Numerical Simulation of Crack Initiation and Propagation Evolution Law of Hydraulic Fracturing Holes in Coal Seams Considering Permeability Anisotropy and Damage
Abstract
:1. Introduction
2. Establishment of Seepage–Stress–Damage Coupling Model with Permeability Anisotropy
2.1. Basic Assumption
2.2. Governing Equation of Seepage Field
2.3. Equation of Solid Stress Field
2.4. Governing Equation of Damage Field
2.5. Definition of Permeability
3. Evolution Law of Crack Propagation under Different Geological Conditions
3.1. Model Validation
3.2. Crack Propagation Law under Different in-situ Stress Condzitions
3.3. Crack Propagation Law under Permeability Anisotropy
3.4. Crack Propagation Law of Fracturing Holes Considering the Coupling Effect of ξ and λ
3.5. Influence of Crack Forms on the Gas Drainage Effect
4. Discussion
4.1. Influence of Initial Pore Pressure on Initiation Pressure
4.2. Crack Propagation Complexity
5. Conclusions
- (1)
- Regardless of whether the permeability is isotropic or anisotropic, the in situ stress still plays a leading role in the direction of crack propagation. Under the permeability isotropic condition, the crack initiation and fracture pressures corresponding to the non-uniform pressure are significantly lower than the above two thresholds corresponding to the uniform pressure. When the direction of maximum permeability is consistent with the direction of maximum principal stress (ξ = 0.5, λ < 0), the initiation and fracture pressures of fracturing holes obviously decrease with the decreasing λ, and the decreasing rate increases significantly with the decrease in λ. When the direction of maximum permeability is inconsistent with the direction of maximum principal stress (ξ = 0.5, λ > 0), the initiation and fracture pressures of fracturing holes slightly increase with the increasing λ, but the increasing rate obviously decreases with the increase in λ.
- (2)
- For any λ or ξ, the crack propagation process and AE behavior of fracturing holes can be divided into three stages: the initiation stage, the fracture smooth expansion stage and the breakdown stage. In the initiation stage, the cumulative crack length and AE counts are both at a low level. However, when the fracturing process enters the fracture smooth expansion stage, the above two parameters begin to increase at a low rate. Once the fracturing process starts to enter the breakdown stage, the above two parameters increase significantly with a high growth rate, indicating that the parameters (λ or ξ) have little influence on the changing characteristics of crack length and AE count with the calculation step.
- (3)
- The distribution characteristic of GPRZ is consistent with the crack propagation pattern. The more complex the crack distribution, the more the area of GPRZ increases. Both the CGEV and CGEV growth rate curves simultaneously show the characteristic of complex crack > simple crack> no crack. This means that the more complex the crack, the more favorable it is to gas drainage.
- (4)
- Compared with no particle plugging measures, the number of dominant seepage paths significantly increases, and the path distribution becomes more complex, with the implementation of particle sealing measures, which is beneficial to improve the effect of gas extraction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dehghan, A.N.; Goshtasbi, K.; Ahangari, K.; Jin, Y. The effect of natural fracture dip and strike on hydraulic fracture propagation. Int. J. Rock Mech. Min. Sci. 2015, 75, 210–215. [Google Scholar] [CrossRef]
- Fan, Z.; Fan, G.; Zhang, D.; Zhang, L.; Zhang, S.; Liang, S.; Yu, W. Optimal Injection Timing and Gas Mixture Proportion for Enhancing Coalbed Methane Recovery. Energy 2021, 222, 119880. [Google Scholar] [CrossRef]
- Huo, B.; Jing, X.; He, A.; Fan, C. Hydraulic-mechanical coupling model with dual-porosity dual-permeability for anisotropy coal seams and its application in mine gas extraction. Adv. Civ. Eng. 2019, 2019, 4534835. [Google Scholar] [CrossRef] [Green Version]
- He, A.; Fu, H.; Huo, B.; Fan, C. Permeability enhancement of coal seam by lower protective layer mining for gas outburst prevention. Shock Vib. 2020, 5, 1–12. [Google Scholar] [CrossRef]
- Li, S.; Wu, D.; Wang, X.; Hao, Y. Enhanced gas production from marine hydrate reservoirs by hydraulic fracturing assisted with sealing burdens. Energy 2021, 232, 120889. [Google Scholar] [CrossRef]
