Hydrochemical Characteristics and Controlling Factors of Surface Water in Upper Nujiang River, Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Study Area
2.1. Overview
2.2. Surface Water
2.3. Groundwater
3. Materials and Methods
3.1. Sampling
3.2. Laboratory Analysis
3.3. Data Analysis
4. Results and Discussion
4.1. Characteristics of Hydrochemical Composition and Hydrochemical Types
4.1.1. Major Ions
4.1.2. Spatial Variation Characteristics of Major Ions and TDS
4.1.3. Hydrochemical Type
4.1.4. Correlation Analysis of Chemical Indexes
4.2. Analysis of Main Ion Controlling Factors
4.2.1. Water–Rock Interaction
4.2.2. Cation Exchange
4.2.3. Anthropogenic Activity Influence
4.3. Main Ion Source Analysis
5. Conclusions
- Daqu and Gaqu, as two tributaries of the upper reaches of Nujiang River, are mainly composed of Ca2+ and Mg2+ for cations (accounting for about 98%) and HCO3− and SO42− for anions (accounting for about 91.7%). The main hydrochemical types are HCO3·SO4-Ca·Mg and HCO3·SO4-Mg·Ca.
- The influence of atmospheric precipitation and anthropogenic activities is weak.
- The carbonated water–rock reaction is the main Ca2+, Mg2+, and HCO3− source, and hot springs act as the main source of SO42− and supplement of Ca2+, Mg2+, and HCO3−.
- Weak reverse cation exchange occurs in both rivers and is more intensive in the Gaqu River.
- Mg2+ from magnesite dissolution exists in the Daqu River basin.
- Daqu River receives more low-mineralized glacier meltwater along the flow, whereas Gaqu River receives more high-mineralized hot spring water.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, L.; Zhang, Y.; Wu, L.; Zeng, L.; Tuo, Z. Determining the groundwater basin and surface watershed boundary of Dalinuoer Lake in the middle of Inner Mongolian Plateau, China and its impacts on the ecological environment. China Geol. 2021, 3, 498–508. [Google Scholar]
- Shi, D.; Tan, H.; Chen, X.; Rao, W.; Basang, R. Uncovering the mechanisms of seasonal river–groundwater circulation using isotopes and water chemistry in the middle reaches of the Yarlungzangbo River, Tibet. J. Hydrol. 2021, 603, 127010. [Google Scholar] [CrossRef]
- Tan, H.; Chen, X.; Shi, D.; Rao, W.; Liu, J.; Liu, J.; Eastoe, C.; Wang, J. Base flow in the Yarlungzangbo River, Tibet, maintained by the isotopically-depleted precipitation and groundwater discharge. Sci. Total Environ. 2021, 759, 143510. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Zhao, G.; Li, W.; Li, F.; Zhang, F.; Liu, G. Hydrochemistry of waters in snowpacks, lakes, and streams of Mt. Dagu, eastern of Tibet Plateau. Sci. Total Environ. 2018, 610–611, 641–650. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Song, L.; Ma, Z.; Song, Y. Environment significance and hydrochemical characteristics of supra-permafrost water in the source region of the Yangtze River. Sci. Total Environ. 2018, 644, 1141–1151. [Google Scholar]
- Zeng, D.; Chen, G.; Zhou, P.; Xue, H.; Qiong, A.; Duo, B.; Lu, X.; Wang, Z.; Han, Z. Factors influencing groundwater contamination near municipal solid waste landfill sites in the Qinghai-Tibetan plateau. Ecotoxicol. Environ. Saf. 2021, 211, 111913. [Google Scholar] [CrossRef]
