Influence of Clogging at the Filtration on Analysis of Dissolved and Particulate Forms of Chemical Elements in Boreal Rivers of the Russian Far East
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sampling, Processing, and Filtration
2.3. Analysis of Water and Suspended Solids
2.4. Evaluation of the Loss of Filterable Forms Due to Clogging, and Share of Colloids Retained during Clogging in the Content of Particulate Forms in the 0.45 µm Membranes
3. Results
3.1. Concentration of Filterable and Particulate Forms of Trace Elements in River Waters
3.2. Clogging during Filtration through Membrane Filters
3.3. Influence of Clogging on the Concentration of Major Ions, Nutrients, DOC
3.4. Influence of Clogging on the Concentration of Trace Elements in the Filtrates
4. Discussion
4.1. Factors Controlling the Clogging and the Loss of Filterable Forms of Trace Elements
4.2. Possible Influence of Clogging on the Assessment of River Water Quality
4.3. Influence of Clogging on the Concentration of Particulate Forms of Trace Elements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Everett, D.H. Manual of symbols and terminology for physicochemical quantities and units, Appendix II: Definitions, Terminology, and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 31, 577–638. [Google Scholar] [CrossRef]
- Wilde, F.D.; Radtke, D.B.; Gibs, J.; Iwatsubo, R.T. (Eds.) Chapter A5. Processing of Water Samples (Version 2.2); 2004 with Updates through 2009; Book 9; U.S. Geological Survey Techniques of Water-Resources Investigations: Reston, VA, USA, 2004. Available online: http://pubs.water.usgs.gov/twri9A5 (accessed on 17 April 2021).
- Gaillardet, J.; Viers, J.; Dupre, B. Trace elements in river waters. Surface and groundwater, weathering and soils. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 5, pp. 225–272. [Google Scholar]
- Benoit, G.; Hunter, K.S.; Rozan, T.F. Sources of trace metal contamination artifacts during collection, handling, and analysis of freshwaters. Analyt. Chem. 1997, 69, 1006–1011. [Google Scholar] [CrossRef]
- Shotyk, W.; Bicalho, B.; Cuss, C.W.; Donner, M.; Grant-Weaver, I.; Haas-Neill, S.; Javed, M.B.; Krachler, M.; Noernberg, T.; Pelletier, R.; et al. Trace metals in the dissolved fraction (<0.45 μm) of the lower Athabasca River: Analytical challenges and environmental implications. Sci. Total Environ. 2017, 580, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Morrison, M.A.; Benoit, G. Investigation of conventional membrane and tangential flow ultrafiltration artifacts and their application to the characterization of freshwater colloids. Environ. Sci. Technol. 2004, 38, 6817–6823. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Schott, J. Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia). Chem. Geol. 2002, 190, 141–179. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupre, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Vasyukova, E.V.; Pokrovsky, O.S.; Viers, J.; Dupre, B. The new operational method of testing colloid complexation with metals in natural waters. Appl. Geochem. 2012, 27, 1226–1237. [Google Scholar] [CrossRef]
- Shirokova, L.S.; Pokrovsky, O.S.; Moreva, O.Y.; Chupakov, A.V.; Zabelina, S.A.; Klimov, S.I.; Shorina, N.V.; Vorobieva, T.Y. Decrease of concentration and a colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer of 2010 in a humic boreal lake. Sci. Total Environ. 2013, 463–464, 78–90. [Google Scholar] [CrossRef]
