Boron Impurity Deposition on a Si(100) Surface in a SiHCl3-BCl3-H2 System for Electronic-Grade Polysilicon Production
Abstract
:1. Introduction
2. Calculational Methods
3. Results and Discussion
3.1. Adsorption of BCl3 on the Surface of Polysilicon Si(100)
3.2. Adsorption of SiHCl3 Molecules on the Surface of Polysilicon Si(100)
3.3. Co-Adsorption of BCl3 and SiHCl3 on the Surface of Polysilicon Si(100)
3.4. Electronic Structure Analysis
4. Conclusions
- (1)
- BCl3 and SiHCl3 are mainly adsorbed on the surface of the Si(100) unit cell in the positive position and the hydrogen bottom-two-front position of the molecule, respectively. The discrete distances of BCl3 and SiHCl3 from the surface of the Si(100) unit cell are 1.873 Å and 2.340 Å, respectively, and the separation energies are −35.2549 kcal/mol and −10.64 kcal/mol, respectively.
- (2)
- Compared with SiHCl3, BCl3 reacts more easily with the Si(100) surface, and when BCl3 and SiHCl3 coexist, BCl3 reacts more readily than SiHCl3 with the Si(100) surface. When BCl3 and SiHCl3 are present simultaneously, the gas phase reaction is accompanied by a dissociation process, in which each molecule dissociates a Cl atom that is adsorbed on the Si(100) surface. At the same time, a distinctly elongated B–Cl bond shows that the Si(100) surface also has an attractive effect on Cl atoms.
- (3)
- After the adsorption of SiHCl3 and BCl3, 0.24 and 0.29 eV of charge, respectively, are found to have been transferred from the molecule to the surface of the unit cell. Both BCl3 and SiHCl3 are readily adsorbed on the surface of the Si(100) unit cell, but BCl3 is more easily adsorbed. These results confirm that the B atom in BCl3 in the adsorption model forms a covalent bond with the Si atom on the Si(100) unit cell surface, and the Si atom in the SiHCl3 molecule forms a covalent bond with the B atom in BCl3.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Zhang, X. Prediction of thermal conductivity and phonon spectral of silicon material with pores for semiconductor device. Phys. B Condens. Matter 2021, 614, 413034. [Google Scholar] [CrossRef]
- Chen, P.; Zeng, Q.; Guo, W.; Chen, J. The source, enrichment and precipitation of ore-forming elements for porphyry Mo deposit: Evidences from melt inclusions, biotite and fluorite in Dasuji deposit, China. Ore Geol. Rev. 2021, 135, 104205. [Google Scholar] [CrossRef]
- Cheng, D.; Gao, Y.; Liu, R. Finite element analysis on processing stress of polysilicon cut by diamond multi-wire saw. Mater. Sci. Semicond. Process. 2021, 131, 105860. [Google Scholar] [CrossRef]
- Xiong, Q.M.; Chen, Z.; Huang, J.-T.; Zhang, M.; Song, H.; Hou, X.F.; Li, X.B.; Feng, Z.J. Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction. Rare Met. 2020, 39, 589–596. [Google Scholar] [CrossRef]
- Zhou, L.; Li, S.; Tang, Q.; Deng, X.; Wei, K.; Ma, W. Effects of solidification rate on the leaching behavior of metallic impurities in metallurgical grade silicon. J. Alloys Compd. 2021, 882, 160570. [Google Scholar] [CrossRef]
- Gao, M.; Liu, B.; Zhang, X.; Zhang, Y.; Li, X.; Han, G. Ultrathin MoS2 nanosheets anchored on carbon nanofibers as free-standing flexible anode with stable lithium storage performance. J. Alloys Compd. 2022, 894, 162550. [Google Scholar] [CrossRef]
- O’Mara, W.; Herring, R.B.; Hunt, L.P. Handbook of Semiconductor Silicon Technology; Crest Publishing House: Kettering, UK, 2007. [Google Scholar]
- Davis, K.O.; Brooker, R.P.; Seigneur, H.P.; Rodgers, M.; Rudack, A.C.; Schoenfeld, W.V. Pareto analysis of critical challenges for emerging manufacturing technologies in silicon photovoltaics. Sol. Energy 2014, 107, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Chanlaor, P.; Limtrakul, S.; Vatanatham, T.; Ramachandran, P.A. Modeling of Chemical Vapor Deposition of Silane for Silicon Production in a Spouted Bed via Discrete Element Method Coupled with Eulerian Model. Ind. Eng. Chem. Res. 2018, 57, 12096–12112. [Google Scholar] [CrossRef]