- Small, M.J.; Stern, P.C.; Bomberg, E.; Christopherson, S.M.; Goldstein, B.D.; Israel, A.L.; Jackson, R.B.; Krupnick, A.; Mauter, M.S.; Nash, J.; et al. Risks and risk governance in unconventional shale gas development. Environ. Sci. Technol. 2014, 48, 8289–8297. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.E.; Gorody, A.W.; Mayer, B.; Roy, J.W.; Ryan, M.C.; Van Stempvoort, D.R. Groundwater protection and unconventional gas extraction: The critical need for field-based hydrogeological research. Ground Water 2013, 51, 488–510. [Google Scholar] [CrossRef]
- Baghbanan, A.; Jing, L. Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int. J. Rock Mech. Min. Sci. 2007, 44, 704–719. [Google Scholar] [CrossRef]
- Wang, J.; Elsworth, D.; Denison, M.K. Hydraulic fracturing with leakoff in a pressure-sensitive dual porosity medium. Int. J. Rock Mech. Min. Sci. 2018, 107, 55–68. [Google Scholar] [CrossRef]
- Watanabe, N.; Egawa, M.; Sakaguchi, K.; Ishibashi, T.; Tsuchiya, N. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophys. Res. Lett. 2017, 44, 5468–5475. [Google Scholar] [CrossRef]
- Kutter, H.K. Stress analysis of a pressurized circular hole with radial cracks in a infinite elastic plate. Int. J. Fract. 1970, 6, 233–247. [Google Scholar] [CrossRef]
- Zhang, X.X.; Wang, J.G.; Gao, F.; Ju, Y. Impact of water and nitrogen fracturing fluids on fracturing initiation pressure and flow pattern in anisotropic shale reservoirs. Comput. Geotech. 2017, 81, 59–76. [Google Scholar] [CrossRef]
- Solberg, P.; Lockner, D.; Byerlee, J.D. Hydraulic fracturing in granite under geothermal conditions. Int. J. Rock Mech. Min. Sci. 1980, 17, 25–33. [Google Scholar] [CrossRef]
- Estrada, J.M.; Bhamidimarri, R. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing. Fuel 2016, 182, 292–303. [Google Scholar] [CrossRef]
- Ito, T.; Hayashi, K. Physical background to the breakdown pressure in hydraulic fracturing tectonic stress measurements. Int. J. Rock Mech. Min. Sci. 1991, 28, 285–293. [Google Scholar] [CrossRef]
- Ito, T. Effect of pore pressure gradient on fracture initiation in fluid saturated porous media. Rock. Eng. Fract. Mech. 2008, 75, 1753–1762. [Google Scholar] [CrossRef]
- Zhu, W.C.; Wei, C.H.; Li, S.; Wei, J.; Zhang, M.S. Numerical modeling on destress blasting in coal seam for enhancing gas drainage. Int. J. Rock Mech. Min. Sci. 2013, 59, 179–190. [Google Scholar] [CrossRef]
- Xu, H.; Tang, D.Z.; Tang, S.H.; Zhao, J.L. A dynamic prediction model for gas–water effective permeability based on coalbed methane production data. Int. J. Coal Geol. 2014, 121, 44–52. [Google Scholar] [CrossRef]
- Zhou, S.W.; Zhuang, X.Y.; Rabczuk, T. Phase-field modeling of fluid-driven dynamic cracking in porous media. Comput. Methods Appl. Mech. Eng. 2019, 350, 169–198. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Wang, W.J. Wing crack propagation model under high hydraulic pressure in compressive-shear stress state. J. Coal Sci. Eng. 2011, 17, 34–38. [Google Scholar] [CrossRef]
- He, Q.; Zhu, L.; Li, Y.; Li, D.; Zhang, B. Simulating hydraulic fracture re-orientation in heterogeneous rocks with an improved discrete element method. Rock Mech. Rock Eng. 2021, 54, 2859–2879. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, D.; Fan, G.; Zhang, L.; Zhang, S.; Liang, S.; Yu, W.; Gao, S.; Guo, W. Non-Darcy thermal-hydraulic-mechanical damage model for enhancing coalbed methane extraction. J. Nat. Gas Sci. Eng. 2021, 93, 104048. [Google Scholar] [CrossRef]
- Al-Rubaie, A.; Mahmud, H. A numerical investigation on the performance of hydraulic fracturing in naturally fractured gas reservoirs based on stimulated rock volume. J. Pet. Explor. Prod. Technol. 2021, 11, 1531. [Google Scholar] [CrossRef]
- Shen, W.; Huamin, L.; Dongyin, L. Numerical Simulation of Hydraulic Fracture Propagation in Coal Seams with Discontinuous Natural Fracture Networks. Processes 2018, 6, 113. [Google Scholar]
- Fan, Z.; Fan, G.; Zhang, D. Representation of mining permeability and borehole layout optimization for efficient methane drainage. Energy Rep. 2021, 7, 3911–3921. [Google Scholar] [CrossRef]