- Hua, K.; Xiao, J.; Li, S.; Li, Z. Analysis of hydrochemical characteristics and their controlling factors in the Fen River of China. Sustain. Cities Soc. 2020, 52, 101827. [Google Scholar] [CrossRef]
- Li, S.L.; Chetelat, B.; Yue, F.; Zhao, Z.; Liu, C. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China. J. Asian Earth Sci. 2014, 88, 74–84. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Z.; Zhang, F.; Xiao, J. Seasonal variation in river water chemistry of the middle reaches of the Yellow River and its controlling factors. J. Geochem. Explor. 2015, 156, 101–113. [Google Scholar] [CrossRef]
- Zhang, L.L.; Zhao, Z.Q.; Zhang, W.; Tao, Z.; Huang, L.; Yang, J.; Wu, Q.; Liu, C. Characteristics of water chemistry and its indication of chemical weathering in Jinshajiang, Lancangjiang and Nujiang drainage basins. Environ. Earth Sci. 2016, 75, 1–18. [Google Scholar] [CrossRef]
- Li, S.; Wang, M.; Yang, Q.; Wang, H.; Zhu, J.; Zheng, B.; Zheng, Y. Enrichment of arsenic in surface water, stream sediments and soils in Tibet. J. Geochem. Explor. 2013, 135, 104–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Cai, W.; Li, Y.; Zhang, Z.; Geng, T.; Bian, C.; Zhao, M.; Cai, Y. Major Ionic Features and Their Possible Controls in the Water of the Niyang River Basin. Environ. Sci. 2017, 38, 4537–4545. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.; Zhang, Z.; Liu, T.; He, J. Hydrochemical Characteristics and Possible Controls of the Surface Water in Ranwu Lake Basin. Environ. Sci. 2020, 41, 4003–4010. [Google Scholar] [CrossRef]
- Gong, X.; Weng, B.; Yan, D.; Yang, Y.; Yan, D.; Niu, Y.; Wang, H. Potential recharge sources and origin of solutes in groundwater in the central Qinghai–Tibet Plateau using hydrochemistry and isotopic data. J. Hydrol. Reg. Stud. 2022, 40, 101001. [Google Scholar] [CrossRef]
- Noh, H.; Huh, Y.; Qin, J.; Ellis, A. Chemical weathering in the Three Rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Tao, Z.; Zhao, Z.; Zhang, D.; Li, X.; Liu, C. Chemical weathering in the Three Rivers (Jingshajiang, Lancangjiang, and Nujiang) Watershed, Southwest China. Chin. J. Ecol. 2015, 34, 2297–2308. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, H.; Wang, F.; Chen, X.; Ciren, Q. Multivariate statistical analysis of the hydrochemical analysis of the Naqu River in the source region of the Nujiang River. J. North. China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2020, 41, 63–71. [Google Scholar]
- Thomas, J.; Joseph, S.; Thrivikramji, K.; Manjusree, T.; Arunkumar, K. Seasonal variation in major ion chemistry of a tropical mountain river, the southern Western Ghats, Kerala, India. Environ. Earth Sci. 2014, 71, 2333–2351. [Google Scholar] [CrossRef]
- Harriman, R.; Gillespie, E.; King, D.; Watt, A.; Christie, A.; Cowan, A.; Edwards, T. Short-term ionic responses as indicators of hydrochemical processes in the Allt a’Mharcaidh catchment, western Cairngorms, Scotland. J. Hydrol. 1990, 116, 267–285. [Google Scholar] [CrossRef]