- Krickov, I.; Pokrovsky, O.S.; Manasypov, R.; Lim, A.; Shirokova, L.S.; Viers, J. Colloidal transport of carbon and metals by western Siberian rivers during different seasons across a permafrost gradient. Geochim. Cosmochim. Acta 2019, 265, 221–241. [Google Scholar] [CrossRef]
- Stolpe, B.; Guo, L.; Shiller, A.M. Binding and transport of rare earth elements by organic and iron-rich nanocolloids in Alaskan rivers, as revealed by field-flow fractionation and ICP-MS. Geochim. Cosmochim. Acta 2013, 106, 446–462. [Google Scholar] [CrossRef]
- Cuss, C.W.; Donner, M.W.; Grant-Weaver, I.; Noernberg, T.; Pelletier, R.; Sinnatamby, R.N.; Shotyk, W. Measuring the distribution of trace elements amongst dissolved, colloidal species as a fingerprint for the contribution of tributaries to large boreal rivers. Sci. Total Environ. 2018, 642, 1242–1251. [Google Scholar] [CrossRef]
- Horowitz, A.; Elrick, K.; Colberg, M. The effect of membrane filtration artifacts on dissolved trace element concentrations. Water Res. 1992, 26, 753–763. [Google Scholar] [CrossRef]
- Hall, G.E.M.; Bonham-Carter, G.F.; Horowitz, A.J.; Lum, K.; Lemieux, C.; Quemerais, B.; Garbarino, J.R. The effect of using different 0.45 pm filter membranes on ‘dissolved’ element concentrations in natural waters. Appl. Geochem. 1996, 11, 243–249. [Google Scholar] [CrossRef]
- Morrison, M.A.; Benoit, G. Filtration artifacts caused by overloading membrane filters. Environ. Sci. Technol. 2001, 35, 3774–3779. [Google Scholar] [PubMed]
- Horowitz, A.J. A review of selected inorganic surface water quality-monitoring practices: Are we really measuring what we think, and if so, are we doing it right? Environ. Sci. Technol. 2013, 47, 2471–2486. [Google Scholar] [CrossRef] [PubMed]
- Shulkin, V.M.; Bogdanova, N.N.; Elovskiy, E.V. Effect of Filter Clogging on the Determination of Concentrations of Chemical Elements Migrating in River Water as Components of True Solutions or in Colloidal Forms. Water Resour. 2022, 49, 122–133. [Google Scholar] [CrossRef]
- Shiller, A.M. Syringe filtration methods for examining dissolved and colloidal trace element distributions in remote field locations. Environ. Sci. Technol. 2003, 37, 3953–3957. [Google Scholar] [CrossRef]
- Deutch, K.; Leroy, D.; Belpaire, C.; den Hann, K.; Vrana, B.; Clayton, H.; Hanke, G.; Ricci, A.; Held, A.; Gawli, B.; et al. Common Implementation Strategy for the Water Framework Directive (2000/60/ec), Guidance Document No. 19: Guidance on Surface Water Chemical Monitoring under the Water Framework Directive; Office for Official Publications of the European Communities: Luxembourg, 2009; 65p. [Google Scholar]
- Working document 52.24.468–2019. In Mass Concentration of Suspended Solids and Dry Residue in Waters. Gravimetric Measurement Method; Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet): Rostov-on-Don, Russia, 2019; 34p. (In Russian)
- Gaillardet, J.; Dupre, B.; Louvat, P.; Allegre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–36. [Google Scholar]
- Shulkin, V.; Tishchenko, P.; Semkin, P.; Shvetsova, M. Influence of river discharge and phytoplankton on the distribution of nutrients and trace metals in Razdolnaya River estuary, Russia. Estuar. Coast. Shelf Sci. 2018, 211, 166–176. [Google Scholar] [CrossRef]
