Occurrences of Pd–Pt Bismuthotellurides and a Phosphohedyphane-Like Phase in Sulfide Veins of the Monchepluton Layered Complex, Kola Peninsula, Russia
Abstract
:1. Introduction
Geological Background
2. Materials and Methods
3. Results
The Pyromorphite–Phosphohedyphane Solid Solution
The Platinum-Group Minerals
4. Discussion
The Behavior of Cl during Crystallization of the Monchepluton Complex and the Origin of Calcian Pyromorphite
5. Conclusions
- (1)
- We describe the occurrence of a pyromorphite–phosphohedyphane solid solution in zones of massive PGE-bearing Cu–Ni sulfide mineralization in the Monchepluton complex. An elevated level of Cl developed in the cumulates at the hydrothermal stage and migrated along the system of early brittle faults.
- (2)
- The phosphohedyphane-like phase is a member of the late Pb–S–Te–Bi–As-enriched assemblages, which include Pd–Pt bismuthotellurides and sperrylite, all deposited hydrothermally, from ~750 to below 500 °C, during the formation of the sulfide veins.
- (3)
- A secondary origin is inferred, involving a low-temperature oxidation of a Pb-bearing precursor, presumably galena, to form grains of the phosphohedyphane-like phase. This mechanism and mode of formation are consistent with findings on related Cl-rich phosphates of Pb and Ca from other localities, which are reviewed.
- (4)
- There was a progressive increase in fO2, in agreement with the abundance of oxidized varieties of ores in association with primary ores in the veins at Monchepluton and at other ultrabasic complexes of the Kola Peninsula.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amelin, Y.; Heaman, L.; Semenov, V. U–Pb geochronology of layered mafic intrusions in the eastern Baltic Shield: Implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Alapieti, T.T.; Lahtinen, J.J.; Lavrov, M.M.; Smolkin, V.F.; Voitsekhovsky, S.N. Early Proterozoic layered intrusions in the northeastern part of the Fennoscandian Shield. Mineral. Pet. 1990, 42, 1–22. [Google Scholar] [CrossRef]
- Balagansky, V.V.; Gorbunov, I.A.; Mudruk, S.V. Palaeoproterozoic Lapland-Kola and Svecofennian orogens (Baltic Shield). Her. (Vestn.) Kola Sci. Cent. RAS 2016, 3, 5–11. (In Russian) [Google Scholar]
- Sharkov, E.V.; Chistyakov, A.V. The Early Paleoproterozoic Monchegorsk layered mafite-ultramafite massif in the Kola Peninsula: Geology, petrology, and ore potential. Petrology 2012, 20, 607–639. [Google Scholar] [CrossRef]
- Barkov, A.; Martin, R.; Izokh, A.; Nikiforov, A.; Korolyuk, V. Ultramagnesian Olivine in the Monchepluton (Fo96) and Pados-Tundra (Fo93) Layered Intrusions (Kola Peninsula). Russ. Geol. Geophys. 2021, 62, 324–338. [Google Scholar] [CrossRef]
- Barkov, A.; Sharkov, E.; Nikiforov, A.; Korolyuk, V.; Silyanov, S.; Lobastov, B. Compositional Variations of Apatite and REE-Bearing Minerals in Relation to Crystallization Trends in the Monchepluton Layered Complex (Kola Peninsula). Russ. Geol. Geophys. 2021, 62, 427–444. [Google Scholar] [CrossRef]
