Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. BC Characterization
2.3. Adsorption
2.4. Sorption Isotherms
3. Results and Discussion
3.1. Characterization of Eucalyptus Wood Biochar
3.2. Adsorption Test
3.2.1. Effect of Adsorbent Dosage
3.2.2. Adsorption Isotherm
3.2.3. Adsorption Kinetics
3.2.4. Adsorption Rate-Controlling Mechanism
3.2.5. Adsorption Mechanism
3.2.6. Comparative Sorption Capacities of Pesticides on Various Sorbents
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mojiri, A.; Zhou, J.L.; Robinson, B.; Ohashi, A.; Ozaki, N.; Kindaichi, T.; Farraji, H.; Vakili, M. Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 2020, 253, 126646. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Pandey, R.; Sharma, B. Water Pollution with Special Reference to Pesticide Contamination in India. J. Water Resource Prot. 2010, 2, 432–448. [Google Scholar] [CrossRef] [Green Version]
- Meijide, J.; Rodríguez, S.; Sanromán, M.A.; Pazos, M. Comprehensive solution for acetamiprid degradation: Combined electro-Fenton and adsorption process. J. Electroanal. Chem. 2018, 808, 446–454. [Google Scholar] [CrossRef]
- Meng, S.L.; Chen, J.Z.; Hu, G.H.; Song, C.; Fan, L.M.; Qiu, L.P.; Xu, P. Effects of chronic exposure of methomyl on the antioxidant system in liver of Nile tilapia (Oreochromis niloticus). Ecotoxicol. Environ. Saf. 2014, 101, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.A.; Salice, C.J.; Erickson, R.A.; McMurry, S.T.; Cox, S.B.; Smith, L.M. Effects of landuse and precipitation on pesticides and water quality in playa lakes of the southern high plains. Chemosphere 2013, 92, 84–90. [Google Scholar] [CrossRef]
- Van Dijk, T.C.; Van Staalduinen, M.A.; Van der Sluijs, J.P. Macro-Invertebrate Decline in surface water polluted with imidacloprid. PLoS ONE 2013, 8, e62374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Jin, W.; Wang, X.; Zhang, Y.; Zhu, S.; Yu, X.; Hu, G.; Hong, Q. Degradation of methomyl by the combination of Aminobacter sp. MDW-2 and Afipia sp. MDW-3. Lett. Appl. Microbiol. 2017, 64, 289–296. [Google Scholar] [CrossRef]
- Zoumenou, B.G.Y.M.; Aïna, M.P.; Imorou Toko, I.; Igout, A.; Douny, C.; Brose, F.; Schiffers, B.; Gouda, I.; Chabi Sika, K.; Kestemont, P.; et al. Occurrence of Acetamiprid Residues in Water Reservoirs in the Cotton Basin of Northern Benin. Bull. Environ. Contam. Toxicol. 2019, 102, 7–12. [Google Scholar] [CrossRef]
- Starner, K.; Goh, K.S. Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bull. Environ. Contam. Toxicol. 2012, 88, 316–321. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Farré, M.; Fernandez, J.; Paez, M.; Granada, L.; Barba, L.; Gutierrez, H.; Pulgarin, C.; Barceló, D. Analysis and toxicity of methomyl and ametryn after biodegradation. Anal. Bioanal. Chem. 2002, 373, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Cid Andres, P.A.; Del Mundo, F.R.; Espino, M.P.B. A modified analytical procedure for the determination of carbaryl, carbofuran and methomyl residues in agricultural soil and river water samples from La Trinidad, Benguet and Aurora, Isabela, Philippines. Philipp. Agric. Sci. 2006, 89, 71–84. [Google Scholar]
- Fan, C.; Horng, C.-Y.; Li, S.-J. Structural characterization of natural organic matter and its impact on methomyl removal efficiency in Fenton process. Chemosphere 2013, 93, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, D.; Kania, J.; Kmiecik, E.; Malina, G.; Wątor, K. Fate of selected neonicotinoid insecticides in soil–water systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef] [PubMed]
