Adsorption and Desorption of Coal Gangue toward Available Phosphorus through Calcium-Modification with Different pH
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Collection and Preparation
2.2. Characterization
2.3. Adsorption Experiments
2.3.1. Adsorption Kinetic Experiments
2.3.2. Adsorption Isotherm Experiments
2.4. Desorption Experiments
2.5. Statistical Analysis
3. Results
3.1. Characterization of Raw and Calcium-Modified Coal Gangues
3.1.1. XRD Analysis
3.1.2. XRF Analysis
3.1.3. FTIR Analysis
3.1.4. SEM Analysis
3.1.5. BET Analysis
3.2. Phosphate Adsorption of Raw and Calcium-Modified Coal Gangues
3.2.1. Adsorption Kinetics of Phosphate
3.2.2. Adsorption Isotherms of Phosphate
3.3. Phosphate Desorption of Raw and Calcium-Modified Coal Gangues
4. Discussion
4.1. Analysis of Phosphate Adsorption Mechanism by Calcium-Modified Coal Gangue
4.2. Enlightenment of Modified Coal Gangue on Phosphate Retention and Release Capacity
4.3. Application Advantages and Directions of Modified Coal Gangue
5. Conclusions
- Al-CG had better adsorption and desorption effects, and the adsorption process was more in line with the pseudo second-order model and the Langmuir isotherm adsorption model, where the Langmuir maximum adsorption capacity of Al-CG was the highest (3.599 mg g−1).
- The better adsorption effect of Al-CG was contributed to the generation of C-S-H and AFt, which provided a larger specific surface area (9.497 m2 g−1) and more Ca2+, Al3+, and hydroxyl groups.
- When the Al-CG sample that absorbed phosphate was desorbed by distilled water, the desorption amount of phosphate was the lowest, and when using NaHCO3 solution (pH = 8.5) to desorb it, the desorption amount was highest.
- The study demonstrated that calcium modification with alkali condition was an effective way to realize the resource utilization of coal gangue, which can be used as a filling material in the reclamation area, as a soil conditioner in agricultural production, and as a phosphorus removal agent in water bodies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.Y.; Wang, J.M. Comprehensive utilization and environmental risks of coal gangue: A review. J. Clean. Prod. 2019, 239, 117946. [Google Scholar] [CrossRef]
- Zhang, W.Q.; Dong, C.W.; Huang, P.; Sun, Q.; Li, M.; Chai, J. Experimental Study on the Characteristics of Activated Coal Gangue and Coal Gangue-Based Geopolymer. Energies 2020, 13, 2504. [Google Scholar] [CrossRef]
- Romero, M.; Padilla, I.; Contreras, M.; López-Delgado, A. Mullite-Based Ceramics from Mining Waste: A Review. Mineral 2021, 11, 332. [Google Scholar] [CrossRef]
- Alfarzaeai, M.S.; Niu, Q.; Zhao, J.Q.; Eshaq, R.M.A.; Hu, E. Coal/Gangue Recognition Using Convolutional Neural Networks and Thermal Images. IEEE Access 2020, 8, 76780–76789. [Google Scholar] [CrossRef]
- Querol, X.; Zhuang, X.; Font, O.; Izquierdo, M.; Alastuey, A.; Castro, I.; van Drooge, B.L.; Moreno, T.; Grimalt, J.O.; Elvira, J.; et al. Influence of soil cover on reducing the environmental impact of spontaneous coal combustion in coal waste gobs: A review and new experimental data. Int. J. Coal Geol. 2011, 85, 2–22. [Google Scholar] [CrossRef]
- Song, L.; Liu, S.J.; Li, W.W. Quantitative inversion of fixed carbon content in coal gangue by thermal infrared spectral data. Energies 2019, 12, 1659. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.L.; Zhang, J.X.; Yin, W.; Sun, Q. Analysis of overlying strata movement and behaviors in caving and solid backfilling mixed coal mining. Energies 2017, 10, 1057. [Google Scholar] [CrossRef] [Green Version]
