The Effect of Different Outer Cations on the Stability of Fluorotitanium Complex
Abstract
:1. Introduction
2. Experiment and Analysis Method
2.1. Experiment Principle
2.2. Experimental Procedures
2.3. Experimental Result
3. Hydrolysis Rate
3.1. The Calculation of Hydrolysis Rate
3.2. Cumulative Hydrolysis Equilibrium Constant
4. Discussion
4.1. The Stability Diversity of Fluorotitanium Complex with Different Outer Cation
4.2. The Activity of Titanium in Nature Fluid
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y. Geochemical significance and experimental methods of complex research under high temperature and pressure. Chin. Sci. Bull. 1978, 11, 682–686. [Google Scholar]
- Helgeson, H.C. Effects of complex formation in flowing fluids on the hydrothermal solubilities of minerals as a function of fluid pressure and temperature in the critical and supercritical regions of the system H2O. Geochim. Cosmochim. Acta 1992, 56, 3191–3207. [Google Scholar] [CrossRef]
- Grzybkowski, W. Nature and properties of metal cations in aqueous solutions. Pol. J. Environ. Stud. 2006, 15, 655–663. [Google Scholar]
- Liu, W.; Etschmann, B.; Foran, G.; Shelley, M.; Brugger, J. Deriving formation constants for aqueous metal complexes from XANES spectra: Zn2+ and Fe2+ chloride complexes in hypersaline solutions. Am. Miner. 2007, 92, 761–770. [Google Scholar] [CrossRef]
- Yardley, B.W.; Bodnar, R.J. Fluids in the Continental Crust. Geochem. Perspect. 2014, 3, 1–127. [Google Scholar] [CrossRef] [Green Version]
- Barnes Hubert, L. Hydrothermal Processes. Geochem. Perspect. 2015, 4, 1–93. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ding, X.; Wang, Y.; Sun, W.; Fu, B. The effect of temperature and concentration on hydrolysis of fluorine-rich titanium complexes in hydrothermal fluids: Constraints on titanium mobility in deep geological processes. Acta Petrol. Sin 2015, 31. [Google Scholar]
- Wang, J.; Sun, F.; Yu, L.; Jiang, H.; Wang, F.; Ning, C. Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China. Earth Sci. 2017, 42, 941–956. [Google Scholar]
- Ding, X.; He, J.; Liu, Z. Experimental studies on crystal growth of anatase under hydrothermal conditions. Earth Sci. 2018, 43, 1763–1772. [Google Scholar]
- Ayers, J.C.; Watson, E.B. Solubility of Apatite, Monazite, Zircon, and Rutile in Supercritical Aqueous Fluids with Implications for Subduction Zone Geochemistry. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 1991, 335, 365–375. [Google Scholar]
- Ayers, J.C.; Watson, E.B. Rutile solubility and mobility in supercritical aqueous fluids. Contrib. Miner. Pet. 1993, 114, 321–330. [Google Scholar] [CrossRef]
- Manning, C.E.; Wilke, M.; Schmidt, C.; Cauzid, J. Rutile solubility in albite-H2O and Na2Si3O7-H2O at high temperatures and pressures by in-situ synchrotron radiation micro-XRF. Earth Planet. Sci. Lett. 2008, 272, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Rapp, J.F.; Klemme, S.; Butler, I.B.; Harley, S. Extremely high solubility of rutile in chloride and fluoride-bearing metamorphic fluids: An experimental investigation. Geology 2010, 38, 323–326. [Google Scholar] [CrossRef]
- Huang, J.; Xiao, Y.; Gao, Y.; Hou, Z.; Wu, W. Nb-Ta fractionation induced by fluid-rock interaction in subduction-zones: Constraints from UHP eclogite- and vein-hosted rutile from the Dabie orogen, Central-Eastern China. J. Metamorph. Geol. 2012, 30, 821–842. [Google Scholar] [CrossRef]
- Ding, X.; Hu, Y.; Zhang, H.; Li, C.; Ling, M.; Sun, W. Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro. J. Geol. 2013, 121, 255–274. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Miner. Pet. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Ding, X.; Lundstrom, C.; Huang, F.; Li, J.; Zhang, Z.; Sun, X.; Liang, J.; Sun, W. Natural and experimental constraints on formation of the continental crust based on niobium–tantalum fractionation. Int. Geol. Rev. 2009, 51, 473–501. [Google Scholar] [CrossRef]
- Salvi, S.; Fontan, F.; Monchoux, P. Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco). Econ. Geol. 2000, 95, 559–576. [Google Scholar] [CrossRef]
