The Southwestern Boundary of Cenozoic Qaidam Basin: Constraints from Heavy Mineral Analysis
Abstract
:1. Introduction
2. Geologic Setting and Stratigraphy
3. Materials and Methods
4. Sedimentary Facies Analysis
4.1. Lithofacies
4.1.1. Facies 1: Massive Conglomerates
4.1.2. Facies 2: Massive Sandstone and Siltstone
4.1.3. Facies 3: Massive Mudstone
4.2. Sedimentary Facies
5. Heavy Mineral Analysis
5.1. Heavy Mineral Assemblages
5.2. Heavy Mineral Ratios
5.2.1. Xia Ganchaigou Formation Samples
5.2.2. Shang Ganchaigou Formation Samples
5.2.3. Xia Youshashan Formation Samples
5.2.4. Shang Youshashan Formation Samples
6. Discussion
6.1. The Effectiveness of the Heavy Mineral Data
6.2. Provenance of Southwestern Qaidam Basin in Cenozoic
6.3. Southwestern Boundary of Qaidam Basin
6.4. Sedimentary Evolution
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ding, L.; Xu, Q.; Yue, Y.; Wang, H.; Cai, F.; Li, S. The andean-type gangdese mountains: Paleoelevation record from the paleocene–eocene linzhou basin. Earth Planet. Sci. Lett. 2014, 392, 250–264. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, D.-W.; Zhang, W.; Feng, F.; Liu, R.-J.; Lin, S.-D. Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 2013, 290, 109–125. [Google Scholar] [CrossRef]
- Yin, A.; Rumelhart, P.; Butler, R.; Cowgill, E.; Harrison, T.; Foster, D.; Ingersoll, R.; Qing, Z.; Xian-Qiang, Z.; Xiao-Feng, W. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull. 2002, 114, 1257–1295. [Google Scholar] [CrossRef]
- Fu, L.; Guan, P.; Jian, X.; Liu, R.; Feng, F.; An, Q.; Fan, Z. Sedimentary genetic types of coarse fragment of Paleogene Lulehe formation in Qaidam Basin and Time limit of the Tibetan Plateau uplift. Nat. Gas Geosci. 2012, 23, 833–840. [Google Scholar]
- Guan, P.; Jian, X. The Cenozoic sedimentary record in Qaidam Basin and its implications for tectonic evolution of the Northern Tibetan Plateau. Acta Sedimentol. Sin. 2013, 31, 824–833. [Google Scholar]
- Jian, X.; Guan, P.; Zhang, W.; Liang, H.; Feng, F.; Fu, L. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Res. 2018, 60, 94–104. [Google Scholar] [CrossRef]
- Rieser, A.B.; Bojar, A.-V.; Neubauer, F.; Genser, J.; Liu, Y.; Ge, X.-H.; Friedl, G. Monitoring Cenozoic climate evolution of northeastern Tibet: Stable isotope constraints from the western Qaidam Basin, China. Int. J. Earth Sci. 2009, 98, 1063–1075. [Google Scholar] [CrossRef]
- Zhuang, G.; Hourigan, J.K.; Koch, P.L.; Ritts, B.D.; Kent-Corson, M.L. Isotopic constraints on intensified aridity in Central Asia around 12Ma. Earth Planet. Sci. Lett. 2011, 312, 152–163. [Google Scholar] [CrossRef]
- Bao, J.; Wang, Y.; Song, C.; Feng, Y.; Hu, C.; Zhong, S.; Yang, J. Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate. Glob. Planet. Change 2017, 155, 56–69. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, W.; Feng, F. Geochemistry of Mesozoic and Cenozoic sediments in the northern Qaidam basin, northeastern Tibetan Plateau: Implications for provenance and weathering. Chem. Geol. 2013, 360–361, 74–88. [Google Scholar] [CrossRef]
- Bao, J.; Song, C.; Yang, Y.; Fang, X.; Meng, Q.; Feng, Y.; He, P. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. J. Asian Earth Sci. 2019, 170, 155–165. [Google Scholar] [CrossRef]
- Jian, X.; Zhang, W.; Liang, H.; Guan, P.; Fu, L. Mineralogy, petrography and geochemistry of an early Eocene weathering profile on basement granodiorite of Qaidam basin, northern Tibet: Tectonic and paleoclimatic implications. Catena 2019, 172, 54–64. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Guo, Z.; Wang, L.; Zhang, C.; Li, X. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth-Sci. Rev. 2021, 220, 103730. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.-Q.; Zhang, M.; Chen, X.-H.; McRivette, M.W. Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soc. Am. Bull. 2008, 120, 847–876. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.; Liu, D.; Yuan, M.; Li, D.; Luo, Z. Relationship of the Paleocene-Miocene strata between the Qaidam and Kekexili Basins. J. Stratigr. 2009, 276, 282. [Google Scholar]
