Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea
Abstract
:1. Introduction
2. Geological Background
3. Research Methods
3.1. Geochemical and Petrographical Analysis
3.2. Geometric Analysis
4. Results
4.1. Lithium Mineralization
4.1.1. Rare-Element Pegmatite (REP)
4.1.2. Minerals in Rare-Element Pegmatites (REPs)
4.2. Geometry of the Rare-Element Pegmatite (REP) Bodies
4.2.1. Western REP Bodies
4.2.2. Main REP Bodies
4.2.3. Submain REP bodies
4.2.4. Eastern REP Bodies
5. Discussion
5.1. Regional and Internal Zoning of Rare-Element Pegmatite (REP)
5.2. Distribution and Factors Controlling Rare-Element Pegmatites (REP)
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christmann, P.; Gloaguen, E.; Labbé, J.-F.; Melleton, J.; Piantone, P. Global lithium resources and sustainability issues. In Lithium Process Chemistry; Chagnes, A., Swiatowska, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–40. [Google Scholar]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries 2022: Lithium; U.S. Geological Survey: Reston, VA, USA, 2022.
- Kesler, S.E.; Gruber, P.W.; Medina, P.A.; Keoleian, G.A.; Everson, M.P.; Wallington, T.J. Global lithium resources: Relative importance of pegmatite, brine and other deposits. Ore Geol. Rev. 2012, 48, 55–69. [Google Scholar] [CrossRef]
- Lee, B.H.; Koh, S.M.; Lee, G.J.; Jin, G.M.; Yang, S.J. Preliminary Microscopic Mineralogical Study on Genetic Environment of Lithium Mica in Uljin Area; Research Report JP2014–005–2015; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2015; 68p. [Google Scholar]
- Lee, G.J.; Kim, S.Y.; Koh, S.M. Potential evaluation of the Uljin lithium deposit. Miner. Ind. 2013, 26, 32–36. [Google Scholar]
- Smith, L. Lithium Batteries—An Outlook and Summary. Available online: https://www.coreconsultantsgroup.com/lithium-batteries-outlook-summary/ (accessed on 27 February 2022).
- Wise, M.A.; Harmon, R.S.; Curry, A.; Jennings, M.; Grimac, Z.; Khashchevskaya, D. Handheld LIBS for Li exploration: An Example from the Carolina Tin-Spodumene Belt, USA. Minerals 2022, 12, 77. [Google Scholar] [CrossRef]
- Linnen, R.L.; Van Lichtervelde, M.; Černý, P. Granitic pegmatites as sources of strategic metals. Elements 2012, 8, 275–280. [Google Scholar] [CrossRef]
- Li, J.K.; Liu, X.F.; Wang, D.H. The metallogenetic regularity of lithium deposit in China. Acta Geol. Sin. 2014, 88, 2269–2283. [Google Scholar]
- Munk, L.A.; Boutt, D.F.; Hynek, S.A.; Moran, B.J. Hydrogeochemical fluxes and processes contributing to the formation of lithium-enriched brines in a hyper-arid continental basin. Chem. Geol. 2018, 493, 37–57. [Google Scholar] [CrossRef]
- Goodenough, K.M.; Shaw, R.A.; Smith, M.; Estrade, G.; Marqu, E.; Bernard, C.; Nex, P. Economic mineralization in pegmatites: Comparing and contrasting NYF and LCT examples. Can. Mineral. 2019, 57, 753–755. [Google Scholar] [CrossRef]
- Gao, Y.; Bagas, L.; Li, K.; Jin, M.; Liu, Y.; Teng, J. Newly discovered triassic lithium deposits in the Dahongliutan area, NorthWest China: A case study for the detection of lithium-bearing pegmatite deposits in rugged terrains using remote-sensing data and images. Front. Earth Sci. 2020, 8, 591966. [Google Scholar] [CrossRef]