- Jun, G.; John, T.; Klemd, R.; Xianming, X. Mobilization of Ti-Nb-Ta during subduction: Evidence from rutile-bearing dehydration segregations and veins hosted in eclogite, Tianshan, NW China. Geochim. Cosmochim. Acta 2007, 71, 4974–4996. [Google Scholar]
- Byung-Gwan, L.; Jin-Wook, C.; Seong-Eun, L.; Yong-Soo, J.; Han-Jun, O.; Choong-Soo, C. Formation behavior of anodic TiO2 nanotubes in fluoride containing electrolytes. Trans. Nonferrous Met. Soc. China 2009, 19, 842–845. [Google Scholar]
- Van Baalen, M.R. Titanium mobility in metamorphic systems: A review. Chem. Geol. 1993, 110, 233–249. [Google Scholar] [CrossRef]
- Banerjee, A. The design, fabrication, and photocatalytic utility of nanostructured semiconductors: Focus on TiO2-based nanostructures. Nanotechnol. Sci. Appl. 2011, 4, 35–65. [Google Scholar] [CrossRef] [Green Version]
- Baes, C.F., Jr.; Mesmer, R.E. Solution Chemistry. (Book Reviews: The Hydrolysis of Cations). Science 1977, 195. [Google Scholar]
- Baes, C.F., Jr.; Mesmer, R.E. The thermodynamics of cation hydrolysis. Am. J. Sci. 1981, 281, 935–962. [Google Scholar] [CrossRef]
- Wang, Y.; I-Ming, C. Characteristics of hydrolysis of the complex Na2SnF6 in hydrothermal solutions—An experimental study. Chin. J. Geochem. 1987, 6, 372–382. [Google Scholar] [CrossRef]
- Wang, Y.; Gu, F.; Yuan, Z. Partitioning and hydrolysis of Nb and Ta and their implications with regard to mineralization. Chin. J. Geochem. 1993, 12, 84–91. [Google Scholar] [CrossRef]
- Ryerson, F.J.; Watson, E.B. Rutile saturation in magmas: Implications for TiNbTa depletion in island-arc basalts. Earth Planet. Sci. Lett. 1987, 86, 225–239. [Google Scholar] [CrossRef]
- Hayden, L.A.; Watson, E.B. Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet. Sci. Lett. 2007, 258, 561–568. [Google Scholar] [CrossRef]
- Xiong, X.; Keppler, H.; Audetat, A.; Guðfinnsson, G.; Sun, W.; Song, M.; Xiao, W.; Yuan, L. Experimental constraints on rutile saturation during partial melting of metabasalt at the amphibolite to eclogite transition, with applications to TTG genesis. Am. Miner. 2009, 94, 1175–1186. [Google Scholar] [CrossRef]
- Chen, W. The origins of porphyry copper deposits. Geoscience 2002, 16, 1–8. [Google Scholar]
- YiMing, Z. Genetic types, distribution and main geological characteristics of rutile deposits. Miner. Depos. 2008, 27, 520–530. [Google Scholar]
- Tropper, P.; Manning, C.E. Very low solubility of rutile in H2O at high pressure and temperature, and its implications for Ti mobility in subduction zones. Am. Miner. 2005, 90, 502–505. [Google Scholar] [CrossRef]
- Antignano, A.; Manning, C.E. Rutile solubility in H2O, H2O–SiO2, and H2O–NaAlSi3O8 fluids at 0.7–2.0 GPa and 700–1000 °C: Implications for mobility of nominally insoluble elements. Chem. Geol. 2008, 255, 283–293. [Google Scholar] [CrossRef]
- Franz, L.; Romer, R.; Klemd, R.; Schmid, R.; Oberhansli, R.; Wagner, T.; Shuwen, D. Eclogite-facies quartz veins within metabasites of the Dabie Shan (eastern China): Pressure–temperature–time–deformation path, composition of the fluid phase and fluid flow during exhumation of high-pressure rocks. Contrib. Mineral. Petrol. 2001, 141, 322–346. [Google Scholar] [CrossRef]
- John, T.; Klemd, R.; Gao, J.; Garbe-Schönberg, C.D. Trace-element mobilization in slabs due to non steady-state fluid–rock interaction: Constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 2008, 103, 1–24. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Shen, K.; Sun, W.-D.; Liu, Y.-S.; Liou, J.G.; Shi, C.; Wang, J.-L. Fluids in deeply subducted continental crust: Petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim. Cosmochim. Acta 2008, 72, 3200–3228. [Google Scholar] [CrossRef]
- Audétat, A.; Keppler, H. Solubility of rutile in subduction zone fluids, as determined by experiments in the hydrothermal diamond anvil cell. Earth Planet. Sci. Lett. 2005, 232, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Philippot, P. The chemistry of high-pressure fluids (1 to 3 GPa) Natural observations vs. experimental constraints. Earth Sci. Front. 1996, 3, 40–53. [Google Scholar]