- Shamsollahi, Z.; Partovinia, A. Recent advances on pollutants removal by rice husk as a bio-based adsorbent: A critical review. J. Environ. Manag. 2019, 246, 314–323. [Google Scholar] [CrossRef]
- Bakouri, H.E.; Morillo, J.; Usero, J.; Ouassini, A. Natural attenuation of pesticide water contamination by using ecological adsorbents: Application for chlorinated pesticides included in European Water Framework Directive. J. Hydrol. 2009, 364, 175–181. [Google Scholar] [CrossRef]
- Carrizosa, M.J.; Calderón, M.J.; Hermosín, M.C.; Cornejo, J. Organosmectites as sorbent and carrier of the herbicide bentazone. Sci. Total Environ. 2000, 247, 285–293. [Google Scholar] [CrossRef]
- Sudhakar, Y.; Dikshit, A.K. Adsorbent selection for endosulfan removal from water environment. J. Environ. Sci. Sci. Health B 1999, 34, 97–118. [Google Scholar] [CrossRef]
- Taha, S.M.; Amer, M.E.; Elmarsafy, A.E.; Elkady, M.Y. Adsorption of 15 different pesticides on untreated and phosphoric acid treated biochar and charcoal from water. J. Environ. Chem. Eng. 2014, 2, 2013–2025. [Google Scholar] [CrossRef]
- Ranguin, R.; Jean-Marius, C.; Yacou, C.; Gaspard, S.; Feidt, C.; Rychen, G.; Delannoy, M. Reduction of chlordecone environmental availability by soil amendment of biochars and activated carbons from lignocellulosic biomass. Environ. Sci. Pollut. Res. 2020, 27, 41093–41104. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Singh, N.; Purakayastha, T.J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as lowcost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-Y.; Kim, J.E.; Song, H.J.; Oh, K.B.; Jo, J.W.; Yang, Y.-H.; Lee, S.H.; Kang, G.; Kim, H.J.; Choi, Y.-K. Assessment of adsorptive behaviors and properties of grape pomace-derived biochar as adsorbent for removal of cymoxanil pesticide. Environ. Technol. Innov. 2021, 21, 101242. [Google Scholar] [CrossRef]
- Binh, Q.A.; Kajitvichyanukul, P. Adsorption mechanism of dichlorvos onto coconut fibre biochar: The significant dependence of H-bonding and the pore-filling mechanism. Water Sci. Technol. 2019, 79, 866–876. [Google Scholar] [CrossRef]
- Baharum, N.A.; Nasir, H.M.; Ishak, M.Y.; Isa, N.M.; Hassan, M.A.; Aris, A.Z. Highly efficient removal of diazinon pesticide from aqueous solutions by using coconut shell-modified biochar. Arab. J. Chem. 2020, 13, 6106–6121. [Google Scholar] [CrossRef]
- Liu, N.; Charrua, A.B.; Weng, C.-H.; Yuan, X.; Ding, F. Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresour. Technol. 2015, 198, 55–62. [Google Scholar] [CrossRef]
- Onsree, T.; Tippayawong, N.; Zheng, A.; Li, H. Pyrolysis behavior and kinetics of corn residue pellets and eucalyptus wood chips in a macro thermogravimetric analyzer. Case Stud. Therm. Eng. 2018, 12, 546–556. [Google Scholar] [CrossRef]
- Mishra, V.; Sureshkumar, M.K.; Gupta, N.; Kaushik, C.P. Study on Sorption Characteristics of Uranium onto Biochar Derived from Eucalyptus Wood. Water Air Soil Pollut. 2017, 228, 309. [Google Scholar] [CrossRef]
- Zeng, H.; Zeng, H.; Zhang, H.; Shahab, A.; Zhang, K.; Lu, Y.; Nabi, I.; Naseem, F.; Ullah, H. Efficient adsorption of Cr (VI) from aqueous environments by phosphoric acid activated eucalyptus biochar. J. Clean. Prod. 2021, 286, 124964. [Google Scholar] [CrossRef]