- Bi, H.B.; Wang, C.X.; Lin, Q.Z.; Jiang, X.D.; Jiang, C.L.; Bao, L. Pyrolysis characteristics, artificial neural network modeling and environmental impact of coal gangue and biomass by TG-FTIR. Sci. Total Environ. 2021, 751, 142293. [Google Scholar] [CrossRef]
- Wang, J.M.; Li, X.F.; Bai, Z.K.; Huang, L.B. The effects of coal gangue and fly ash on the hydraulic properties and water content distribution in reconstructed soil profiles of coal-mined land with a high groundwater table. Hydrol. Process. 2016, 31, 687–697. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Ling, T.C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020, 234, 117424. [Google Scholar] [CrossRef]
- Stracher, G.B.; Taylor, T.P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 2004, 59, 7–17. [Google Scholar] [CrossRef]
- Nathan, Y.; Dvorachek, M.; Pelly, I.; Mimran, I. Characterization of coal fly ash from Israel. Fuel 1999, 78, 205–213. [Google Scholar] [CrossRef]
- Shepley, M.G.; Pearson, A.D.; Smith, G.D.; Banton, C.J. The impacts of coal mining subsidence on groundwater resources management of the East Midlands Permo-Triassic Sandstone aquifer, England. Q. J. Eng. Geol. Hydrogeol. 2008, 41, 425–438. [Google Scholar] [CrossRef]
- Rahnema, H.; Mirasi, S. Seismic and geotechnical study of land subsidence and vulnerability of rural buildings. Int. J. Geosci. 2012, 3, 878–884. [Google Scholar] [CrossRef] [Green Version]
- Hejmanowski, R. Modeling of time dependent subsidence for coal and ore deposits. Int. J. Coal Sci. Technol. 2015, 2, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Akbar, G.; Ali, M.; Homayon, S.; Mahasa, R. Effects of groundwater withdrawal on land subsidence in Kashan Plain, Iran. Bull. Eng. Geol. Environ. 2016, 75, 1157–1168. [Google Scholar]
- Pone, J.D.N.; Hein, K.A.A.; Stracher, G.B.; Annegarn, H.J.; Finkleman, R.B.; Blake, D.R.; McCormack, J.K.; Schroeder, P. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa. Int. J. Coal Geol. 2007, 72, 124–140. [Google Scholar] [CrossRef]
- Zheng, L.P.; Zhu, L.; Wang, W.; Guo, L.; Chen, B.B. Land subsidence related to coal mining in China revealed by L-Band InSAR analysis evaluation methods. Int. J. Environ. Res. Public Health 2020, 17, 1170. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.H.; Lao, X.B.; Wu, J.F.; Zhang, Y.X.; Xu, X.Y.; Li, K. Microstructural evolution, phase transformation, and variations in physical properties of coal series kaolin powder compact during firing. Appl. Clay Sci. 2015, 115, 76–86. [Google Scholar] [CrossRef]
- Polak, K.; Różkowski, K.; Czaja, P. Causes and Effects of Uncontrolled Water Inrush into a Decommissioned Mine Shaft. Mine Water Environ. 2015, 35, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Zhang, Y.M.; Chen, Q.; Yang, F.; Liu, X.P.; Wu, J.G.; Wang, P.M. Effect of mineral composition and w/c ratios to the growth of AFt during cement hydration by In-Situ powder X-ray diffraction analysis. Materials 2020, 13, 4963. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, L.Y.; Zhang, S.; Zheng, L.G.; Miao, C.H. Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. J. Geochem. Explor. 2018, 186, 1–11. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, B. The use of coal fly ash in sodic soil reclamation. Land. Degrad. Dev. 2003, 14, 285–299. [Google Scholar] [CrossRef]