- Mikhailik, T.A.; Tishchenko, P.Y.; Koltunov, A.M.; Tishchenko, P.P.; Shvetsova, M.G. The Effect of Razdol’naya River on the Environmental State of Amur Bay (The Sea of Japan). Water Resour. 2011, 38, 512–521. [Google Scholar] [CrossRef]
- Bagard, M.-L.; Chabaux, F.; Stille, P.; Rihs, S.; Pokrovsky, O.S.; Viers, J.; Dupré, B.; Prokushkin, A.S.; Schmitt, A.-D. Seasonal variability of elements fluxes in two central Siberian rivers draining high latitude permafrost dominated areas. Geochim. Cosmochim. Acta 2011, 75, 3335–3357. [Google Scholar] [CrossRef]
- Shulkin, V.M.; Bogdanova, N.N.; Kiselev, V.I. Metals in the river waters of Primorye. Geochem. Int. 2007, 45, 70–79. [Google Scholar] [CrossRef]
- Shulkin, V.; Zhang, J. Trace metals in estuaries in the Russian Far East and China: Case studies from the Amur River and the Changjiang. Sci. Total Environ. 2014, 499, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Hammer, F.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Chudaeva, V.A.; Shesterkin, V.P.; Chudaev, O.V. Trace Elements in Surface Water in Amur River Basin. Water Resour. 2011, 38, 650–661. [Google Scholar] [CrossRef]
- Krickov, I.V.; Lim, A.G.; Manasypov, R.M.; Loiko, S.V.; Vorobyev, S.N.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V.; Pokrovsky, O.S. Major and trace elements in suspended matter of western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochim. Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Viers, J.; Dupréa, D.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef]
- Horowitz, A.J.; Lum, K.R.; Garbarino, J.R.; Hall, G.E.M.; Lemieux, C.; Demas, C.R. Problems associated with using filtration to define dissolved trace element concentrations in natural water samples. Environ. Sci. Technol. 1996, 30, 954. [Google Scholar] [CrossRef]
- Du, X.; Shi, Y.; Jegatheesan, V.; Ul Haq, I. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Q.; Li, F.; Qiao, T.J. Research on ultrafiltration membrane fouling based on chemical cleaning. China Water Wastewater 2013, 29, 51–54. [Google Scholar]
- Blandin, G.; Verliefde, A.R.D.; Comas, J. Efficiently combining water reuse and desalination through forward osmosis-reverse osmosis (FO-RO) hybrids: A critical review. Membranes 2016, 6, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, S.; Häkansson, K.; Ledin, A. Fractionation of trace metals in surface water with screen filters. Sci. Total Environ. 1994, 149, 215–223. [Google Scholar] [CrossRef]
- Viers, J.; Dupre, B.; Polve, M.; Schott, J.; Dandurand, J.-L.; Braun, J.-J. Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): Comparison between organic-poor and organic-rich waters. Chem. Geol. 1997, 140, 181–206. [Google Scholar] [CrossRef]
- Hirst, C.; Andersson, P.S.; Shaw, S.; Burke, I.T.; Kutscher, L.; Murphy, M.J.; Maximov, T.; Pokrovsky, O.S.; Morth, M.; Porcelli, D. Characterization of Fe-bearing particles and colloids in the Lena River basin, NE Russia. Geochim. Cosmochim. Acta 2017, 213, 553–573. [Google Scholar] [CrossRef] [Green Version]
- Sholkovitz, E.R. The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat. Geochem. 1995, 1, 1–34. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017; pp. 222–226. [Google Scholar]
- Nagpal, N.K. Technical Report—Water Quality Guidelines for Cobalt. 2004. Available online: http://www.env.gov.bc.ca/wat/wq/BCguidelines/cobalt/cobalt_tech.pdf (accessed on 10 November 2021).