- Fuentes, A.L.B.; Barraqué, F.; Mercader, R.C.; Scian, A.N.; Montes, M.L. Efficient low-cost magnetic composite based on eucalyptus wood biochar for arsenic removal from groundwater. Groundw. Sustain. Dev. 2021, 14, 100585. [Google Scholar] [CrossRef]
- Dai, W.; Xu, M.; Zhao, Z.; Zheng, J.; Huang, F.; Wang, H.; Liu, C.; Xiao, R. Characteristics and quantification of mechanisms of Cd2+ adsorption by biochars derived from three different plant-based biomass. Arab. J. Chem. 2021, 14, 103119. [Google Scholar]
- Shafiq, M.; Alazba, A.A.; Amin, M.T. Kinetic and isotherm studies of Ni2+ and Pb2+ adsorption from synthetic wastewater using Eucalyptus camdulensis—Derived biochar. Sustainability 2021, 13, 3785. [Google Scholar] [CrossRef]
- Fernandes, M.J.; Moreira, M.M.; Paíga, P.; Dias, D.; Bernardo, M.; Carvalho, M.; Lapa, N.; Fonseca, I.; Morais, S.; Figueiredo, S.; et al. Evaluation of the adsorption potential of biochars prepared from forest and agri-food wastes for the removal of fluoxetine. Bioresour. Technol. 2019, 292, 121973. [Google Scholar] [PubMed]
- Singh, B.K.; Rawat, N.S. Comparative sorption kinetic studies of phenolic compounds on fly ash and impregnated fly ash. J. Chem. Technol. Biotechnol. 1994, 61, 57–65. [Google Scholar] [CrossRef]
- Amin, N.K. Removal of direct blue-106 dye from aqueous solution using new activated carbons developed from pomegranate peel: Adsorption equilibrium and kinetics. J. Harzard. Mater. 2009, 165, 52–62. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Dhedan, S.K. Equilibrium isotherms and kinetics modeling of methylene blue adsorption on agricultural wastes-based activated carbons. Fluid Ph. Equilibria 2012, 317, 9–14. [Google Scholar]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U.; Mohan, D.; Mlsa, T. Adsorption of metribuzin from aqueous solution using magnetic and nonmagnetic sustainable low-cost biochar adsorbents. Environ. Sci. Pollut. Res. 2017, 24, 4577–4590. [Google Scholar] [CrossRef]
- Cárdenas, L.J.; Giraldo, L.; Moreno-Piraján, J.C. Physicochemical characterization of santa barbara amorphous-15 (SBA-15) and its functionalization with polyaniline for phenol adsorption. Processes 2022, 10, 188. [Google Scholar] [CrossRef]
- Chaves Fernandes, B.C.; Ferreira Mendes, K.; Dias Júnior, A.F.; da Silva Caldeira, V.P.; da Silva Teófilo, T.M.; Severo Silva, T.; Mendonça, V.; de Freitas Souza, M.; Valadão Silva, D. Impact of Pyrolysis Temperature on the Properties of Eucalyptus Wood-Derived Biochar. Materials 2020, 13, 5841. [Google Scholar]
- Fernandes, B.C.C.; Mendes, K.F.; Tornisielo, V.L.; Teófilo, T.M.S.; Takeshita, V.; das Chagas, P.S.F.; Lins, H.A.; Souza, M.F.; Silva, D.V. Effect of pyrolysis temperature on eucalyptus wood residues biochar on availability and transport of hexazinone in soil. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Essandoh, M.; Wolgemuth, D.; Pittman, C.U.; Mohan, D.; Mlsna, T. Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar. Chemosphere 2017, 174, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayakaduwa, S.S.; Vithanage, M.; Karunarathna, A.; Mohan, D.; Ok, Y.S. Interface interactions between insecticide carbofuran and tea waste biochars produced at different pyrolysis temperatures. Chem. Speciat. Bioavailab. 2016, 28, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Oh, S.-Y.; Son, J.-G.; Chiu, P.C. Biochar-mediated reductive transformation of nitro herbicides and explosives. Environ. Toxicol. Chem. 2013, 32, 501–508. [Google Scholar] [CrossRef]