- Barkov, A.; Nikiforov, A.; Martin, R. A novel mechanism of spheroidal weathering: A case study from the Monchepluton layered complex, Kola Peninsula, Russia. Bull. Geol. Soc. Finl. 2015, 87, 79–85. [Google Scholar] [CrossRef]
- Chashchin, V.V.; Galkin, A.S.; Ozeryanskii, V.V.; Dedyukhin, A.N. Sopcha Lake chromite deposit and its platinum potential, Monchegorsk pluton, Kola Peninsula (Russia). Geol. Ore Deposits 1999, 41, 460–468. [Google Scholar]
- Dedeev, A.V.; Khashkovskaya, T.N.; Galkin, A.S. PGE Mineralization of the Monchegorsk layered mafic–ultramafic intrusion of the Kola Peninsula. In The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements, Canadian Institute of Mining, Metallurgy and Petroleum; Cabri, L.J., Ed.; Canadian Institute of Mining, Metallurgy and Petroleum: Montreal, QC, Canada, 2002; Volume 54, pp. 569–577. [Google Scholar]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Kampf, A.R.; Steele, I.M.; Jenkins, R.A. Phosphohedyphane, Ca2Pb3(PO4)3Cl, the phosphate analog of hedyphane: Description and crystal structure. Am. Mineral. 2006, 91, 1909–1917. [Google Scholar] [CrossRef]
- Kampf, A.R.; Housley, R.M. Fluorphosphohedyphane, Ca2Pb3(PO4)3F, the first apatite supergroup mineral with essential Pb and F. Am. Mineral. 2011, 96, 423–429. [Google Scholar] [CrossRef]
- Breithaupt, A. Bestimmung neuer Mineral-Specien, 2. Hedyphan. J. Chem. Phys. 1830, 60, 308–316. [Google Scholar]
- Hochleitner, R.; Kaliwoda, M.; Rewitzer, C. Natural members of the phosphohedyphane-hedyphane-mimetite series. In Proceedings of the 2nd European Mineralogical Conference Minerals, Rocks and Fluids: Alphabet and Words of Planet Earth, Rimini, Italy, 1–15 September 2016; p. 569. [Google Scholar]
- Calos, N.J.; Kennard, C.H.L.; Davis, R.L. Crystal structure of mimetite, Pb5(AsO4)3Cl. Z. Krist. 1990, 191, 125–129. [Google Scholar] [CrossRef]
- Dai, Y.; Hughes, J.M.; Moore, P.B. The crystal structures of mimetite and clinomimetite, Pb5(AsO4)3Cl. Can. Mineral. 1991, 29, 369–376. [Google Scholar]
- Will, P.; Friedrich, F.; Hochleitner, R.; Gilg, H.A. Fraipontite in the hydrothermally overprinted oxidation zone of the Preguiça mine, Southern Portugal. In Proceedings of the 7th Mid-European Clay Conference, Dresden, Germany, 16–19 September 2014; p. 133. [Google Scholar]
- Hoffman, E.L.; MacLean, W.H. Phase relations of michenerite and merenskyite in the Pd-Bi-Te system. Econ. Geol. 1976, 71, 1461–1468. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Fleet, M.E. An unusual association of hydrothermal platinum-group minerals from the Imandra layered complex, Kola Peinsula,, northwestern Russia. Can. Mineral. 2004, 42, 455–467. [Google Scholar] [CrossRef]