- Gourcerol, B.; Gloaguen, E.; Melleton, J.; Tuduri, J.; Galiegue, X. Re-assessing the European lithium resource potential—A review of hard-rock resources and metallogeny. Ore Geol. Rev. 2019, 109, 494–519. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.G. Li-bearing Tosudite from the Sungsan Mine, Korea. J. Mineral. Soc. Korea 1991, 4, 1–11. [Google Scholar]
- Moon, S.H.; Park, H.I.; Ripley, E.M.; Lee, I. Mineralogic and stable isotope studies of Cassiterite Greisen mineralization in the Uljin Area, Korea. Econ. Geol. 1996, 91, 916–933. [Google Scholar] [CrossRef]
- Lee, H.G.; Moon, H.S.; Oh, M.S. Economic Mineral Deposits in Korea, 1st ed.; Acanet: Seoul, Korea, 2007; 762p. [Google Scholar]
- Kim, S.Y.; Seo, J.R.; Yang, J.I.; Kim, S.B. Geology and Ore Deposits of Rare Elements in Hadong and Uljin Area, Korea; Research Report KR–91–2D–1; Korea Institute of Geology, Mining & Materials: Daejeon, Korea, 1991; 156p. [Google Scholar]
- Choi, Y.H.; Park, Y.R.; Noh, J.H. Genesis of Boam lithium deposits in Wangpiri, Uljin. J. Geol. Soc. Korea 2014, 50, 489–500. [Google Scholar] [CrossRef]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare-element (Li–Cs–Ta) pegmatite exploration techniques for the Superior Province, Canada, and large worldwide tantalum deposits. Explor. Min. Geol. 2006, 14, 1–30. [Google Scholar] [CrossRef]
- Cheong, C.S.; Kil, Y.W.; Kim, J.; Jeong, Y.J.; Im, C.B. Geochemical characteristics of Precambrian basement rocks in the Jukbyeon area, northeastern Yeongnam massif, Korea. J. Geol. Soc. Korea 2004, 40, 481–499. [Google Scholar]
- Lee, D.S.; Kang, J.H. Geological structures of the Hadong Northern Anorthosite Complex and its surrounding area in the Jirisan Province, Yeongnam Massif, Korea. J. Pet. Soc. Korea 2012, 21, 287–307. [Google Scholar]
- Lee, D.W. Lithogeochemical Characteristics of Granitoids in Relation to Tin Mineralization in the Sangdong and Uljin Areas, Korea, and Their Application to Tin Exploration. Unpublished. Ph.D. Thesis, Seoul National University, Seoul, Korea, 1988; 153p. [Google Scholar]
- Kim, N.H.; Cheong, C.S.; Park, K.H.; Kim, J.; Song, Y.S. Crustal evolution of northeastern Yeongnam Massif, Korea, revealed by SHRIMP U–Pb zircon geochronology and geochemistry. Gondwana Res. 2012, 21, 865–875. [Google Scholar] [CrossRef]
- Cheong, A.C.S.; Jo, H.J. Tectonomagmatic evolution of a Jurassic Cordilleran flare-up along the Korean Peninsula: Geo-chronological and geochemical constraints from granitoid rocks. Gondwana Res. 2020, 88, 21–44. [Google Scholar] [CrossRef]
- London, D. Pegmatites; The Canadian Mineralogist, Special Publication; The Mineralogical Association: Québec, QC, Canada, 2008; Volume 10, 340p. [Google Scholar]
- Černý, P.; Blevin, P.L.; Cuney, M.; London, D. Granite-related ore deposits. In Economic Geology: 100th Anniversary Volume; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 337–370. [Google Scholar]
- London, D. Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites and rhyolites. In Rare Element Geochemistry and Mineral Deposits; Linnen, R.L., Samson, I.M., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2005; Volume 17, pp. 17–43. [Google Scholar]
- Barros, R.; Kaeter, D.; Menuge, J.F.; Skoda, R. Controls on chemical evolution and rare element enrichment in crystallising albite-spodumene pegmatite and wallrocks: Constraints from mineral chemistry. Lithos 2020, 352–353, 105289. [Google Scholar] [CrossRef]