- Zhang, R.; Cheng, Y.; Yuan, L.; Zhou, H.; Zhao, W. Enhancement of gas drainage efficiency in a special thick coal seam through hydraulic flushing. Int. J. Rock Mech. Min. Sci. 2019, 124, 104085. [Google Scholar] [CrossRef]
- Hao, C.; Cheng, Y.; Wang, L.; Liu, H.; Shang, Z. A novel technology for enhancing coalbed methane extraction: Hydraulic cavitating assisted fracturing. J. Nat. Gas Sci. Eng. 2019, 72, 103040. [Google Scholar] [CrossRef]
- Chen, S.K.; Wei, C.H.; Yang, T.H.; Zhu, W.C.; Liu, H.l. Three-Dimensional Numerical Investigation of Coupled Flow-Stress-Damage Failure Process in Heterogeneous Poroelastic Rocks. Energies 2018, 11, 1923. [Google Scholar] [CrossRef] [Green Version]
- Fan, C.; Li, S.; Luo, M.; Yang, Z.; Lan, T. Numerical simulation of hydraulic fracturing in coal seam for enhancing underground gas drainage. Energy Explor. Exploit. 2019, 37, 166–193. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, J.S.; Chen, Z.; Elsworth, D.; Pone, D. A dual poroelastic model for CO2-enhanced coalbed methane recovery. Int. J. Coal Geol. 2011, 86, 177–189. [Google Scholar] [CrossRef]
- Tang, S.; Yu, C.; Tang, C. Numerical modeling of the time-dependent development of the damage zone around a tunnel under high humidity conditions. Tunn. Undergr. Space Technol. 2018, 76, 48–63. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.S.; Elsworth, D.; Miao, X.X.; Mao, X.B. Development of anisotropic permeability during coalbed methane production. J. Nat. Gas Sci. Eng. 2010, 2, 197–210. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, D.; Fan, G. Permeability and Energy Evolution Characteristics of Heterogeneous Coal and Rock Mass. Nat. Resour. Res. 2021, 30, 4493–4514. [Google Scholar] [CrossRef]
- Hubbert, M.K.; Willis, D.G. Mechanics of Hydraulic Fracturing. Pet. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Haimson, B.; Fairhurst, C. Initiation and Extension of Hydraulic Fractures in Rocks. SPE J. 1967, 7, 310–318. [Google Scholar] [CrossRef]
- Xu, B.; Liu, Y.; Wang, Y.; Yang, G.; Yu, Q.; Wang, F. A new method and application of full 3d numerical simulation for hydraulic fracturing horizontal fracture. Energies 2019, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.X.; Zhao, X.L.; Xue, W.C.; Sun, T.Y. Experimental investigation on the impact of initial pore pressure on breakdown pressure of borehole radial fracture for unsaturated mortar hydraulic fracturing under true triaxial stress. J. Porous Media 2018, 21, 1041–1057. [Google Scholar] [CrossRef]
- Zhao, X.L.; Huang, B.X.; Wang, Z. Experimental Investigation on the Basic Law of Directional Hydraulic Fracturing Controlled by the Dense Linear Multi-Drilling Holes. Rock Mech. Rock Eng. 2018, 51, 1739–1754. [Google Scholar] [CrossRef]
Parameters | Value | Parameters | Value | Parameters | Value |
---|---|---|---|---|---|
E | 10 GPa | k0 | 1 × 10−17 m2 | ak | 6 |
v | 0.3 | p0 | 0 MPa | b | 0.76 MPa |
ft0 | 1.4 MPa | μw | 10−3 Pa s | μg | 1.84 × 10−5 Pa·s |
m | 10 | α | 0.9 | pcgw | 0.05 MPa |
λ | σci (MPa) | σcd (MPa) | σci/σcd (%) |
---|---|---|---|
0.1 | 13.25 | 14.0 | 94.64 |
0.5 | 14.6 | 15.00 | 97.33 |
1.0 | 15.15 | 17.05 | 88.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Fan, G.; Zhang, D.; Fan, Z.; Wang, X.; Zhang, W.; Yao, N. Numerical Simulation of Crack Initiation and Propagation Evolution Law of Hydraulic Fracturing Holes in Coal Seams Considering Permeability Anisotropy and Damage. Minerals 2022, 12, 494. https://doi.org/10.3390/min12040494
Chen L, Fan G, Zhang D, Fan Z, Wang X, Zhang W, Yao N. Numerical Simulation of Crack Initiation and Propagation Evolution Law of Hydraulic Fracturing Holes in Coal Seams Considering Permeability Anisotropy and Damage. Minerals. 2022; 12(4):494. https://doi.org/10.3390/min12040494
Chicago/Turabian StyleChen, Liang, Gangwei Fan, Dongsheng Zhang, Zhanglei Fan, Xufeng Wang, Wei Zhang, and Nan Yao. 2022. "Numerical Simulation of Crack Initiation and Propagation Evolution Law of Hydraulic Fracturing Holes in Coal Seams Considering Permeability Anisotropy and Damage" Minerals 12, no. 4: 494. https://doi.org/10.3390/min12040494
APA StyleChen, L., Fan, G., Zhang, D., Fan, Z., Wang, X., Zhang, W., & Yao, N. (2022). Numerical Simulation of Crack Initiation and Propagation Evolution Law of Hydraulic Fracturing Holes in Coal Seams Considering Permeability Anisotropy and Damage. Minerals, 12(4), 494. https://doi.org/10.3390/min12040494