- Boudreau, A.E.; Mathez, E.A.; McAllum, I.S. Halogen Geochemistry of the Stillwater and Bushveld Complexes: Evidence for Transport of the Platinum-Group Elements by Cl-Rich Fluids. J. Pet. 1986, 27, 967–986. [Google Scholar] [CrossRef]
- Boudreau, A.E.; McCallum, I.S. Investigations of the Stillwater Complex: Part V. Apatites as indicators of evolving fluid composition. Contrib. Mineral. Pet. 1989, 102, 138–153. [Google Scholar] [CrossRef]
- Mutanen, T.; Törnroos, R.; Johanson, B. The Significance of Cumulus Chlorapatite and High-temperature Dashkesanite to the Genesis of PGE Mineralization in the Koitelainen and Keivitsa-Satovaara Complexes, Northern Finland. Geo-Platinum 87 1988, 159–160. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Savchenko, E.E.; Menshikov, Y.P. Chlorapatite as indicator of platinum-group elements fluid mobilization in the Lukkulaisvaara intrusion, northern Karelia. Dokl. Akad. Nauk 1993, 328, 84–89. (In Russian) [Google Scholar]
- Meurer, W.P.; Hellström, F.A.; Claeson, D.T. The relationship between chlorapatite and PGE-rich cumulates in layered intrusions: The Kläppsjö gabbro, north-central Sweden, as a case study. Can. Mineral. 2004, 42, 279–289. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Nikiforov, A.A. Compositional Variations of Apatite, Fractionation Trends, and A PGE-Bearing Zone In the Kivakka Layered Intrusion, Northern Karelia, Russia. Can. Mineral. 2016, 54, 475–490. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Nikiforov, A.A. A new criterion for searching zones of PGE mineralization of the “Kivakka Reef” type. Vestn. VGU. Geol. 2015, 4, 75–83. (In Russian) [Google Scholar]
- Barkov, A.Y.; Nikulin, I.I.; Nikiforov, A.A.; Lobastov, B.M.; Silyanov, S.A.; Martin, R.F. Atypical Mineralization Involving Pd-Pt, Au-Ag, REE, Y, Zr, Th, U, and Cl-F in the Oktyabrsky Deposit, Norilsk Complex, Russia. Minerals 2021, 11, 1193. [Google Scholar] [CrossRef]
- Kislov, E.V.; Konnikov, E.G.; Orsoev, D.A.; Pushkarev, E.V.; Voronina, L.K. The chlorine role in platinum-bearing horizons formation in the Ioko-Dovyren layered massif by the results of fluid-bearing minerals investigations. Dokl. Akad. Nauk 1995, 340, 805–808. (In Russian) [Google Scholar]
- Kislov, E.V.; Konnikov, E.G.; Orsoev, D.A.; Pushkarev, E.V.; Voronina, L.K. Chlorine in the genesis of the low-sulfide PGE mineralization in the Ioko-Dovyrenskii layered massif. Geohimiya 1997, 5, 521–528. (In Russian) [Google Scholar]
- Spiridonov, E.M. Barium Minerals Barite and Chlorine dominant Ferrokinoshitalite BaFe32+[Cl2/Al2Si2O10] in plagioperidotites of the Yoko-Dovyren intrusion, northern Baikal area: Products of epigenetic low-grade metamorphism. Geochem. Int. 2019, 57, 1221–1229. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Martin, R.F.; Tarkian, M.; Poirier, G.; Thibault, Y. Pd-Ag Tellurides from A Cl-Rich Environment in The Lukkulaisvaara Layered Intrusion, Northern Russian Karelia. Can. Mineral. 2001, 39, 639–653. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Martin, R.F.; Laajoki, K.V.O.; Alapieti, T.T.; Iljina, M.J. Paragenesis and origin of staurolite from a palladium-rich gabbronorite: An unusual occurrence from the Lukkulaisvaara layered intrusion, Russian Karelia. Neues Jahrb. für Mineral.-Abh. 1999, 175, 191–222. [Google Scholar] [CrossRef]