- Cheng, W.; Bian, Z.F.; Dong, J.H.; Lei, S.G. Soil properties in reclaimed farmland by filling subsidence basin due to underground coal mining with mineral wastes in China. Trans. Nonferrous Met. Soc. China 2014, 24, 2627–2635. [Google Scholar] [CrossRef]
- Guo, Y.X.; Yan, K.Z.; Cui, L.; Cheng, F.Q. Improved extraction of alumina from coal gangue by surface mechanically grinding modification. Powder Technol. 2016, 302, 33–41. [Google Scholar] [CrossRef]
- Wang, S.B.; Luo, K.L.; Wang, X.; Sun, Y.Z. Estimate of sulfur, arsenic, mercury, fluorine emissions due to spontaneous combustion of coal gangue an important part of Chinese emission inventories. Environ. Pollut. 2016, 209, 107–113. [Google Scholar] [CrossRef]
- Li, Y.; Yao, Y.; Liu, X.M.; Sun, H.H.; Ni, W. Improvement on pozzolanic reactivity of coal gangue by integrated thermal and chemical activation. Fuel 2013, 109, 527–533. [Google Scholar] [CrossRef]
- Motasemi, F.; Afzal, M.T. A review on the microwave-assisted pyrolysis technique. Renew. Sust. Energ. Rev. 2013, 28, 317–330. [Google Scholar] [CrossRef]
- Aglietti, E.F.; Lopez, J.M.P.; Pereira, E. Mechanochemical effects in kaolinite grinding. I. Textural and physicochemical aspects. Int. J. Miner. Process. 1986, 16, 125–133. [Google Scholar] [CrossRef]
- Suraj, G.; Iyer, C.S.P.; Rugmini, S.; Lalithambika, M. The effect of micronization on kaolinites and their sorption behaviour. Appl. Clay Sci. 1997, 12, 111–130. [Google Scholar] [CrossRef]
- Boldyreva, E. Mechanochemistry of inorganic and organic systems: What is similar, what is different? Chem. Soc. Rev. 2013, 42, 7719–7738. [Google Scholar] [CrossRef] [PubMed]
- Jaesuk, R. Improvement on reactivity of cementitious waste materials by mechano-chemical activation. Mater. Lett. 2003, 58, 903–906. [Google Scholar]
- Yang, N.R. Processes and effects of mechanochemistry(II)—Processes and application of mechanochemistry. J. Build. Mater. 2000, 3, 93–97. (In Chinese) [Google Scholar]
- Stellacci, P.; Liberti, L.; Notarnicola, M.; Bishop, P.L. Valorization of coal fly ash by mechano-chemical activation: Part II. Enhancing pozzolanic reactivity. Chem. Eng. J. 2009, 149, 19–24. [Google Scholar] [CrossRef]
- Li, C.; Wan, J.H.; Sun, H.H.; Li, L.T. Investigation on the activation of coal gangue by a new compound method. J. Hazard. Mater. 2010, 179, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Liu, G.; Yan, Z.; Fang, T. Transformation behavior of mineral composition and trace elements during coal gangue combustion. Fuel 2012, 97, 644–650. [Google Scholar] [CrossRef]
- Guo, W.; Li, D.X.; Chen, J.H.; Yang, N.R. Structure and pozzolanic activity of calcined coal gangue during the process of mechanical activation. J. Wuhan Univ. Technol. 2009, 24, 326–329. [Google Scholar] [CrossRef]
- Liu, F.Q.; Xie, M.Z.; Yu, G.Q.; Ke, C.Y.; Zhao, H.L. Study on Calcination Catalysis and the Desilication Mechanism for Coal Gangue. ACS Sustain. Chem. Eng. 2021, 9, 10318–10325. [Google Scholar] [CrossRef]
- Han, J.Y.; Song, X.Y.; Gao, Z.H. Excitation effect of soluble glass on composite system with calcined coal gangue and slag. Appl. Mech. Mater. 2012, 174–177, 30–34. [Google Scholar] [CrossRef]
- Livingston, W.R.; Rogers, D.A.; Chapman, R.J.; Bailey, N.T. The use of coal spoils as feed materials for alumina recovery by acid-leaching. Hydrometallurgy 1983, 10, 79–96. [Google Scholar] [CrossRef]