- Zheng, W.; Guo, M.; Chow, T.; Bennett, D.N.; Rajagopalan, N. Sorption properties of greenwaste biochar for two triazine pesticides. J. Hazard. Mater. 2010, 181, 121–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maziarka, P.; Wurzer, C.; Arauzo, P.J.; Dieguez-Alonso, A.; Mašek, O.; Ronsse, F. Do you BET on routine? The reliability of N2 physisorption for the quantitative assessment of biochar’s surface area. Chem. Eng. J. 2021, 418, 129234. [Google Scholar] [CrossRef]
- Sing, K.S.W.; Rouquerol, F.; Rouquerol, J.; Llewellyn, P.; Rouquerol, F.; Rouquerol, J.; Sing, K.S.W.; Llewellyn, P.; Maurin, G. (Eds.) Adsorption by Powders and Porous Solids, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 269–302. [Google Scholar]
- Suo, F.; You, X.; Ma, Y.; Li, Y. Rapid removal of triazine pesticides by P doped biochar and the adsorption mechanism. Chemosphere 2019, 235, 918–925. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chen, H.R. Adsorption kinetics of herbicide paraquat in aqueous solution onto a low-cost adsorbent, swine-manure-derived biochar. Int. J. Environ. Sci. Technol. 2013, 10, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- ICDD. ICDD Powder Diffraction File Inorganic and Organic Data Book International Centre for Diffraction Data; ICDD: Newtown Square, PA, USA, 2010. [Google Scholar]
- Singh, B.; Raven, M.D.X.; Singh, B.; Camps-Arbestain, M.; Lehmann, J. (Eds.) Biochar A Guide to Analytical Methods; CSIRO Publishing: Collingwood, VIC, Australia, 2017; pp. 245–252. [Google Scholar]
- Limwikran, T.; Kheoruenromne, I.; Suddhiprakarn, A.; Prakongkep, N.; Gilkes, R.J. Dissolution of K, Ca, and P from biochar grains in tropical soils. Geoderma 2018, 312, 139–150. [Google Scholar] [CrossRef]
- Yuan, J.-H.; Xu, R.-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; Ellis, N.; Gyenge, E. Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl2 solutions. Microporous Mesoporous Mater. 2016, 224, 3488–3497. [Google Scholar] [CrossRef]
- Ocampo-Perez, R.; Padilla-Ortega, E.; Medellin-Castillo, N.A.; Coronado-Oyarvide, P.; Aguilar-Madera, C.G.; Segovia-Sandoval, S.J.; Flores-Ramírez, R.; Parra-Marfil, A. Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci. Total Environ. 2019, 655, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef] [Green Version]
- Pelle, F.D.; Battista, R.D.; Vázquez, L.; Palomares, F.J.; Del Carlo, M.; Sergi, M.; Compagnone, D.; Escarpa, A. Press-transferred carbon black nanoparticles for class-selective antioxidant electrochemical detection. Appl. Mater. Today 2017, 9, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 2008, 42, 5137–5143. [Google Scholar] [CrossRef]
- Sobik-Szołtysek, J.; Wystalska, K.; Malińska, K.; Meers, E. Influence of Pyrolysis Temperature on the Heavy Metal Sorption Capacity of Biochar from Poultry Manure. Materials 2021, 14, 6566. [Google Scholar] [CrossRef]
- Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy 2012, 47, 268–276. [Google Scholar] [CrossRef]
- Leng, L.; Yuan, X.; Zeng, G.; Shao, J.; Chen, X.; Wu, Z.; Wang, H.; Peng, X. Surface characterization of rice husk bio-char produced by liquefaction and application for cationic dye (Malachite green) adsorption. Fuel 2015, 155, 77–85. [Google Scholar] [CrossRef]
- Jacob, M.M.; Ponnuchamy, M.; Kapoor, A.; Sivaraman, P. Bagasse based biochar for the adsorptive removal of chlorpyrifos from contaminated water. J. Environ. Chem. Eng. 2020, 8, 103904. [Google Scholar] [CrossRef]