- Duesterhoeft, E.; Raase, P.; Gremler, P. A new occurrence of extremely rare Ferro-Chloro-Pargasite in Tudor, Ontario. Geol. Rundsch. 2017, 106, 2815–2816. [Google Scholar] [CrossRef]
- Karpenkov, A.M.; Rudashevsky, N.S.; Shumskaya, N.I. Natural palladium bismuth chloride–phase of Pd4Bi5Cl3 composition. Zap. Vses. Mineral. Obshch. 1981, 110, 86–91. (In Russian) [Google Scholar] [CrossRef]
- Li, C.; Naldrett, A.J. Platinum-group minerals from the Deep Copper Zone of the Strathcona deposit, Sudbury, Ontario. Can. Mineral. 1993, 31, 31–44. [Google Scholar] [CrossRef]
- Springer, G. Chlorine-bearing and other uncommon minerals in the Strathcona Deep Copper zone, Sudbury district, Ontario. Can. Mineral. 1989, 27, 311–313. [Google Scholar]
- Dahlberg, E.H.; Saini-Eidukat, B. A chlorine-bearing phase in drill core of serpentinized troctolitic rocks of the Duluth Complex, Minnesota. Can. Mineral. 1991, 29, 239–244. [Google Scholar]
- Saini-Eidukat, B.; Kucha, H.; Keppler, H. Hibbingite, γ-Fe2(OH)3Cl, a new mineral from the Duluth complex, Minnesota, with implications for the oxidation of Fe-bearing compounds and the transport of metals. Am. Mineral. 1994, 79, 555–561. [Google Scholar]
- Saini-Eidukat, B.; Rudashevsky, N.S.; Polozov, A.G. Evidence for hibbingite–kempite solid solution. Mineral. Mag. 1998, 62, 251–255. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Martin, R.F.; Poirier, G.; Tarkian, M.; Pakhomovskii, Y.A.; Men’shikov, Y.P. Tatyanaite, a new platinum-group mineral, the Pt analogue of taimyrite, from the Noril’sk complex (northern Siberia, Russia). Eur. J. Mineral. 2000, 12, 391–396. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Martin, R.F.; Kaukonen, R.J.; Alapieti, T.T. The occurrence of Pb-Cl-(OH) and Pt-Sn-S compounds in the Merensky reef, Bushveld layered complex, South Africa. Can. Mineral. 2001, 39, 1397–1403. [Google Scholar] [CrossRef] [Green Version]
- Genkin, A.D.; Troneva, N.V.; Zhuravlev, N.N. The first find in ores of a potassium, iron and copper sulfide–djerfisherite. Geol. Rudn. Mestorozhd. 1969, 5, 57–64. (In Russian) [Google Scholar]
- Zaccarini, F.; Thalhammer, O.A.; Princivalle, F.; Lenaz, D.; Stanley, C.; Garuti, G. Djerfisherite in the Guli dunite complex, Polar Siberia: A primary or metasomatic phase? Can. Mineral. 2007, 45, 1201–1211. [Google Scholar] [CrossRef]