- Hill, A.R. Nitrogen dynamics of storm runoff in the riparian zone of a forested watershed. Biogeochemistry 1993, 20, 19–44. [Google Scholar] [CrossRef]
- Hölting, B.; Coldewey, W.G. Hydrogeology; Springer: Berlin, Germany, 2019. [Google Scholar]
- Dingman, S.L. Physical Hydrology; Waveland Press: Long Grove, IL, USA, 2015. [Google Scholar]
- Raj, N.; Azeez, P.A. Spatial and temporal variation in surface water chemistry of a tropical river, the river Bharathapuzha, India. Curr. Sci. 2009, 46, 245–251. [Google Scholar]
- Wu, W.; Xu, S.; Yang, J.; Yin, H. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau. Chem. Geol. 2008, 249, 307–320. [Google Scholar] [CrossRef]
- Li, Z.; Song, L.; Gui, J.; Li, Z. Hydrochemical patterns indicating hydrological processes with the background of changing climatic and environmental conditions in China: A review. Environ. Sci. Pollut. Res. 2022, 29, 15364–15379. [Google Scholar]
- Li, S.; Gu, S.; Liu, W.; Han, H.; Zhang, Q. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena 2008, 75, 216–222. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Fuoco, I.; De Rosa, R.; Barca, D.; Figolib, A.; Gabrielec, B.; Apollaroa, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef]
- Liu, S.; Yan, D.; Qin, T.; Weng, B.; Lu, Y.; Dong, G.; Gong, B. Precipitation phase separation schemes in the Naqu River basin, eastern Tibetan plateau. Theor. Appl. Climatol. 2018, 131, 399–411. [Google Scholar] [CrossRef]
- Hu, J.; Ke, D.; Cui, Y. Dingqing County Piece H46C001004. 1:250 000 Regional Geological Survey Report; Geological Survey Institute of Tibet autonomous Region: Lasa, China, 2005; pp. 25–136. [Google Scholar]
- Gao, B.; Gao, L.; Gao, J.; Xu, D.; Wang, Q.; Sun, K. Simultaneous evaluations of occurrence and probabilistic human health risk associated with trace elements in typical drinking water sources from major river basins in China. Sci. Total Environ. 2019, 666, 139–146. [Google Scholar] [CrossRef]
- Piper, A. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Cong-Zhou, L.; Bing-Hua, L.; Er-Ping, B. Characteristics of hydrochemistry and nitrogen behavior under long-term managed aquifer recharge with reclaimed water: A case study in north China. Sci. Total Environ. 2019, 668, 1030–1037. [Google Scholar] [CrossRef]
- Qi, H.; Ma, C.; He, Z.; Hu, X.; Gao, L. Lithium and its isotopes as tracers of groundwater salinization: A study in the southern coastal plain of Laizhou Bay, China. Sci. Total Environ. 2018, 650, 878–890. [Google Scholar] [CrossRef] [PubMed]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total Environ. 2022, 806, 150345. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gao, X.; Wang, Y. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Sci. Total Environ. 2015, 508, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, Q.; Ma, H.; Li, S.; Martin, J. Isotopic and geochemical interpretation of groundwater under the influences of anthropogenic activities. J. Hydrol. 2019, 576, 685–697. [Google Scholar] [CrossRef]
- Mwiathi, N.F.; Gao, X.-B.; Li, C.-C.; Rashid, A. The occurrence of geogenic fluoride in shallow aquifers of Kenya Rift Valley and its implications in groundwater management. Ecotoxicol. Environ. Saf. 2022, 229, 113046. [Google Scholar] [CrossRef]