- Bootharaju, M.S.; Pradeep, T. Understanding the degradation pathway of the pesticide, chlorpyrifos by noble metal nanoparticles. Langmuir 2012, 28, 2671–2679. [Google Scholar] [CrossRef]
- Chen, C.; Geng, X.; Huang, W. Adsorption of 4-chlorophenol and aniline by nanosized activated carbons. Chem. Eng. J. 2017, 327, 941–952. [Google Scholar] [CrossRef]
- Tran, H.N.; You, S.-J.; Hosseini-Bandegharaei, A.; Chao, H.-P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017, 120, 88–116. [Google Scholar] [CrossRef] [PubMed]
- Wahab, M.A.; Jellali, S.; Jedidi, N. Effect of temperature and pH on the biosorption of ammonium onto Posidonia oceanica fibers: Equilibrium, and kinetic modeling studies. Bioresour. Technol. 2010, 101, 8606–8615. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Wang, X.; Zhang, C.; Zeng, G.; Peng, Z.; Zhou, J.; Cheng, M.; Wang, R.; Hu, Z.; Qin, X. Sorptive removal of ionizable antibiotic sulfamethazine from aqueous solution by graphene oxide-coated biochar nanocomposites: Influencing factors and mechanism. Chemosphere 2017, 186, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Elamin, M.R.; Abdulkhair, B.Y.; Algethami, F.K.; Khezami, L. Linear and nonlinear investigations for the adsorption of paracetamol and metformin from water on acid-treated clay. Sci. Rep. 2021, 11, 13606. [Google Scholar] [CrossRef]
- Salman, J.M.; Njoku, V.O.; Hameed, B.H. Adsorption of pesticides from aqueous solution onto banana stalk activated carbon. Chem. Eng. J. 2021, 174, 41–48. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, S.; Zhong, W.; Wei, W. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid. J. Mol. Liq. 2018, 268, 658–666. [Google Scholar] [CrossRef]
- Srikhaow, A.; Butburee, T.; Pon-On, W.; Srikhirin, T.; Uraisin, K.; Suttiponpanit, K.; Chaveanghong, S.; Smith, S.M. Efficient mercury removal at ultralow metal concentrations by cysteine functionalized carbon-coated magnetite. Appl. Sci. 2020, 10, 8262. [Google Scholar] [CrossRef]
- Ali, I.; AL-Othman, Z.A.; Alwarthan, A. Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 2016, 221, 1168–1174. [Google Scholar] [CrossRef]
- Moussavi, G.; Hosseini, H.; Alahabadi, A. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH4Cl-induced activated carbon. Chem. Eng. J. 2013, 214, 172–179. [Google Scholar] [CrossRef]
- Wang, F.; Sun, W.; Pan, W.; Xu, N. Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe2O4 composites. Chem. Eng. J. 2015, 274, 17–29. [Google Scholar] [CrossRef]
- Gordon, M.S.; Mullin, J.M.; Pruitt, S.R.; Roskop, L.B.; Slipchenko, L.V.; Boatz, J.A. Accurate Methods for Large Molecular Systems. J. Phys. Chem. B 2009, 113, 9646–9663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inyang, M.; Dickerson, E. The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere 2015, 134, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Pandith, A.; Hazra, G.; Kim, H.-S. A new fluorogenic sensing platform for salicylic acid derivatives based on π-π and NH-π interactions between electron-deficient and electron-rich aromatics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2017, 178, 151–159. [Google Scholar] [CrossRef]
- Yavari, S.; Malakahmad, A.; Sapari, N.B. Biochar efficiency in pesticides sorption as a function of production variables—a review. Environ. Sci. Pollut. Res. 2015, 22, 13824–13841. [Google Scholar] [CrossRef]