- Kislov, E.V.; Orsoev, D.A.; Pushkarev, E.V. Halogens in djerfisherite from a magnesian skarn of the platinum-bearing Yoko-Dovyren massif. Geol. Geophys. 1994, 11, 54–57. (In Russian) [Google Scholar]
- Rudashevskii, N.S.; Karpenkov, A.M.; Shipova, G.S.; Shishkin, N.N.; Ryabkin, V.A. Thalfenisite, the thallium analogue of djerfisherite. Zap. Vsesoyuzn. Mineral. Obshch. 1979, 108, 696–701. (In Russian) [Google Scholar]
- Cawthorn, R.G. Formation of chlor- and fluor-apatite in layered intrusions. Mineral. Mag. 1994, 58, 299–306. [Google Scholar] [CrossRef]
- Raič, S.; Mogessie, A.; Krenn, K.; Hauzenberger, C.A.; Tropper, P. Deciphering Magmatic and Metasomatic Processes Recorded by Fluid Inclusions and Apatite within the Cu–Ni ± PGE-Sulfide Mineralized Bathtub Intrusion of the Duluth Complex, NE Minnesota, USA. J. Petrol. 2018, 59, 1167–1192. [Google Scholar] [CrossRef]
- Barkov, A.Y.; Korolyuk, V.N.; Barkova, L.P.; Martin, R.F. Double-Front Crystallization in the Chapesvara Ultramafic Subvolcanic Complex, Serpentinite Belt, Kola Peninsula, Russia. Minerals 2019, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Barkov, A.Y.; Nikiforov, A.A.; Korolyuk, V.N.; Barkova, L.P.; Martin, R.F. Anomalous chromite–ilmenite parageneses in the Chapesvara and Lyavaraka ultramafic complexes, Kola Peninsula, Russia. Period Di Mineral. 2020, 89, 299–317. [Google Scholar]
- Barkov, A.Y.; Nikiforov, A.A.; Korolyuk, V.N.; Barkova, L.P.; Martin, R.F. The chromian spinels of the Lyavaraka ultrabasic complex, Serpentinite Belt, Kola Peninsula, Russia: Patterns of zoning, hypermagnesian compositions, and early oxidation. Can. Mineral. 2021, 59, 1693–1709. [Google Scholar] [CrossRef]
Wt. % | apfu | ||
---|---|---|---|
CaO | 3.54 | Ca | 0.76 |
PbO | 76.74 | Pb | 4.13 |
P2O5 | 15.67 | Σ | 4.90 |
Cl | 2.81 | ||
O≡Cl | 0.64 | P | 2.65 |
Total | 98.12 | Cl | 0.95 |
Pt | Pd | Te | Bi | As | S | Total | Pt | Pd | Pt + Pd | Te | Bi | Te + Bi | As | S | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wt.% | apfu | |||||||||||||||
1 | Spy | 56.38 | bdl | bdl | bdl | 44.22 | bdl | 100.6 | 0.99 | – | 0.99 | – | – | – | 2.01 | 0.00 |
2 | 55.45 | bdl | bdl | bdl | 43.77 | bdl | 99.22 | 0.98 | – | 0.98 | – | – | – | 2.02 | 0.00 | |
3 | 56.45 | bdl | bdl | bdl | 44.29 | bdl | 100.74 | 0.99 | – | 0.99 | – | – | – | 2.01 | 0.00 | |
4 | 54.93 | bdl | bdl | bdl | 43.65 | 0.53 | 99.11 | 0.96 | – | 0.96 | – | – | – | 1.98 | 0.06 | |
5 | 55.18 | bdl | bdl | bdl | 42.97 | 0.36 | 98.51 | 0.98 | – | 0.98 | – | – | – | 1.98 | 0.04 | |
6 | 54.47 | bdl | bdl | bdl | 43.80 | 0.48 | 98.75 | 0.95 | – | 0.95 | – | – | – | 2.00 | 0.05 | |
7 | 54.93 | bdl | bdl | bdl | 42.54 | 0.53 | 98.00 | 0.98 | – | 0.98 | – | – | – | 1.97 | 0.06 | |
8 | 54.59 | bdl | bdl | bdl | 42.88 | 0.63 | 98.10 | 0.96 | – | 0.96 | – | – | – | 1.97 | 0.07 | |
9 | Ktu | Bdl | 38.92 | 30.25 | 29.22 | bdl | bdl | 98.39 | – | 0.98 | 0.98 | 0.64 | 0.38 | 1.02 | – | – |