- London, D. Ore-forming processes within granitic pegmatites. Ore Geol. Rev. 2018, 101, 349–383. [Google Scholar] [CrossRef]
- Huang, H.; Wang, T.; Zhang, Z.C.; Li, C.; Qin, Q. Highly differentiated fluorine-rich, alkaline granitic magma linked to rare metal mineralization: A case study from the Boziguo’er rare metal granitic pluton in South Tianshan Terrane, Xinjiang, NW China. Ore Geol. Rev. 2018, 96, 146–163. [Google Scholar] [CrossRef]
- Wu, H.H.; Huang, H.; Zhang, Z.C.; Wang, T.; Guo, L.; Zhang, Y.H.; Wang, W. Geochronology, geochemistry, mineralogy and metallogenic implications of the Zhaojinggou Nb-Ta deposit in the northern margin of the North China Craton, China. Ore Geol. Rev. 2020, 125, 103692. [Google Scholar] [CrossRef]
- Ballouard, C.; Elburg, M.A.; Tappe, S.; Reinke, C.; Ueckermann, H.; Doggart, S. Magmatic-hydrothermal evolution of rare metal pegmatites from the Mesoproterozoic Orange River pegmatite belt (Namaqualand, South Africa). Ore Geol. Rev. 2020, 116, 103252. [Google Scholar] [CrossRef]
- Shearer, C.K.; Papike, J.J.; Simon, S.B. Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatite-derived fluids and quartz-mica schist wallrock. Am. Mineral. 1986, 71, 518–539. [Google Scholar]
- Dittrich, T.; Seifert, T.; Schulz, B.; Hagemann, S.; Gerdes, A.; Pfänder, J. Archean Rare-Metal Pegmatites in Zimbabwe and Western Australia: Geology and Metallogeny of Pollucite Mineralisations, 1st ed.; Springer: Heidelberg, Germany, 2019; 125p. [Google Scholar]
- KIGAM. Development of Precise Exploration Technology for Energy Storage Minerals (V) Existing in Korea and the Resources Estimation; Research Report GP2020–007–2021; Korea Institute of Geoscience and Mineral Resources: Daejeon, Korea, 2021; 216p. [Google Scholar]
- Bradley, D.C.; McCauley, A.D.; Stillings, L.M. Mineral-Deposit Model for Lithium-Cesium-Tantalum Pegmatites; Scientific Investigations Report 2010–5070–O; U.S. Geological Survey: Reston, VA, USA, 2017; 32p. [Google Scholar]
- Pirajno, F. Hydrothermal Mineral Deposit; Springer: Berlin/Heidelberg, Germany, 1992; pp. 101–155. [Google Scholar]
- Magee, C.; Muirhead, J.; Schofield, N.; Walker, R.; Galland, O.; Holford, S.; Spacapan, J.; Jackson, C.; McCarthy, W. Structural signatures of igneous sheet intrusion propagation. J. Struct. Geol. 2019, 125, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Baer, G.; Beyth, M. A mechanism of dyke segmentation in fractured host rock. In Mafic Dykes and Emplacement Mechanisms; Parker, A.J., Rickwood, P.C., Tucker, D.H., Eds.; A.A. Balkema: Rotterdam, The Netherlands, 1990; pp. 3–11. [Google Scholar]
- Yang, S.J.; Kim, Y.S. Descriptive classification of dyke morphologies based on similarity to fracture geometries. Geosci. J. 2022, 26, 79–93. [Google Scholar] [CrossRef]
- Baer, G. Mechanisms of Dike Propagation in Layered Rocks and in Massive, Porous Sedimentary Rocks. J. Geophys. Res. 1991, 96, 11911–11929. [Google Scholar] [CrossRef]
- Dill, H.G. The CMS classification scheme (Chemical composition—Mineral assemblage—Structural geology)—Linking geology to mineralogy of pegmatitic and aplitic rocks. Neues Jahrb. Mineral. Abh. 2016, 193, 231–263. [Google Scholar] [CrossRef]
- Dill, H.G. Geology and chemistry of Variscan-type pegmatite systems (SE Germany)—With special reference to structural and chemical pattern recognition of felsic mobile components in the crust. Ore Geol. Rev. 2018, 92, 205–239. [Google Scholar] [CrossRef]