- McRivette, M.W.; Yin, A.; Chen, X.; Gehrels, G.E. Cenozoic basin evolution of the central Tibetan plateau as constrained by U-Pb detrital zircon geochronology, sandstone petrology, and fission-track thermochronology. Tectonophysics 2019, 751, 150–179. [Google Scholar] [CrossRef]
- Cheng, F.; Garzione, C.N.; Jolivet, M.; Guo, Z.; Zhang, D.; Zhang, C.; Zhang, Q. Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe Formation in the Qaidam Basin. Tectonics 2019, 38, 741–766. [Google Scholar] [CrossRef]
- Cheng, F.; Fu, S.; Jolivet, M.; Zhang, C.; Guo, Z. Source to sink relation between the Eastern Kunlun Range and the Qaidam Basin, northern Tibetan Plateau, during the Cenozoic. Bulletin 2016, 128, 258–283. [Google Scholar] [CrossRef]
- Lou, Q.; Xiao, A.; Zhong, N.; Wu, L. A method of prototype restoration of large depressions with terrestrial sediments: A case study from the Cenozoic Qaidam Basin. Acta Petrol. Sin. 2016, 32, 892–902. [Google Scholar]
- Wang, C.; Dai, J.; Zhao, X.; Li, Y.; Graham, S.A.; He, D.; Ran, B.; Meng, J. Outward-growth of the Tibetan Plateau during the Cenozoic: A review. Tectonophysics 2014, 621, 1–43. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.; Zhang, M.; McRivette, M.W.; Burgess, W.P.; Chen, X. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range. In Whence the Mountains? Inquiries into the Evolution of Orogenic Systems: A Volume in Honor of Raymond A. Price; The Geological Association of America: Boulder, CO, USA, 2007. [Google Scholar]
- Zhu, L.; Wang, C.; Zheng, H.; Xiang, F.; Yi, H.; Liu, D. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 241, 49–60. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, C. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet. Sediment. Geol. 2001, 140, 251–270. [Google Scholar] [CrossRef]
- Li, L.; Guo, Z.; Guan, S.; Zhou, S.; Wang, M.; Fang, Y.; Zhang, C. Heavy mineral assemblage characteristics and the Cenozoic paleogeographic evolution in southwestern Qaidam Basin. Sci. China Earth Sci. 2015, 58, 859–875. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, C.; Yuan, B.; Shi, Z.; Wang, J.; Zhu, W.; Zhou, Y.; Jiang, X.; Zhao, J.; Wang, J.; et al. New insights into multiple provenances evolution of the Jurassic from heavy minerals characteristics in southern Junggar Basin, NW China. Pet. Explor. Dev. 2019, 46, 67–81. [Google Scholar] [CrossRef]
- Garzanti, E.; Doglioni, C.; Vezzoli, G.; Ando, S. Orogenic belts and orogenic sediment provenance. J. Geol. 2007, 115, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.; Whitham, A.; Fanning, C. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Zhang, W.; Jian, X.; Fu, L.; Feng, F.; Guan, P. Reservoir characterization and hydrocarbon accumulation in late Cenozoic lacustrine mixed carbonate-siliciclastic fine-grained deposits of the northwestern Qaidam basin, NW China. Mar. Pet. Geol. 2018, 98, 675–686. [Google Scholar] [CrossRef]
- Métivier, F.; Gaudemer, Y.; Tapponnier, P.; Meyer, B. Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics 1998, 17, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Meyer, B.; Tapponnier, P.; Bourjot, L.; Metivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, G.; Zhitai, C. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 1998, 135, 1–47. [Google Scholar] [CrossRef]