- Filtvedt, W.O.; Holt, A.; Ramachandran, P.A.; Melaaen, M.C. Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Sol. Energy Mater. Sol. Cells 2012, 107, 188–200. [Google Scholar] [CrossRef]
- Shi, S.; Guo, X.; An, G.; Jiang, D.; Qin, S.; Meng, J.; Li, P.; Tan, Y.; Noor ul Huda Khan Asghar, H.M. Separation of boron from silicon by steam-added electron beam melting. Sep. Purif. Technol. 2019, 215, 242–248. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Li, P.; Wang, Z. Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor. Chem. Eng. J. 2013, 220, 81–88. [Google Scholar] [CrossRef]
- Safarian, J. Thermochemical Aspects of Boron and Phosphorus Distribution Between Silicon and BaO-SiO2 and CaO-BaO-SiO2 lags. Silicon 2019, 11, 437–451. [Google Scholar] [CrossRef] [Green Version]
- Bye, G.; Ceccaroli, B. Solar grade silicon: Technology status and industrial trends. Sol. Energy Mater. Sol. Cells 2014, 130, 634–646. [Google Scholar] [CrossRef]
- Bullón, J.; Margaria, T.; Miranda, A.; Mıguez, J. Physical and chemical analysis of the upgraded metallurgical silicon for the solar industry. In Silicon Form the Chemical and Solar Industry IX; Norwegian University of Science and Technology: Oslo, Norway, 2008. [Google Scholar]
- Haupfear, E.A.; Schmidt, L.D. Kinetics of boron deposition from BBR3 + H2. Chem. Eng. Sci. 1994, 49, 2467–2481. [Google Scholar] [CrossRef]
- Liu, W.; Huang, F.; Liao, Y.; Zhang, J.; Ren, G.; Zhuang, Z.; Zhen, J.; Lin, Z.; Wang, C. Treatment of CrVI-Containing Mg(OH)2 Nanowaste. Angew. Chem. 2008, 120, 5701–5704. [Google Scholar] [CrossRef]
- Jenkinson, J.P.; Pollard, R. Thermal diffusion effects in chemical vapor deposition reactors. J. Electrochem. Soc. 1984, 131, 2911. [Google Scholar] [CrossRef]
- Sezgi, N.A.; Ersoy, A.; Dogu, T.; Özbelge, H.Ö. CVD of boron and dichloroborane formation in a hot-wire fiber growth reactor. Chem. Eng. Process. Process Intensif. 2001, 40, 525–530. [Google Scholar] [CrossRef]
- Asli Sezgi, N.; Dogu, T.; Onder Ozbelge, H. Mechanism of CVD of boron by hydrogen reduction of BCl3 in a dual impinging-jet reactor. Chem. Eng. Sci. 1999, 54, 3297–3304. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Cheng, L.; Zeng, Q.; Zhang, W.; Yang, W.; Feng, Z.; Li, S.; Zeng, B. Uniform design and regression analysis of LPCVD boron carbide from BCl3–CH4–H2 system. Appl. Surf. Sci. 2009, 255, 5729–5735. [Google Scholar] [CrossRef]
- Deng, J.; Cheng, L.; Zheng, G.; Su, K.; Zhang, L. Thermodynamic study on co-deposition of ZrB2–SiC from ZrCl4–BCl3–CH3SiCl3–H2–Ar system. Thin Solid Film. 2012, 520, 7030–7034. [Google Scholar] [CrossRef]
- Mahammedi, N.A.; Ferhat, M.; Belkada, R. Prediction of indirect to direct band gap transition under tensile biaxial strain in type-I guest-free silicon clathrate Si46: A first-principles approach. Superlattices Microstruct. 2016, 100, 296–305. [Google Scholar] [CrossRef]
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist. Cryst. Mater. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Viñes, F.; Xu, Y.J.; Li, Y.; Li, J.Q.; Illas, F. Role of Kinetics in the Selective Surface Oxidations of Transition Metal Carbides. J. Phys. Chem. B 2006, 110, 15454–15458. [Google Scholar] [CrossRef] [PubMed]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Chen, X.; Cheng, Y.; Niu, C. Adsorption and Deposition of Li2O2 on the Pristine and Oxidized TiC Surface by First-principles Calculation. J. Phys. Chem. C 2015, 119, 25684–25695. [Google Scholar] [CrossRef]