- Zhang, J.; Liu, C.L. Riverine composition and estuarine geochemistry of particulate metals in China—Weathering features, anthropogenic impact and chemical fluxes. Estuar. Coast. Shelf Sci. 2002, 54, 1051–1070. [Google Scholar] [CrossRef]
River | # | Date | SS | EC | pH | NO3− | Cl− | SO42− | DOC |
---|---|---|---|---|---|---|---|---|---|
R-201 | 23.02.2020 | 5.2 | 247 | 7.46 | 1.53 | 20.9 | 25.1 | 4.1 | |
R-210 | 25.05.2020 | 24 | 92 | 7.53 | 0.42 | 4.1 | 12.0 | 4.8 | |
Razdolnaya R. | R-91 | 25.07.2019 | 110 | 73 | 7.25 | 0.47 | 1.9 | 5.1 | 8.5 |
R-80 | 16.08.2018 | 270 | 98 | 7.20 | 0.56 | 4.4 | 8.4 | 8.0 | |
R-83 | 20.11.2018 | 23 | 116 | 7.87 | 0.84 | 5.2 | 10.8 | 4.6 | |
A-2 | 27.02.2020 | 9 | 103 | 6.96 | 0.51 | 5.2 | 14.3 | 6.6 | |
Amur R. | A-4 | 21.08.2020 | 69.4 | 56 | 7.10 | 0.17 | 1.3 | 4.3 | 9.3 |
A-5 | 21.08.2020 | 108.2 | 94 | 7.33 | 0.35 | 3.8 | 7.7 | 8.5 | |
Great Ussurka R. R. | U-2 | 13.08.2019 | 32 | 50 | 7.21 | 0.26 | 0.8 | 2.9 | 7.4 |
Bikin R. | U-3 | 13.08.2019 | 30 | 38 | 7.09 | 0.07 | 0.6 | 3.9 | 14.7 |
Razdolnaya R. | Amur R. | Ussury R. | WSLR | World | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Elements | R-201 | R-210 | R-91 | R-80 | R-83 | A-2 | A-4 | A-5 | U-2 | U-3 | [11] | [3] |
Li | 2.9 | 1.5 | 1.0 | 1.4 | 1.9 | 1.9 | 1.5 | 2.2 | 0.7 | 0.8 | 2.7–3.2 | 1.8 |
B | 44.0 | 17.8 | 13.4 | nd | nd | 15.2 | 7.2 | 15.5 | 4.3 | 9.2 | 15–37 | - |
Al | 72.0 | 299.9 | 142.7 | 30.7 | 334.0 | 167.5 | 198.4 | 191.8 | 37.7 | 91.0 | 7.3–79 | 32 |
Si | 8406 | 5701 | 9349 | 10,087 | 11,378 | 4468 | 4554 | 4729 | 5491 | 5627 | 6500 | - |
Sc | 0.04 | 0.08 | 0.08 | 0.07 | 0.13 | 0.10 | 0.09 | 0.08 | 0.04 | 0.10 | nd | 0.07 |
Ti | 0.24 | 7.30 | 6.34 | 1.48 | 12.03 | 3.94 | 5.60 | 4.89 | 1.16 | 1.26 | 0.6–6.5 | 0.49 |
V | 0.28 | 1.24 | 2.05 | 1.31 | 0.91 | 0.48 | 0.86 | 1.15 | 0.36 | 0.63 | 0.51–0.79 | 0.71 |
Cr | 0.12 | 0.39 | 0.52 | 0.30 | 0.95 | 0.35 | 0.39 | 0.36 | 0.89 | 1.38 | 0.18–0.28 | 0.7 |
Mn | 129.0 | 10.4 | 11.1 | 41.5 | 45.7 | 21.9 | 6.1 | 3.0 | 4.5 | 14.7 | 10–62.8 | 34 |
Fe | 127.9 | 234.2 | 158.5 | 79.2 | 291.7 | 314.1 | 329.6 | 219.8 | 191.9 | 312.0 | 61–236 | 66 |