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.-Q.; Wang, L.-C.; Jiang, W.-M.; Zhou, S.-P.; Chen, X.-H.; Gehrels, G.E.; McRivette, M.W. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geol. Soc. Am. Bull. 2008, 120, 813–846. [Google Scholar] [CrossRef]
- Wu, H.; Hu, W.; Cao, J.; Wang, X.; Wang, X.; Liao, Z. A unique lacustrine mixed dolomitic-clastic sequence for tight oil reservoir within the middle Permian Lucaogou Formation of the Junggar Basin, NW China: Reservoir characteristics and origin. Mar. Pet. Geol. 2016, 76, 115–132. [Google Scholar] [CrossRef]
- Zuza, A.V.; Wu, C.; Reith, R.C.; Yin, A.; Li, J.; Zhang, J.; Zhang, Y.; Wu, L.; Liu, W. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. Bulletin 2018, 130, 881–925. [Google Scholar] [CrossRef]
- Clark, M.K.; Farley, K.A.; Zheng, D.; Wang, Z.; Duvall, A.R. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages. Earth Planet. Sci. Lett. 2010, 296, 78–88. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Fu, S.; Zhang, Q.; Guan, S.; Yu, X.; Guo, Z. Northward growth of the Qimen Tagh Range: A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin. Tectonophysics 2014, 632, 32–47. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, G.E.; Yin, A.; Wang, X.F. Magmatic history of the northeastern Tibetan Plateau. J. Geophys. Res. Solid Earth 2003, 108, 2423. [Google Scholar] [CrossRef]
- Wang, X.; Qiu, Z.; Li, Q.; Wang, B.; Qiu, Z.; Downs, W.R.; Xie, G.; Xie, J.; Deng, T.; Takeuchi, G.T. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 363–385. [Google Scholar] [CrossRef]
- Zhuang, G.; Hourigan, J.K.; Ritts, B.D.; Kent-Corson, M.L. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China. Am. J. Sci. 2011, 311, 116–152. [Google Scholar] [CrossRef]
- Hallsworth, C.; Chisholm, J. Provenance of late Carboniferous sandstones in the Pennine Basin (UK) from combined heavy mineral, garnet geochemistry and palaeocurrent studies. Sediment. Geol. 2008, 203, 196–212. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H. Heavy Minerals in Colour; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Ayofe, A.J.; Anthony, I.R. Application of ZTR Index in the Assessment of Maturity of Stream Sediments in Akinmorin Area, Southwestern Nigeria. IRE J. 2020, 3, 98–107. [Google Scholar]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar]
- Zhang, C.; Li, Z.; Chen, Q.; Dong, S.; Yu, X.; Yu, Q. Provenance of eolian sands in the Ulan Buh Desert, northwestern China, revealed by heavy mineral assemblages. Catena 2020, 193, 104624. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- von Eynatten, H.; Gaupp, R. Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: Constraints from framework petrography, heavy mineral analysis and mineral chemistry. Sediment. Geol. 1999, 124, 81–111. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C. Heavy minerals in provenance studies. In Provenance of Arenites; Springer: Berlin/Heidelberg, Germany, 1985; pp. 249–277. [Google Scholar]
- Zhu, W.; Wu, C.; Wang, J.; Zhou, T.; Li, J.; Zhang, C.; Li, L. Heavy mineral compositions and zircon U-Pb ages of Cenozoic sandstones in the SW Qaidam basin, northern Tibetan Plateau: Implications for provenance and tectonic setting. J. Asian Earth Sci. 2017, 146, 233–250. [Google Scholar] [CrossRef]
- Fu, L.; Guan, P.; Zhang, D.; Wang, M.; Zhang, J. Heavy mineral feature and provenance analysis of Paleogene Lulehe Formation in Qaidam Basin. Acta Petrol. Sin. 2013, 29, 2867–2875. [Google Scholar]
- Rieser, A.B.; Neubauer, F.; Liu, Y.; Ge, X. Sandstone provenance of north-western sectors of the intracontinental Cenozoic Qaidam basin, western China: Tectonic vs. climatic control. Sediment. Geol. 2005, 177, 1–18. [Google Scholar] [CrossRef]