10 | Mch | Bdl | 24.56 | 32.80 | 41.78 | bdl | bdl | 99.14 | 0.00 | 1.01 | 1.01 | 1.12 | 0.87 | 1.99 | – | – |
11 | Bdl | 24.52 | 33.66 | 41.03 | bdl | bdl | 99.21 | 0.00 | 1.00 | 1.00 | 1.15 | 0.85 | 2.00 | – | – | |
12 | Bdl | 24.72 | 33.22 | 41.53 | bdl | bdl | 99.47 | 0.00 | 1.01 | 1.01 | 1.13 | 0.86 | 1.99 | – | – | |
13 | 3.82 | 22.58 | 28.29 | 44.49 | bdl | bdl | 99.18 | 0.09 | 0.96 | 1.04 | 1.00 | 0.96 | 1.96 | – | – | |
14 | 4.54 | 21.31 | 28.04 | 45.37 | bdl | bdl | 99.26 | 0.11 | 0.91 | 1.02 | 1.00 | 0.99 | 1.98 | – | – | |
15 | 3.09 | 22.56 | 28.16 | 45.24 | bdl | bdl | 99.05 | 0.07 | 0.96 | 1.03 | 1.00 | 0.98 | 1.97 | – | – | |
16 | 3.41 | 22.35 | 28.42 | 46.12 | bdl | bdl | 100.30 | 0.08 | 0.94 | 1.02 | 1.00 | 0.99 | 1.98 | – | – | |
17 | 1.86 | 23.99 | 32.29 | 40.59 | bdl | bdl | 98.73 | 0.04 | 0.99 | 1.03 | 1.11 | 0.85 | 1.97 | – | – | |
18 | bdl | 24.41 | 33.53 | 41.18 | bdl | bdl | 99.12 | 0.00 | 1.00 | 1.00 | 1.14 | 0.86 | 2.00 | – | – | |
19 | bdl | 24.05 | 28.48 | 45.60 | bdl | bdl | 98.13 | 0.00 | 1.02 | 1.02 | 1.00 | 0.98 | 1.98 | – | – | |
20 | bdl | 23.71 | 28.76 | 45.85 | bdl | bdl | 98.32 | 0.00 | 1.00 | 1.00 | 1.01 | 0.99 | 2.00 | – | – | |
21 | bdl | 24.34 | 31.82 | 42.66 | bdl | bdl | 98.82 | 0.00 | 1.01 | 1.01 | 1.10 | 0.90 | 1.99 | – | – | |
22 | 5.59 | 20.50 | 27.09 | 45.61 | bdl | bdl | 98.79 | 0.13 | 0.89 | 1.02 | 0.98 | 1.00 | 1.98 | – | – | |
23 | 2.06 | 23.71 | 29.87 | 43.39 | bdl | bdl | 99.03 | 0.05 | 0.99 | 1.04 | 1.04 | 0.92 | 1.96 | – | – | |
24 | 5.76 | 20.91 | 26.83 | 46.13 | bdl | bdl | 99.63 | 0.13 | 0.90 | 1.03 | 0.96 | 1.01 | 1.97 | – | – | |
25 | Mon | 31.89 | 5.50 | 45.19 | 16.49 | bdl | bdl | 99.07 | 0.76 | 0.24 | 1.00 | 1.64 | 0.37 | 2.00 | – | – |
26 | 36.29 | 1.76 | 40.65 | 19.33 | bdl | bdl | 98.03 | 0.91 | 0.08 | 0.99 | 1.56 | 0.45 | 2.01 | – | – | |
27 | 35.47 | 1.94 | 41.01 | 20.01 | bdl | bdl | 98.43 | 0.88 | 0.09 | 0.97 | 1.56 | 0.47 | 2.03 | – | – | |
28 | Mrk | 9.39 | 21.04 | 52.96 | 16.58 | bdl | bdl | 99.97 | 0.20 | 0.80 | 1.00 | 1.68 | 0.32 | 2.00 | – | – |
29 | 6.05 | 22.64 | 52.16 | 17.54 | bdl | bdl | 98.39 | 0.13 | 0.87 | 0.99 | 1.67 | 0.34 | 2.01 | – | – | |
30 | 5.36 | 23.55 | 52.88 | 16.52 | bdl | bdl | 98.31 | 0.11 | 0.89 | 1.01 | 1.68 | 0.32 | 1.99 | – | – |
Minerals | Complex, Locality | Occurrence | Comment | References |
---|---|---|---|---|
Chlorapatite | Bushveld, South Africa | Lower zone | [20,21] | |
Stillwater, Montana, USA | [21] | |||
Koitelainen, Keivitsa- Satovaara, Finland | Cl-rich Amp | [22] | ||
Lukkulaisvaara, northern Karelia, Russia | Clap in Ol cumulates | [23] | ||
Kläppsjö, Sweden | Gabbro | Clap–PGM | [24] | |
Kivakka, northern Karelia, Russia | Lower zones | Clap–PGM | [25,26] | |
Monchepluton, Kola Peninsula, Russia | Mounts Nittis, Kumuzh’ya, Travyanaya, Sopcha, Nyud and Poaz | Clap in ultramafic-mafic cumulates | [6] | |