Co | 0.31 | 0.12 | 0.14 | 0.37 | 0.32 | 0.12 | 0.08 | 0.09 | 0.06 | 0.12 | 0.10–0.17 | 0.15 |
Ni | 1.28 | 0.98 | 1.94 | 1.67 | 1.36 | 0.88 | 0.95 | 1.29 | 0.96 | 1.29 | 0.87–1.62 | 0.80 |
Cu | 0.87 | 0.94 | 1.91 | 1.36 | 0.97 | 0.98 | 1.21 | 1.68 | 1.44 | 1.51 | 0.52–1.45 | 1.48 |
As | 0.48 | 0.78 | 0.79 | 0.88 | 0.59 | 0.47 | 0.93 | 1.03 | 0.95 | 0.70 | 0.77–1.29 | 0.62 |
Rb | 1.01 | 0.52 | 0.52 | 0.84 | 0.86 | 0.83 | 0.66 | 0.89 | 0.62 | 0.86 | 1.0–1.3 | 1.63 |
Sr | 175 | 72 | 57 | 78 | 89 | 84 | 58 | 95 | 39 | 42 | 95–326 | 60 |
Y | 0.06 | 0.19 | 0.55 | 0.74 | 0.21 | 0.32 | 0.56 | 0.42 | 0.47 | 0.82 | 0.02–0.18 | 0.04 |
Zr | 0.09 | 0.39 | 0.63 | 0.39 | 0.87 | 0.36 | 0.46 | 0.48 | 0.19 | 0.35 | 0.03–0.17 | 0.04 |
Mo | 0.45 | 0.48 | 0.34 | nd | 0.55 | 0.41 | 0.46 | 0.93 | 0.30 | 0.55 | 0.28–0.29 | 0.42 |
Cd | 0.005 | 0.002 | 0.004 | 0.009 | 0.004 | 0.005 | 0.004 | 0.004 | 0.009 | 0.016 | 0.002–0.012 | 0.080 |
Ba | 22.9 | 12.0 | 9.6 | 16.6 | 16.7 | 18.3 | 12.5 | 19.6 | 7.8 | 11.0 | 23–42 | 23 |
La | 0.031 | 0.199 | 0.400 | 0.686 | 0.175 | 0.341 | 0.664 | 0.479 | 0.414 | 0.761 | 0.01–0.19 | 0.120 |
Ce | 0.047 | 0.380 | 0.688 | 1.139 | 0.401 | 0.468 | 0.990 | 0.701 | 0.575 | 1.227 | 0.01–0.26 | 0.262 |
Pr | 0.008 | 0.049 | 0.109 | 0.181 | 0.046 | 0.086 | 0.156 | 0.113 | 0.113 | 0.206 | 0.002–0.044 | 0.040 |
Nd | 0.039 | 0.199 | 0.483 | 0.773 | 0.201 | 0.353 | 0.633 | 0.457 | 0.481 | 0.878 | 0.008–0.188 | 0.152 |
Sm | 0.009 | 0.044 | 0.112 | 0.165 | 0.046 | 0.075 | 0.129 | 0.092 | 0.112 | 0.195 | 0.002–0.043 | 0.036 |
Eu | 0.004 | 0.009 | 0.025 | 0.035 | 0.011 | 0.014 | 0.024 | 0.019 | 0.023 | 0.043 | nd | 0.010 |
Gd | 0.015 | 0.044 | 0.119 | 0.171 | 0.048 | 0.070 | 0.128 | 0.095 | 0.115 | 0.200 | 0.003–0.047 | 0.040 |
Tb | 0.0015 | 0.0064 | 0.0168 | 0.0224 | 0.0066 | 0.0098 | 0.0174 | 0.0134 | 0.0166 | 0.0277 | nd | 0.0055 |
Dy | 0.009 | 0.035 | 0.094 | 0.126 | 0.039 | 0.051 | 0.090 | 0.070 | 0.085 | 0.153 | 0.002–0.042 | 0.03 |
Ho | 0.002 | 0.007 | 0.019 | 0.025 | 0.008 | 0.011 | 0.018 | 0.014 | 0.017 | 0.030 | nd | 0.007 |
Er | 0.009 | 0.023 | 0.057 | 0.072 | 0.023 | 0.033 | 0.055 | 0.044 | 0.047 | 0.083 | nd | 0.02 |
Tm | 0.0012 | 0.0031 | 0.0075 | 0.0098 | 0.0034 | 0.0047 | 0.0074 | 0.0057 | 0.0066 | 0.0114 | nd | 0.0033 |