- Hussain, S.A.; Jamal, R. Evaluation of an HCl process for leaching of low-grade highly siliceous bauxite ore. Dev. Miner. Process. 2000, 13, 8–14. [Google Scholar]
- Zhou, J.M.; Fu, Y.S.; Pan, S.W. The use of modified coal gangue for the remediation and removal of phosphorus in an enclosed water area. Clean Technol. Environ. Policy 2021, 23, 1327–1339. [Google Scholar] [CrossRef]
- Ma, Y.L.; Ma, J.; Peng, H.; Weng, L.P.; Chen, Y.L.; Li, Y.T. Effects of iron, calcium, and organic matter on phosphorus behavior in fluvo-aquic soil: Farmland investigation and aging experiments. J. Soil Sediment. 2019, 19, 3994–4004. [Google Scholar] [CrossRef]
- Gamelas, J.A.F.; Ferra, E.; Rocha, F. An insight into the surface properties of calcined kaolinitic clays: The grinding effect. Colloid. Surf. A 2014, 455, 49–57. [Google Scholar] [CrossRef]
- Frost, R.; Makoens, E.; Kristóf, J.; Kloprogge, T. Modification of kaolinite surfaces through mechanochemical treatment-a mid-IR and near-IR spectroscopic study. Spectrochim. Acta A 2002, 58, 2849–2859. [Google Scholar] [CrossRef] [Green Version]
- Ptáček, P.; Frajkorová, F.; Šoukal, F.; Opravil, T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014, 264, 439–445. [Google Scholar] [CrossRef]
- Ye, T.T.; Min, X.Y.; Li, X.J.; Zhang, S.G.; Gao, Y. Improved holding and releasing capacities of coal gangue toward phosphate through alkali-activation. Chemosphere 2022, 287, 132382. [Google Scholar] [CrossRef]
- Bu, N.J.; Liu, X.M.; Song, S.L.; Liu, J.H.; Yang, Q.; Li, R.; Zheng, F.; Yan, L.H.; Zhen, Q.; Zhang, J.F. Synthesis of NaY zeolite from coal gangue and its characterization for lead removal from aqueous solution. Adv. Powder Technol. 2020, 31, 2699–2710. [Google Scholar] [CrossRef]
- Alver, B.E.; Alver, Ö.; Günal, A.; Dikmen, G. Effects of hydrochloric acid treatment on structure characteristics and C2H4 adsorption capacities of Unye bentonite from Turkey: A combined FT-IR, XRD, XRF, TG/DTA and MAS NMR study. Adsorption 2016, 22, 287–296. [Google Scholar] [CrossRef]
- Baccour, A.; Sahnoun, R.D.; Bouaziz, J. Effects of mechanochemical treatment on the properties of kaolin and phosphate–kaolin materials. Powder Technol. 2014, 264, 477–483. [Google Scholar] [CrossRef]
- Ptáček, P.; Kubátová, D.; Havlica, J.; Brandštetr, J.; Šoukal, F.; Opravil, T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010, 204, 222–227. [Google Scholar] [CrossRef]
- Mohammadi, R.; Azadmehr, A.; Maghsoudi, A. Enhanced competitive adsorption of zinc and manganese by alginate-iron oxide-combusted coal gangue composite: Synthesizing, characterization and investigation. J. Environ. Chem. Eng. 2021, 9, 105003. [Google Scholar] [CrossRef]
- Li, L.X.; Zhang, Y.M.; Zhang, Y.F.; Sun, J.M.; Hao, Z.F. The thermal activation process of coal gangue selected from Zhungeer in China. J. Therm. Anal. Calorim. 2016, 126, 1559–1566. [Google Scholar] [CrossRef]
- Sun, H.L.; Fen, D.D.; Sun, S.Z.; Zhao, Y.J.; Zhang, L.Y.; Chang, G.Z.; Guo, Q.J.; Wu, J.Q.; Qin, Y.K. Thermal evolution of gas-liquid-solid products and migration regulation of C/H/O elements during biomass pyrolysis. J. Anal. Appl. Pyrol. 2021, 156, 105128. [Google Scholar] [CrossRef]
- Li, Z.F.; Gao, Y.F.; Zhang, J.; Zhang, C.; Chen, J.P.; Liu, C. Effect of particle size and thermal activation on the coal gangue based geopolymer. Mater. Chem. Phys. 2021, 267, 124657. [Google Scholar] [CrossRef]