- Cowgill, E.; Yin, A.; Harrison, T.M.; Xiao-Feng, W. Reconstruction of the Altyn Tagh fault based on U-Pb geochronology: Role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J. Geophys. Res. Solid Earth 2003, 108, 2346. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A.; Balaban, S.-I. Coastal morphology and heavy mineral accumulation in an upper-macrotidal environment—A geological-mineralogical approach from source to trap site in a natural placer laboratory (Channel Islands, Great Britain). Ore Geol. Rev. 2021, 138, 104311. [Google Scholar] [CrossRef]
- Dill, H.G.; Buzatu, A. From the aeolian landform to the aeolian mineral deposit in the present and its use as an ore guide in the past. Constraints from mineralogy, chemistry and sediment petrography. Ore Geol. Rev. 2021, 141, 104490. [Google Scholar] [CrossRef]
- Dill, H.G.; Goldmann, S.; Cravero, F. Zr-Ti-Fe placers along the coast of NE Argentina: Provenance analysis and ore guide for the metallogenesis in the South Atlantic Ocean. Ore Geol. Rev. 2018, 95, 131–160. [Google Scholar] [CrossRef]
- Howie, R.; Zussman, J.; Deer, W. An Introduction to the Rock-Forming Minerals; Longman: London, UK, 1992. [Google Scholar]
- Dai, J.; Wang, C.; Hourigan, J.; Santosh, M. Multi-stage tectono-magmatic events of the Eastern Kunlun Range, northern Tibet: Insights from U–Pb geochronology and (U–Th)/He thermochronology. Tectonophysics 2013, 599, 97–106. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; George, G.; Yang, Y.; Qin, H.; Chen, Z.; Yang, F.; Chen, B.; Li, X. Early Paleozoic magmatism and gold mineralization in the northern Altun, NW China. Acta Geol. Sin. 2004, 78, 515–523. [Google Scholar]
- Li, W.; Neubauer, F.; Liu, Y.; Genser, J.; Ren, S.; Han, G.; Liang, C. Paleozoic evolution of the Qimantagh magmatic arcs, Eastern Kunlun Mountains: Constraints from zircon dating of granitoids and modern river sands. J. Asian Earth Sci. 2013, 77, 183–202. [Google Scholar] [CrossRef]
- Liu, L.; Wang, C.; Chen, D.; Zhang, A.; Liou, J. Petrology and geochronology of HP–UHP rocks from the South Altyn Tagh, northwestern China. J. Asian Earth Sci. 2009, 35, 232–244. [Google Scholar] [CrossRef]
- Wang, C.; Liu, L.; Yang, W.-Q.; Zhu, X.-H.; Cao, Y.-T.; Kang, L.; Chen, S.-F.; Li, R.-S.; He, S.-P. Provenance and ages of the Altyn Complex in Altyn Tagh: Implications for the early Neoproterozoic evolution of northwestern China. Precambrian Res. 2013, 230, 193–208. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, D.; Yang, S.; Li, X.; Shi, Y.; Cui, J.; Zhang, P.; Wang, Y.; Yi, D.; Chang, H. Sedimentary characteristics and genesis of the salt lake with the upper member of the Lower Ganchaigou Formation from Yingxi sag, Qaidam basin. Mar. Pet. Geol. 2020, 111, 135–155. [Google Scholar] [CrossRef]
- Wang, Y.-q.; Gong, Q.; Xia, Z.; Xiong, S. Provenance analysis of Oligocene sediments in western Qaidam Basin. Geol. China 2012, 39, 426–435. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, X.; Fu, L.; Guan, P.; Zhang, D. The Southwestern Boundary of Cenozoic Qaidam Basin: Constraints from Heavy Mineral Analysis. Minerals 2022, 12, 768. https://doi.org/10.3390/min12060768
Ding X, Fu L, Guan P, Zhang D. The Southwestern Boundary of Cenozoic Qaidam Basin: Constraints from Heavy Mineral Analysis. Minerals. 2022; 12(6):768. https://doi.org/10.3390/min12060768
Chicago/Turabian StyleDing, Xiaonan, Ling Fu, Ping Guan, and Daowei Zhang. 2022. "The Southwestern Boundary of Cenozoic Qaidam Basin: Constraints from Heavy Mineral Analysis" Minerals 12, no. 6: 768. https://doi.org/10.3390/min12060768
APA StyleDing, X., Fu, L., Guan, P., & Zhang, D. (2022). The Southwestern Boundary of Cenozoic Qaidam Basin: Constraints from Heavy Mineral Analysis. Minerals, 12(6), 768. https://doi.org/10.3390/min12060768