Yb | 0.0088 | 0.0193 | 0.0474 | 0.0603 | 0.0232 | 0.0310 | 0.0466 | 0.0355 | 0.0404 | 0.0714 | 0.002–0.022 | 0.017 |
Lu | 0.0015 | 0.0032 | 0.0072 | 0.0098 | 0.0036 | 0.0048 | 0.0071 | 0.0053 | 0.0065 | 0.0108 | nd | 0.0024 |
Hf | 0.0032 | 0.0116 | 0.0131 | 0.0097 | 0.0216 | 0.0108 | 0.0138 | 0.0149 | 0.0046 | 0.0117 | 0.002–0.023 | 0.0059 |
Pb | 0.035 | 0.147 | cont | 0.117 | cont | 0.099 | 0.141 | 0.141 | 0.260 | cont | 0.003–0.457 | 0.089 |
U | 0.184 | 0.109 | 0.133 | 0.140 | 0.129 | 0.166 | 0.196 | 0.221 | 0.050 | 0.048 | 0.18–0.45 |
Elements | Razdolnaya R. | Amur R. | Ussury R. | WSLR | World | |||||
---|---|---|---|---|---|---|---|---|---|---|
R-201 | R-210 | R-91 | A-2 | A-4 | A-5 | U-2 | U-3 | [30] | [31] | |
Li | 47.8 | 40.2 | 24.7 | 33.8 | 41.3 | 35.8 | 46.7 | 32.7 | 15.6 | 8.5 |
Al | 6.18 | 6.30 | 4.10 | 7.04 | 8.89 | 5.94 | 5.49 | 5.75 | 3.09 | 8.72 |
Sc | 14.5 | 15.1 | 10.3 | 12.7 | 14.9 | 10.8 | 10.3 | 10.8 | - | 18.2 |
Ti | 0.29 | 0.48 | 0.45 | 0.35 | 0.47 | 0.51 | 0.32 | 0.33 | 0.78 | 0.44 |
V | 86 | 96 | 99 | 77 | 84 | 88 | 78 | 81 | 61 | 129 |
Cr | 93 | 61 | 78 | 59 | 54 | 53 | 56 | 56 | 43 | 130 |
Mn | 1051 | 1654 | 932 | 1604 | 1474 | 1046 | 1112 | 1155 | 14219 | 1679 |
Fe | 11.86 | 4.84 | 4.22 | 6.50 | 4.37 | 4.38 | 3.66 | 4.09 | 7.56 | 5.81 |
Co | 13.0 | 16.1 | 13.8 | 13.1 | 14.4 | 11.9 | 11.4 | 11.2 | 32.7 | 22.5 |
Ni | 34.4 | 33.3 | 40.6 | 26.6 | 25.4 | 25.7 | 27.4 | 24.1 | 26.9 | 74.5 |
Cu | 32 | 13 | 30 | 15 | 17 | 21 | 26 | 20 | 16 | 75.9 |
As | 11.0 | 7.2 | 10.1 | 9.8 | 11.8 | 13.0 | 8.6 | 5.4 | 34.8 | 36.3 |
Rb | 79.1 | 30.0 | 14.2 | 71.1 | 61.4 | 28.2 | 33.1 | 27.0 | 36.3 | 78.5 |
Sr | 412 | 155 | 131 | 301 | 312 | 212 | 152 | 192 | 180 | 187 |
Y | 31 | 24 | 14 | 27 | 25 | 15 | 15 | 13 | 9.8 | 21.9 |
Zr | 162 | 120 | 109 | 138 | 141 | 126 | 100 | 107 | 35 | 160 |
Mo | 0.66 | 0.76 | 0.99 | 1.60 | 1.37 | 1.18 | 1.28 | 1.26 | 0.49 | 2.98 |
Cd | 0.16 | 0.12 | 0.18 | 0.17 | 0.14 | 0.11 | 0.41 | 0.34 | 0.35 | 1.55 |
Ba | 376 | 307 | 341 | 454 | 590 | 480 | 431 | 477 | 617 | 522 |
La | 32 | 27 | 15 | 45 | 36 | 20 | 18 | 18 | 14 | 37.4 |