Noril’sk, Siberia, Russia | Oktyabr’sky deposit | Pd–Pt, Au–Ag atypical ore | [27] | |
Cl-bearing Ap | Yoko-Dovyren, Baikal region, Russia | PGM-bearing horizon | ≤2.42 wt.% Cl | [28,29] |
Cl-bearing mica | Yoko-Dovyren, Baikal region, Russia | PGM-bearing horizon | ≤0.58 wt.% Cl | [28,29] |
Cl analog of ferrokinoshitalite | Yoko-Dovyren, Baikal region, Russia | Pl-bearing peridotite | [30] | |
Cl-rich annite | Noril’sk, Siberia, Russia | Oktyabr’sky deposit | ≤7.54 wt.% Cl atypical ore | [27] |
Cl-rich hastingsite | Noril’sk, Siberia, Russia | Oktyabr’sky deposit | ≤4.06 wt.% Cl atypical ore | [27] |
“Ferro-chloro-pargasite” | Lukkulaisvaara, northern Karelia, Russia | Pegmatitic orthopyroxenite | Fcprg–PGM | [31,32] |
Tudor, Ontario, Canada | Gabbro | [33] | ||
Monchepluton, Kola Peninsula, Russia | Gabbronorite, Mount Poaz | [6] | ||
Pd–Bi chlorides | Noril’sk, Siberia, Russia | Ore-bearing zone | [34] | |
Sudbury, Ontario, Canada | Strathcona Deep Copper zone | [35] | ||
Hibbingite | Sudbury, Ontario, Canada | Strathcona Deep Copper zone | [36] | |
Duluth, Minnesota, USA | Troctolite | [37,38] | ||
Noril’sk, Siberia, Russia | Ore zone | Solid solution with kempite | [39] | |
Pyrosmalite-(Fe) | Noril’sk, Siberia, Russia | Oktyabr’sky, massive sulfide | Pys-Fe–Tty | [40] |
Penfieldite-type phase | Bushveld, South Africa | Merensky Reef | With PGM in orthocumulate | [41] |
Djerfisherite | Noril’sk, Siberia, Russia | Cu–Ni ores | [42] | |
Guli complex, Polar Siberia, Russia | Dunitic rocks | [43] | ||
Yoko-Dovyren, Baikal region, Russia | Magnesian skarn | Included in Spl, Tro | [44] | |
Thalfenisite | Noril’sk, Siberia, Russia | Cu–Ni ores | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkov, A.Y.; Nikiforov, A.A.; Barkova, L.P.; Martin, R.F. Occurrences of Pd–Pt Bismuthotellurides and a Phosphohedyphane-Like Phase in Sulfide Veins of the Monchepluton Layered Complex, Kola Peninsula, Russia. Minerals 2022, 12, 624. https://doi.org/10.3390/min12050624
Barkov AY, Nikiforov AA, Barkova LP, Martin RF. Occurrences of Pd–Pt Bismuthotellurides and a Phosphohedyphane-Like Phase in Sulfide Veins of the Monchepluton Layered Complex, Kola Peninsula, Russia. Minerals. 2022; 12(5):624. https://doi.org/10.3390/min12050624
Chicago/Turabian StyleBarkov, Andrei Y., Andrey A. Nikiforov, Larisa P. Barkova, and Robert F. Martin. 2022. "Occurrences of Pd–Pt Bismuthotellurides and a Phosphohedyphane-Like Phase in Sulfide Veins of the Monchepluton Layered Complex, Kola Peninsula, Russia" Minerals 12, no. 5: 624. https://doi.org/10.3390/min12050624
APA StyleBarkov, A. Y., Nikiforov, A. A., Barkova, L. P., & Martin, R. F. (2022). Occurrences of Pd–Pt Bismuthotellurides and a Phosphohedyphane-Like Phase in Sulfide Veins of the Monchepluton Layered Complex, Kola Peninsula, Russia. Minerals, 12(5), 624. https://doi.org/10.3390/min12050624