- Thomas, J.; Joseph, S.; Thrivikramji, K.P. Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India. Appl. Geochem. 2015, 63, 456–471. [Google Scholar] [CrossRef]
- Jun, X.; Zhang-Dong, J.; Fei, Z.; Jin, W. Major ion geochemistry of shallow groundwater in the Qinghai Lake catchment, NE Qinghai-Tibet Plateau. Environ. Earth Sci. 2012, 67, 1331–1344. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, Z.; Liu, Z.; Wang, R.; Wu, S. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J. Geochem. Explor. 2015, 155, 76–83. [Google Scholar] [CrossRef]
- Meybeck, M. Global Chemical Weathering of Surficial Rocks Estimated From River Dissolved Loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Quan-Zhou, G.; Zhen, T. Chemical weathering and chemical runoffs in the seashore granite hills in South China. Sci. China Earth Sci. 2010, 53, 1195–1204. [Google Scholar] [CrossRef]
- Jun, X.; Zhang-Dong, J.; Fei, Z. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. J. Geochem. Explor. 2015, 159, 252–261. [Google Scholar] [CrossRef]
- Peng, C.; Liu, Y.; Chen, H.; Yuan, Q.; Chen, Q.; Mei, S.; Wu, Z. Analysis of hydrogeochemical characteristics of tunnel groundwater based on multivariate satistical technology. Geofluids 2021, 2021, 4867942. [Google Scholar] [CrossRef]
- Li, C.-C.; Gao, X.-B.; Liu, Y.-S.; Wang, Y. Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2 H, δ13C and δ7 Li isotopes. J. Hydrol. 2019, 579, 124211. [Google Scholar] [CrossRef]
- Fan, B.; Zhao, Z.; Tao, F.; Liu, B.; Tao, Z.; Gao, S.; Zhang, L. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Li, C.; Gao, X.; Wang, W.; Zhang, X.; Zhang, X.; Jiang, C.; Wang, Y. Hydro-biogeochemical processes of surface water leakage into groundwater in large scale karst water system: A case study at Jinci, northern China. J. Hydrol. 2021, 596, 125691. [Google Scholar] [CrossRef]
- Sami, K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. J. Hydrol. 1992, 139, 27–48. [Google Scholar] [CrossRef]
- Maurya, P.; Kumari, R.; Mukherjee, S. Hydrochemistry in integration with stable isotopes (δ18O and δD) to assess seawater intrusion in coastal aquifers of Kachchh district, Gujarat, India. J. Geochem. Explor. 2019, 196, 42–56. [Google Scholar] [CrossRef]
- Ayadi, Y.; Mokadem, N.; Besser, H.; Khelifi, F.; Harabi, S.; Hamad, A.; Boyce, A.; Laouar, R.; Hamed, Y. Hydrochemistry and stable isotopes (δ18O and δ2H) tools applied to the study of karst aquifers in southern mediterranean basin (Teboursouk area, NW Tunisia). J. Afr. Earth Sci. 2018, 137, 208–217. [Google Scholar] [CrossRef] [Green Version]
Parameter | Analysis Method | Detection Limit | RSD [%] | RD [%] |
---|---|---|---|---|
K+ | ICP-OES | 0.05 | 6.39 | 0~0.63 |
Mg2+ | ICP-OES | 0.003 | 4.48 | 0~1.18 |
Ca2+ | ICP-OES | 0.02 | 3.35 | 0~0.25 |
Na+ | ICP-OES | 0.12 | 2.69 | 0.46~3.33 |
Cl− | IC | 0.007 | 2.16 | 0~0.94 |
SO42− | IC | 0.018 | 2.15 | 0~0.79 |
NO3− | IC | 0.016 | 1.81 | 0~2.81 |
F− | IC | 0.006 | 1.46 | 0~3.61 |
CO32− | VOL | 5 | 3.38 | 0 |
HCO3− | VOL | 5 | 2.80 | 0 |