Ce | 62 | 59 | 41 | 80 | 74 | 46 | 44 | 42 | 29 | 73.6 |
Pr | 8.6 | 7.3 | 4.5 | 10.6 | 9.5 | 5.3 | 5.3 | 5.0 | 3.2 | 7.95 |
Nd | 33.1 | 28.5 | 18.1 | 39.5 | 35.6 | 20.7 | 20.9 | 19.5 | 12.4 | 32.2 |
Sm | 7.0 | 6.1 | 4.1 | 7.6 | 7.0 | 4.3 | 4.5 | 4.0 | 2.5 | 6.1 |
Eu | 1.4 | 1.2 | 0.9 | 1.4 | 1.4 | 0.9 | 0.9 | 0.9 | 0.6 | 1.3 |
Gd | 7.0 | 5.8 | 4.0 | 6.9 | 6.3 | 4.0 | 4.3 | 3.8 | 2.5 | 5.3 |
Tb | 1.0 | 0.9 | 0.6 | 1.0 | 0.9 | 0.6 | 0.6 | 0.6 | 0.34 | 0.82 |
Dy | 5.4 | 4.8 | 3.3 | 5.2 | 4.9 | 3.3 | 3.4 | 3.0 | 1.9 | 4.3 |
Ho | 1.1 | 0.9 | 0.7 | 1.0 | 0.9 | 0.7 | 0.7 | 0.6 | 0.36 | 0.88 |
Er | 3.0 | 2.7 | 2.0 | 2.9 | 2.8 | 1.9 | 1.9 | 1.8 | 1.1 | 2.2 |
Tm | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 | 0.3 | 0.3 | 0.3 | 0.15 | 0.38 |
Yb | 2.5 | 2.4 | 1.8 | 2.6 | 2.6 | 1.8 | 1.9 | 1.7 | 1.0 | 2.1 |
Lu | 0.4 | 0.4 | 0.26 | 0.4 | 0.4 | 0.3 | 0.27 | 0.25 | 0.14 | 0.35 |
Hf | 0.0 | 2.4 | 2.9 | 2.3 | 3.5 | 3.2 | 2.7 | 2.8 | 4.8 | 4.0 |
Pb | 21.8 | 22.9 | 21.7 | 26.6 | 25.2 | 23.8 | 28.6 | 24.8 | 12.8 | 61.1 |
U | 1.7 | 2.6 | 2.5 | 4.1 | 5.5 | 3.8 | 3.2 | 2.3 | 0.8 | 3.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shulkin, V.; Bogdanova, N.; Elovskiy, E. Influence of Clogging at the Filtration on Analysis of Dissolved and Particulate Forms of Chemical Elements in Boreal Rivers of the Russian Far East. Minerals 2022, 12, 773. https://doi.org/10.3390/min12060773
Shulkin V, Bogdanova N, Elovskiy E. Influence of Clogging at the Filtration on Analysis of Dissolved and Particulate Forms of Chemical Elements in Boreal Rivers of the Russian Far East. Minerals. 2022; 12(6):773. https://doi.org/10.3390/min12060773
Chicago/Turabian StyleShulkin, Vladimir, Natalia Bogdanova, and Evgeniy Elovskiy. 2022. "Influence of Clogging at the Filtration on Analysis of Dissolved and Particulate Forms of Chemical Elements in Boreal Rivers of the Russian Far East" Minerals 12, no. 6: 773. https://doi.org/10.3390/min12060773
APA StyleShulkin, V., Bogdanova, N., & Elovskiy, E. (2022). Influence of Clogging at the Filtration on Analysis of Dissolved and Particulate Forms of Chemical Elements in Boreal Rivers of the Russian Far East. Minerals, 12(6), 773. https://doi.org/10.3390/min12060773