- Manning, C.E. The chemistry of subduction-zone fluids. Earth Planet. Sci. Lett. 2004, 223, 1–16. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Xu, R.; Liu, Y.; Xiao, F.; Cheng, S.; Sun, X. Fluid inclusion, siliceous rock geochemistry of Shewushan lateritic gold deposit, Hubei Province, eastern China: Implication for the genesis of primary orebody. Chin. J. Geochem. 2014, 33, 65–76. [Google Scholar] [CrossRef]
- Sun, W.; Arculus, R.J.; Kamenetsky, V.S.; Binns, R.A. Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 2004, 431, 975–978. [Google Scholar] [CrossRef]
- Zhao, C.; Ni, P.; Wang, G.-G.; Ding, J.-Y.; Chen, H. Geology, fluid inclusion, and isotope constraints on ore genesis of the Neoproterozoic Jinshan orogenic gold deposit, South China. Geofluids 2013, 13, 506–527. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 1998, 163, 361–379. [Google Scholar] [CrossRef]
- Franz, G.; Thomas, S.; Smith, D.C. High-pressure phengite decomposition in the Weissenstein eclogite, Münchberger Gneiss Massif, Germany. Contrib. Miner. Pet. 1986, 92, 71–85. [Google Scholar] [CrossRef]
- Hermann, J. Experimental constraints on phase relations in subducted continental crust. Contrib. Mineral. Petrol. 2002, 143, 219–235. [Google Scholar] [CrossRef]
- Li, C.-Y.; Zhang, H.; Wang, F.-Y.; Liu, J.-Q.; Sun, Y.-L.; Hao, X.-L.; Li, Y.-L.; Sun, W. The formation of the Dabaoshan porphyry molybdenum deposit induced by slab rollback. Lithos 2012, 150, 101–110. [Google Scholar] [CrossRef]
- Thomas, R.; Frster, H.-J.; Rickers, K.; Webster, J.D. Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: A melt/fluid-inclusion study. Contrib. Miner. Pet. 2004, 148, 582–601. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol. 2000, 163, 207–218. [Google Scholar] [CrossRef]
- Hanson, S.L.; William, J.R.; Falster, A.U. Nb-Ta-Ti oxides in granitic pegmatites from the Topsham pegmatite district, southern Maine. Can. Mineral. 1998, 36, 601–608. [Google Scholar]
- Li, H.-Y.; Huang, X.-L. Constraints on the paleogeographic evolution of the North China Craton during the Late Triassic–Jurassic. J. Asian Earth Sci. 2013, 70–71, 308–320. [Google Scholar] [CrossRef]
- Ling, M.-X.; Liu, Y.-L.; Williams, I.S.; Teng, F.-Z.; Yang, X.-Y.; Ding, X.; Wei, G.-J.; Xie, L.-H.; Deng, W.-F.; Sun, W.-D. Formation of the world’s largest REE deposit through protracted fluxing of carbonatite by subduction-derived fluids. Sci. Rep. 2013, 3, 1776. [Google Scholar] [CrossRef] [Green Version]
Sample Type | Initial Concentration | Temperature | Pressure | Post Hydrolytic Concentration | Hydrolysis Rate | (−lnK) |
---|---|---|---|---|---|---|
(Ti, μg/mL) | (°C) | (Ti, μg/mL) | (%) | |||
K2TiF6 | 960 | 200 °C | 100 MPa | 370 | 61.5 | 14.6 |
250 °C | 206 | 78.5 | 12.54 | |||
300 °C | 162 | 83.1 | 11.96 | |||
400 °C | 30 | 96.8 | 9.35 | |||
500 °C | 8 | 99.1 | 7.89 | |||
Na2TiF6 | 960 | 200 °C | 100 MPa | 265 | 72.4 | - |
250 °C | 365 | 61.98 | - | |||
300 °C | 330 | 65.63 | - | |||
400 °C | 230.5 | 75.99 | - | |||
500 °C | 210.75 | 78.13 | - | |||
H2TiF6 | 960 | 200 °C | 100 MPa | 21.65 | 97.74 | 5.15 |
250 °C | 33.5 | 96.61 | 5.67 | |||
300 °C | 1.965 | 99.8 | 2.63 | |||
400 °C | 2.235 | 99.77 | 2.76 | |||
500 °C | 3.5 | 99.64 | 3.21 | |||
(NH4)2TiF6 | 960 | 200 °C | 100 MPa | 194 | 79.79 | 12.38 |
250 °C | 31 | 96.77 | 9.39 | |||
300 °C | 20.875 | 97.83 | 8.93 | |||
400 °C | 5.725 | 99.4 | 7.54 | |||
500 °C | 4.525 | 99.53 | 7.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Zuo, X.; Liu, H. The Effect of Different Outer Cations on the Stability of Fluorotitanium Complex. Minerals 2022, 12, 735. https://doi.org/10.3390/min12060735
Liu J, Zuo X, Liu H. The Effect of Different Outer Cations on the Stability of Fluorotitanium Complex. Minerals. 2022; 12(6):735. https://doi.org/10.3390/min12060735
Chicago/Turabian StyleLiu, Junfeng, Xugang Zuo, and Haotian Liu. 2022. "The Effect of Different Outer Cations on the Stability of Fluorotitanium Complex" Minerals 12, no. 6: 735. https://doi.org/10.3390/min12060735
APA StyleLiu, J., Zuo, X., & Liu, H. (2022). The Effect of Different Outer Cations on the Stability of Fluorotitanium Complex. Minerals, 12(6), 735. https://doi.org/10.3390/min12060735