- Caban, M.; Folentarska, A.; Lis, H.; Kobylis, P.; Kumirska, J.; Stepnowski, P.; Ciesielski, W. Valuable polar moieties on cereal-derived biochars. Colloids Surf. A Physicochem. Eng. Asp. 2019, 561, 275–282. [Google Scholar] [CrossRef]
- Choumane, F.Z.; Benguella, B. Removal of acetamiprid from aqueous solutions with low-cost sorbents. Desalination Water Treat. 2016, 57, 419–430. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, X.; Xu, J.; Zhang, Q. Removal of the pesticide imidacloprid from aqueous solution by biochar derived from peanut shell. Bioresources 2018, 13, 5656–5669. [Google Scholar]
- Ma, Y.; Qi, Y.; Yang, L.; Wu, L.; Li, P.; Gao, F.; Qi, X.; Zhang, Z. Adsorptive removal of imidacloprid by potassium hydroxide activated magnetic sugarcane bagasse biochar: Adsorption efficiency, mechanism and regeneration. J. Clean. Prod. 2021, 292, 126005. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, S.; Qi, Y.; Yang, L.; Wu, L.; He, L.; Li, P.; Qi, X.; Gao, F.; Ding, Y.; et al. An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal. Chemosphere 2021, 291, 132707. [Google Scholar] [CrossRef]
- Mohammad, S.G.; Ahmed, S.M.; Amr, A.E.-G.E.; Kamel, A.H. Porous activated carbon from lignocellulosic agricultural waste for the removal of acetampirid pesticide from aqueous solutions. Molecules 2020, 25, 2339. [Google Scholar] [CrossRef] [PubMed]
- Dolatabadi, M.; Naidu, H.; Ahmadzadeh, S. A green approach to remove acetamiprid insecticide using pistachio shell-based modified activated carbon; economical groundwater treatment. J. Clean. Prod. 2021, 316, 128226. [Google Scholar] [CrossRef]
- El-Geundi, M.S.; Nassar, M.M.; Farrag, T.E.; Ahmed, M.H. Methomyl Adsorption onto Cotton Stalks Activated Carbon (CSAC): Equilibrium and Process Design. Procedia Environ. Sci. Eng. Manag. 2013, 17, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Fathy, N.A.; Attia, A.A.; Hegazi, B. Nanostructured activated carbon xerogels for removal of methomyl pesticide. Desalination Water Treat. 2016, 57, 9957–9970. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Mohammad, S.G.; Ahmed, S.M.; Badawi, A.F.M. A comparative adsorption study with different agricultural waste adsorbents for removal of oxamyl pesticide. Desalin. Water Treat. 2015, 55, 2109–2120. [Google Scholar] [CrossRef]
Pesticides | Contamination Area | Concentration (µg L−1) | References |
---|---|---|---|
Acetamiprid | Wetlands | Up to 225 | [5] |
Acetamiprid | Water reservoirs | Up to 7.7 | [9] |
Imidacloprid | Surface water | 320 | [6] |
Imidacloprid | Surface water | Up to 3.29 | [10] |
Imidacloprid | Soil | Up to 60 | [11] |
Methomyl | Ground water | 10 | [12] |
Methomyl | Strawberry farm canal | 30 | [13] |
Pesticide | Acetamiprid | Imidacloprid | Methomyl |
---|---|---|---|
Molecular formula | C10H11ClN4 | C9H10ClN5O2 | C5H10N2O2S |
Structure formula | |||
Log Kow | 0.80 | 0.57 | 0.60 |
pKa | 0.70 | 1.56, 11.12 | 13.27 |
Water solubility (g L−1) | 4.2 | 0.610 | 57.9 |
HA a | 4 | 4 | 4 |
HD b | 0 | 1 | 1 |
Molecular weight (g mol−1) | 222.7 | 255.7 | 162.2 |
Elemental Compositions (% wt.) | SSA a (m2 g−1) | Vp b (cm3 g−1) | Dp c (nm) | |||
---|---|---|---|---|---|---|
C | H | N | S | |||
83.7 ± 0.02 | 1.73 ± 0.25 | 0.74 ± 0.01 | 0.04 ± 0.01 | 4.02 ± 0.01 | 0.0084 | 8.36 |
Models | Isotherm Parameters | Pesticides | |||
---|---|---|---|---|---|
Imidacloprid | Acetamiprid | Methomyl | |||