River Basin | Parameters | TDS | NO3− | SO42− | CO32− | HCO3− | Cl− | F− | Na+ | K+ | Ca2+ | Mg2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Daqu River | Mean | 238.5 | 0.94 | 52.1 | 9.57 | 185 | 0.96 | 0.071 | 1.78 | 0.85 | 42.2 | 30.6 |
Median | 244.1 | 0.90 | 54.0 | 8.70 | 184 | 0.97 | 0.069 | 2.22 | 0.91 | 45.8 | 29.1 | |
S.D. a | 42.4 | 0.24 | 27.7 | 2.15 | 18.8 | 0.36 | 0.029 | 1.09 | 0.19 | 12.6 | 4.64 | |
C.V. b (%) | 17.78 | 25.53 | 53.17 | 22.47 | 10.16 | 37.50 | 40.85 | 61.24 | 22.35 | 29.86 | 15.16 | |
Min | 127.8 | 0.57 | 3.28 | 5.80 | 139 | 0.35 | 0.004 | 0.06 * | 0.25 | 1.12 | 24.8 | |
Max | 321.3 | 1.35 | 111 | 11.7 | 213 | 1.70 | 0.107 | 3.15 | 1.03 | 52.4 | 41.7 | |
Gaqu River | Mean | 196.4 | 0.56 | 73.6 | 0.79 | 113 | 0.56 | 0.055 | 1.49 | 1.37 | 37.9 | 19.3 |
Median | 222.1 | 0.56 | 76.7 | 0.00 | 122 | 0.54 | 0.055 | 1.32 | 1.38 | 39.8 | 21.0 | |
S.D. a | 35.0 | 0.18 | 13.7 | 2.62 | 23.1 | 0.16 | 0.018 | 0.88 | 0.11 | 7.5 | 3.84 | |
C.V. b (%) | 17.82 | 32.14 | 18.61 | 331.65 | 20.44 | 28.57 | 32.73 | 59.06 | 8.03 | 19.79 | 19.90 | |
Min | 143.5 | 0.34 | 58.0 | 0.00 | 74.1 | 0.28 | 0.026 | 0.57 | 1.22 | 26.5 | 13.7 | |
Max | 228.2 | 0.77 | 89.7 | 8.70 | 148 | 0.86 | 0.086 | 3.40 | 1.56 | 46.0 | 25.0 |
Ca2+ | Mg2+ | Na+ | K+ | HCO3− | SO42− | NO3− | Cl− | TDS | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Daqu River | Ca2+ | 1 | 0.550 * | 0.564 * | 0.66 ** | 0.711 ** | 0.78 ** | 0.673 ** | 0.345 | 0.891 ** | Gaqu River |
Mg2+ | −0.20 | 1 | 0.514 * | 0.87 ** | 0.774 ** | 0.477 * | 0.44 | 0.55 * | 0.661 ** | ||
Na+ | 0.376 | −0.011 | 1 | 0.66 ** | 0.598 * | 0.418 | 0.382 | 0.564 * | 0.673 ** | ||
K+ | 0.61 ** | −0.367 | 0.278 | 1 | 0.849 ** | 0.514 * | 0.33 | 0.587 * | 0.771 ** | ||
HCO3− | 0.249 | −0.193 | 0.057 | 0.307 | 1 | 0.524 * | 0.486 * | 0.561 * | 0.748 ** | ||
SO42− | 0.385 | 0.331 | 0.376 | 0.199 | −0.271 | 1 | 0.745 ** | 0.2 | 0.745 ** | ||
NO3− | 0.385 | −0.066 | 0.464 * | 0.398 * | −0.113 | 0.429 * | 1 | 0.236 | 0.564 * | ||
Cl− | 0.155 | −0.122 | 0.522 ** | 0.167 | −0.125 | 0.022 | 0.442 * | 1 | 0.455 | ||
TDS | 0.385 | 0.376 | 0.464 * | 0.243 | −0.136 | 0.868 ** | 0.429 * | 0.066 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yang, L.; Li, J.; Liang, Q. Hydrochemical Characteristics and Controlling Factors of Surface Water in Upper Nujiang River, Qinghai-Tibet Plateau. Minerals 2022, 12, 490. https://doi.org/10.3390/min12040490
Wang M, Yang L, Li J, Liang Q. Hydrochemical Characteristics and Controlling Factors of Surface Water in Upper Nujiang River, Qinghai-Tibet Plateau. Minerals. 2022; 12(4):490. https://doi.org/10.3390/min12040490
Chicago/Turabian StyleWang, Mingguo, Li Yang, Jingjie Li, and Qian Liang. 2022. "Hydrochemical Characteristics and Controlling Factors of Surface Water in Upper Nujiang River, Qinghai-Tibet Plateau" Minerals 12, no. 4: 490. https://doi.org/10.3390/min12040490
APA StyleWang, M., Yang, L., Li, J., & Liang, Q. (2022). Hydrochemical Characteristics and Controlling Factors of Surface Water in Upper Nujiang River, Qinghai-Tibet Plateau. Minerals, 12(4), 490. https://doi.org/10.3390/min12040490