- Sun, W.; Ceder, G. Efficient creation and convergence of surface slabs. Surf. Sci. 2013, 617, 53–59. [Google Scholar] [CrossRef]
- Peng, M.; Shi, B.; Han, Y.; Li, W.; Zhang, J. Crystal facet dependence of SiHCl3 reduction to Si mechanism on silicon rod. Appl. Surf. Sci. 2022, 580, 152366. [Google Scholar] [CrossRef]
- Galán, O.A.L.; Carbajal-Franco, G. Energy profiles by DFT methods for CO and NO catalytic adsorption over ZnO surfaces. Catal. Today 2021, 360, 38–45. [Google Scholar] [CrossRef]
Adsorption Mode | Distance before Optimization (Å) | Optimized Distance (Å) |
---|---|---|
Side position of the molecule | 3.191 | 2.836 |
Lateral position of the molecule | 3.139 | 2.447 |
Positive position of the molecule | 2.917 | 1.873 |
Adsorption Mode | Eadsorption (kcal/mol) |
---|---|
Side position of the molecule | −29.2613 |
Lateral position of the molecule | −23.5846 |
Positive position of the molecule | −35.3549 |
Adsorption Mode | Distance before Optimization (Å) | Optimized Distance (Å) |
---|---|---|
Hydrogen top-one-positive position | 3.018 | 2.530 |
Hydrogen bottom-one-front position | 3.041 | 2.602 |
Hydrogen top-two-front position | 3.242 | 3.023 |
Hydrogen side-one-front position | 3.476 | 3.009 |
Hydrogen side-two-front position | 3.023 | 2.804 |
Hydrogen bottom-two-front position | 3.000 | 2.340 |
Adsorption Mode | Eadsorption (kcal/mol) |
---|---|
Hydrogen top-one-positive position | −4.02 |
Hydrogen bottom-one-front position | −6.07 |
Hydrogen top-two-front position | −3.41 |
Hydrogen side-one-front position | −8.92 |
Hydrogen side-two-front position | −2.47 |
Hydrogen bottom-two-front position | −10.64 |
Project | Species | S | p | d | Total | Charge (eV) | Change (eV) |
---|---|---|---|---|---|---|---|
Ideal BCl3 | B | 0 | 6.26 | 2.44 | 10.87 | 1.13 | 0 |
Cl1 | 1.96 | 5.33 | 0 | 7.28 | −0.28 | ||
Cl2 | 1.96 | 5.33 | 0 | 7.28 | −0.28 | ||
Cl3 | 1.96 | 5.32 | 0 | 7.28 | −0.28 | ||
Ideal SiHCl3 | Si | 3.18 | 7.42 | 3.36 | 13.96 | 1.13 | 0 |
Cl1 | 2.08 | 6.12 | 0 | 8.20 | −0.32 | ||
Cl2 | 2.08 | 6.12 | 0 | 8.20 | −0.33 | ||
Cl3 | 2.08 | 6.12 | 0 | 8.20 | −0.35 | ||
H | 1.76 | 4.28 | 0 | 6.04 | −0.30 | ||
Si(100) surface adsorption BCl3 | B | 0 | 6.23 | 2.17 | 10.68 | 1.32 | 0.29 |
Cl1 | 1.95 | 5.36 | 0 | 7.34 | −0.31 | ||
Cl2 | 1.95 | 5.32 | 0 | 7.27 | −0.27 | ||
Cl3 | 1.95 | 5.33 | 0 | 7.28 | −0.28 | ||
Si(100) surface adsorption SiHCl3 | Si | 2.21 | 6.14 | 2.13 | 10.48 | 1.02 | 0.24 |
Cl1 | 1.95 | 5.39 | 0 | 7.34 | −0.34 | ||
Cl2 | 1.95 | 5.39 | 0 | 7.24 | −0.34 | ||
Cl3 | 1.95 | 5.33 | 0 | 7.29 | −0.29 | ||
H | 1.95 | 5.36 | 0 | 7.34 | −0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Chen, F.; Tian, L.; Wang, J.; Yang, N.; Hou, Y.; Huang, L.; Xie, G. Boron Impurity Deposition on a Si(100) Surface in a SiHCl3-BCl3-H2 System for Electronic-Grade Polysilicon Production. Minerals 2022, 12, 651. https://doi.org/10.3390/min12050651
Yang Q, Chen F, Tian L, Wang J, Yang N, Hou Y, Huang L, Xie G. Boron Impurity Deposition on a Si(100) Surface in a SiHCl3-BCl3-H2 System for Electronic-Grade Polysilicon Production. Minerals. 2022; 12(5):651. https://doi.org/10.3390/min12050651
Chicago/Turabian StyleYang, Qinghong, Fengyang Chen, Lin Tian, Jianguo Wang, Ni Yang, Yanqing Hou, Lingyun Huang, and Gang Xie. 2022. "Boron Impurity Deposition on a Si(100) Surface in a SiHCl3-BCl3-H2 System for Electronic-Grade Polysilicon Production" Minerals 12, no. 5: 651. https://doi.org/10.3390/min12050651
APA StyleYang, Q., Chen, F., Tian, L., Wang, J., Yang, N., Hou, Y., Huang, L., & Xie, G. (2022). Boron Impurity Deposition on a Si(100) Surface in a SiHCl3-BCl3-H2 System for Electronic-Grade Polysilicon Production. Minerals, 12(5), 651. https://doi.org/10.3390/min12050651