Two-parameter | Langmuir | qmax (mg g−1) | 14.75 | 4.78 | 32.42 |
KL (L mg−1) | 0.0252 | 0.0014 | 0.0094 | ||
R2 | 0.9750 | 0.9936 | 0.9751 | ||
Freundlich | KF (L mg−1) | 1.6274 | 0.2356 | 0.6432 | |
n | 2.5783 | 1.8843 | 1.4391 | ||
R2 | 0.97 | 0.9760 | 0.9468 | ||
Three-parameter | Sips | qm,s (mg g−1) | 21.07 | 4.87 | 19.78 |
Ks (L mg−1) | 0.0432 | 0.0149 | 0.0025 | ||
ns | 0.6733 | 0.9836 | 1.5851 | ||
R2 | 0.9900 | 0.9940 | 0.9920 | ||
Redlich and Peterson | KRP (L g−1) | 0.6988 | 0.0637 | 0.2250 | |
aRP (L mg−1)−β | 0.1677 | 0.0081 | 4.1 × 10−7 | ||
β | 0.7697 | 1.0934 | 2.9979 | ||
R2 | 0.9882 | 0.9942 | 0.9940 |
Pesticides | qe,exp | PFO Model | PSO Model | Elovich Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
qe,cal | k1 (h−1) | R2 | qe,cal | k2 (g (mg h)−1) | R2 | α (mg (g h)−1) | β (g mg−1) | R2 | ||
Imidacloprid | 10.01 | 9.74 | 5.6075 | 0.9495 | 10.95 | 0.73912 | 0.9791 | 3.66 × 102 | 0.5468 | 0.8964 |
Acetamiprid | 1.46 | 1.42 | 0.9167 | 0.9666 | 1.49 | 0.6251 | 0.9787 | 3.38 | 2.6609 | 0.9666 |
Methomyl | 5.96 | 5.83 | 1.1147 | 0.9800 | 6.06 | 0.2034 | 0.9915 | 21.59 | 0.7333 | 0.9645 |
Pesticides | LFD Model | IPD Model | |||
---|---|---|---|---|---|
Klfd (h−1) | R2 | kipd (mg g−1 h0.5) | C (mg g−1) | R2 | |
Imidacloprid | 3.447 | 0.9578 | 4.519 | 4.954 | 0.7365 |
Acetamiprid | 0.715 | 0.9797 | 0.4702 | 0.041 | 0.8993 |
Methomyl | 0.776 | 0.9941 | 1.710 | 2.253 | 0.8513 |
Adsorbent | Pesticide | Temp. (°C) | Conc. Range (ppm) | Adsorption Capacity (mg g−1) | Surface Area (m2 g−1) | Adsorption Capacity per Surface Area (mg g2) | Ref. |
---|---|---|---|---|---|---|---|
Eucalyptus wood | Imidacloprid | 25 | 10–200 | 14.75 | 4.02 | 3.669 | This work |
Peanut shell | Imidacloprid | 25 | 2.5–30 | 18.17 | 534.83 | 0.034 | [81] |
KOH-magnetic sugarcane bagasse | Imidacloprid | 25 | 10–200 | 313.00 | 660 | 0.4742 | [82] |
KOH-magnetic corncob | Imidacloprid | 25 | 10–200 | 410.00 | 192.30 | 2.1321 | [83] |
Eucalyptus wood | Acetamiprid | 25 | 10–200 | 4.78 | 4.02 | 1.1891 | This work |
KOH-tangerine peel | Acetamiprid | 25 | 0.01–1 | 37.51 | 697.80 | 0.038 | [84] |
FeCl3-pistachio shells | Acetamiprid | 22 ± 2 | - | 86.10 | 1158.70 | 0.0743 | [85] |
Eucalyptus wood | Methomyl | 25 | 10–200 | 32.42 | 4.02 | 8.065 | This work |
H3P4-cotton stalks | Methomyl | 25 | - | 72.85 | 1600.00 | 0.0455 | [86] |
Carbon xerogel | Methomyl | 25 | 20–100 | 15.2 | 212.20 | 0.0716 | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srikhaow, A.; Chaengsawang, W.; Kiatsiriroat, T.; Kajitvichyanukul, P.; Smith, S.M. Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals 2022, 12, 528. https://doi.org/10.3390/min12050528
Srikhaow A, Chaengsawang W, Kiatsiriroat T, Kajitvichyanukul P, Smith SM. Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals. 2022; 12(5):528. https://doi.org/10.3390/min12050528
Chicago/Turabian StyleSrikhaow, Assadawoot, Wasitthi Chaengsawang, Tanongkiat Kiatsiriroat, Puangrat Kajitvichyanukul, and Siwaporn M. Smith. 2022. "Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar" Minerals 12, no. 5: 528. https://doi.org/10.3390/min12050528
APA StyleSrikhaow, A., Chaengsawang, W., Kiatsiriroat, T., Kajitvichyanukul, P., & Smith, S. M. (2022). Adsorption Kinetics of Imidacloprid, Acetamiprid and Methomyl Pesticides in Aqueous Solution onto Eucalyptus Woodchip Derived Biochar. Minerals, 12(5), 528. https://doi.org/10.3390/min12050528