- Ronchi, F.C.; Althoff, F.J.; Bastos Neto, A.C.; Dill, H.G. Structural control of REE-pegmatites associated with the world class Sn-Nb-Ta-cryolite deposit at the Pitinga mine, Amazonas, Brazil. Pesqui. Geociênc. 2019, 46, e0734. [Google Scholar]
Sample | Location | Li | Be | Cs | Rb | Y | Nb | Sn | Ta | Analysis |
---|---|---|---|---|---|---|---|---|---|---|
BA 1 | Pgt 1 | >400.0 | 348.0 | >100.0 | 1270.0 | 0.7 | 10.5 | <1.0 | 2.1 | Actlabs UT6 1 |
BA 2 | Pgt 11 | >400.0 | 20.6 | >100.0 | 2200.0 | 0.5 | 11.3 | 16.0 | 2.4 | Actlabs UT 6 1 |
BA 3 | Pgt 5 | >400.0 | 226 | >100.0 | 2130.0 | 1.0 | 42.2 | 11.0 | 51.2 | Actlabs UT 6 1 |
BAN 1 | Pgt 6 | 589.0 | 26.4 | 82.0 | 203.0 | 2.4 | 0.7 | 6.2 | <0.05 | Actlabs UT 1 2 |
BAN 2 | Pgt 7 | 5280.0 | 12.2 | >500.0 | >500.0 | 0.1 | 4.9 | 22.1 | 0.05 | Actlabs UT 1 2 |
BAN 3 | Pgt 3 | 1130.0 | 323.0 | 880.0 | 2250.0 | 0.5 | 20.7 | 60.3 | 66.8 | KIGAM 3 |
BAN 4 | Pgt 9 | 2420.0 | 47.0 | 779.0 | 1140.0 | 1.4 | 28.7 | 12.5 | 19.1 | KIGAM 3 |
Orebody | No. of REP | Location | General Strike/Dip of REP Bodies | Description |
---|---|---|---|---|
Western orebody | Pgt 1 | Upper part (altitude: 516 m) | N60° E-striking | Irregular and boudinage shaped pegmatites |
Western orebody 3 | Pgt 2 | Middle part (altitude: 468 m) | N40°–50° E-striking | Bended, bended, and lenticular pegmatites |
Western orebody 3 | Pgt 3 | Bottom part (altitude: 446 m) | N60° E/70° NW | Lenticular and branched pegmatites |
Main orebody | Pgt 4 | Pit 1 | N60° E/60° SE | Irregular shaped and lenticular pegmatites |
Main orebody 1 | Pgt 5 | Eastern slope | N70° E/80° SE | Lenticular pegmatites |
Submain orebody 2,3 | Pgt 6 | Western part of Boam | EW/20° N | Zig-zag shaped pegmatites |
Submain orebody 2,3 | Pgt 7 | Northern part of Boam | N76° E/50° NW | Irregular shaped pegmatites |
Submain orebody 2,3 | Pgt 8 | Northern part of Boam | N60° E-striking | Lenticular pegmatites |
Submain orebody 2,3 | Pgt 9 | Northern part of Boam | N8° E/15° NW | Irregular shaped and lenticular pegmatites |
Eastern orebody | Pgt 10 | Pit I | EW/45° NW | Lenticular pegmatites |
Eastern orebody | Pgt 11 | Pit II | N70° E/62° NW | Lenticular pegmatites |
Eastern orebodies | Pgt 12 | Pit III | N50° E/62° NW | Lenticular pegmatites |
Eastern orebody | Pgt 13 | Easternmost outcrop | EW/62° NW | Lenticular pegmatites |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, I.-H.; Yang, S.-J.; Heo, C.-H.; Lee, J.-H.; Kim, E.-J.; Cho, S.-J. Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea. Minerals 2022, 12, 589. https://doi.org/10.3390/min12050589
Oh I-H, Yang S-J, Heo C-H, Lee J-H, Kim E-J, Cho S-J. Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea. Minerals. 2022; 12(5):589. https://doi.org/10.3390/min12050589
Chicago/Turabian StyleOh, Il-Hwan, Seok-Jun Yang, Chul-Ho Heo, Jae-Ho Lee, Eui-Jun Kim, and Seong-Jun Cho. 2022. "Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea" Minerals 12, no. 5: 589. https://doi.org/10.3390/min12050589
APA StyleOh, I. -H., Yang, S. -J., Heo, C. -H., Lee, J. -H., Kim, E. -J., & Cho, S. -J. (2022). Study on the Controlling Factors of Li-Bearing Pegmatite Intrusions for Mineral Exploration, Uljin, South Korea. Minerals, 12(5), 589. https://doi.org/10.3390/min12050589