) | 0.46 (2) | - | - | 99.65 |
Grt [7] | 43.5 (3) | - | 20.7 (2) | 2.9 (3) | 5.6 (4) | 0.16 (1) | - | 25.1 (4) | 1.9 (3) | - | - | 99.86 | |
Liq [8] | 18 (5) | 0.15 (1) | 2 (5) | 0.16 (4) | 6.2 (3) | 0.14 (1) | - | 22 (2) | 8 (1) | 0.38 (8) | 10 (2) | 67.03 | |
702_8_3 | Ol [9] | 40.7 (3) | - | - | - | 10.92 (9) | 0.18 (1) | 0.26 (2) | 47.8 (2) | - | - | - | 99.86 |
Grt [7] | 42 (6) | 0.13 (4) | 18.6 (6) | 3.5 (3) | 9.5 (4) | 0.38 (3) | - | 20.3 (3) | 5.2 (3) | - | 0.3 (7) | 99.91 | |
Liq [8] | 24 (5) | 0.3 (1) | 3 (1) | 0.21 (7) | 13 (3) | 0.37 (4) | - | 22 (8) | 9 (4) | 0.7 (2) | 4 (2) | 76.58 | |
702_8_4 | Ol [7] | 41.1 (4) | - | - | - | 7.5 (9) | - | 0.22 (1) | 50.7 (2) | - | - | - | 99.52 |
Grt [9] | 42.8 (8) | 0.1 (3) | 19.4 (3) | 3.6 (1) | 6.4 (3) | 0.21 (1) | - | 21.6 (5) | 5.9 (5) | - | - | 100.01 | |
Liq [8] | 22 (2) | 0.13 (3) | 2.2 (2) | 0.14 (2) | 6.4 (6) | 0.14 (1) | - | 16 (2) | 10.1 (9) | 0.52 (8) | 17 (3) | 74.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kruk, A.; Sokol, A. Role of Volatiles in the Evolution of a Carbonatitic Melt in Peridotitic Mantle: Experimental Constraints at 6.3 GPa and 1200–1450 °C. Minerals 2022, 12, 466. https://doi.org/10.3390/min12040466
Kruk A, Sokol A. Role of Volatiles in the Evolution of a Carbonatitic Melt in Peridotitic Mantle: Experimental Constraints at 6.3 GPa and 1200–1450 °C. Minerals. 2022; 12(4):466. https://doi.org/10.3390/min12040466
Chicago/Turabian StyleKruk, Aleksei, and Alexander Sokol. 2022. "Role of Volatiles in the Evolution of a Carbonatitic Melt in Peridotitic Mantle: Experimental Constraints at 6.3 GPa and 1200–1450 °C" Minerals 12, no. 4: 466. https://doi.org/10.3390/min12040466
APA StyleKruk, A., & Sokol, A. (2022). Role of Volatiles in the Evolution of a Carbonatitic Melt in Peridotitic Mantle: Experimental Constraints at 6.3 GPa and 1200–1450 °C. Minerals, 12(4), 466. https://doi.org/10.3390/min12040466