- MolaAbasi, H.; Semsani, S.N.; Saberian, M.; Khajeh, A.; Li, J.; Harandi, M. Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro- and macro-level approach. J. Clean. Prod. 2020, 267, 122209. [Google Scholar] [CrossRef]
- Han, Y.M.; Xia, J.W.; Chang, H.F.; Xu, J. The influence mechanism of ettringite crystals and microstructure characteristics on the strength of calcium-based stabilized soil. Materials 2021, 14, 1359. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, Y.N.; Lee, X.Q.; Wu, P.; Liu, F.; Zhang, X.Y.; Li, L.; Chen, M. Environmental-friendly coal gangue-biochar composites reclaiming phosphate from water as a slow-release fertilizer. Sci. Total Environ. 2021, 758, 143664. [Google Scholar] [CrossRef]
- Qiu, B.B.; Duan, F. Synthesis of industrial solid wastes/biochar composites and their use for adsorption of phosphate: From surface properties to sorption mechanism. Colloid. Surf. A 2019, 571, 86–93. [Google Scholar] [CrossRef]
- Xie, Z.; Xi, Y.; Day, R.; Su, J.; Wu, X. The influence of alkalinity on activation and microstructure of fly ash. Cem. Concr. Res. 2001, 31, 1245–1249. [Google Scholar] [CrossRef]
- Wang, C.L.; Ni, W.; Zhang, S.Q.; Wang, S.; Gai, G.S.; Wang, W.K. Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings. Construction and Building. Materials 2016, 104, 109–115. [Google Scholar]
- Qiu, R.F.; Cheng, F.Q. Modification of waste coal gangue and its application in the removal of Mn2+ from aqueous solution. Water Sci. Technol. 2016, 74, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Shen, F.; Smith, R.L., Jr.; Qi, X.H. Black liquor-derived calcium-activated biochar for recovery of phosphate from aqueous solutions. Bioresour. Technol. 2019, 294, 122198. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.M.; Thompson, A.; Zhang, G.L. Long-term paddy cultivation significantly alters topsoil phosphorus transformation and degrades phosphorus sorption capacity. Soil Till. Res. 2014, 142, 32–41. [Google Scholar] [CrossRef]
- Eslamian, F.; Qi, Z.M.; Qian, C. Lime amendments to enhance soil phosphorus adsorption capacity and to reduce phosphate desorption. Water Air Soil Poll. 2021, 232, 66. [Google Scholar] [CrossRef]
- Del Bubba, M.; Arias, C.A.; Brix, H. Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 2003, 37, 3390–3400. [Google Scholar] [CrossRef]
- Zhao, D.; Qiu, S.K.; Li, M.M.; Luo, Y.; Zhang, L.S.; Feng, M.H.; Yuan, M.Y.; Zhang, K.Q.; Wang, F. Modified biochar improves the storage capacity and adsorption affinity of organic phosphorus in soil. Environ. Res. 2022, 205, 112455. [Google Scholar] [CrossRef]
Sample ID | Elemental Composition (Weight%) | Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Diameter (nm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | K2O | CaO | P2O5 | SO3 | MgO | SBET | At-Plot | Vmeso | Vt-Plot | Davr | |
RCG | 64.414 ± 0.24 | 26.468 ± 0.22 | 3.576 ± 0.11 | 2.269 ± 0.08 | 1.051 ± 0.05 | 0.150 ± 0.007 | 1.570 ± 0.08 | 0.677 ± 0.04 | 4.017 ± 1.72 | 0.295 ± 0.51 | 0.0253 ± 0.007 | 0.0012 ± 0.0004 | 16.193 ± 1.97 |
Ac-CG | 63.185 ± 0.23 | 26.281 ± 0.23 | 3.571 ± 0.10 | 2.424 ± 0.08 | 1.179 ± 0.03 | 0.147 ± 0.004 | 0.775 ± 0.006 | 0.716 ± 0.04 | 4.545 ± 1.69 | 0.082 ± 0.37 | 0.0268 ± 0.004 | 0.0010 ± 0.0005 | 15.609 ± 1.83 |
Ne-CG | 62.820 ± 0.24 | 26.336 ± 0.22 | 3.492 ± 0.09 | 2.402 ± 0.08 | 1.307 ± 0.04 | 0.177 ± 0.003 | 0.605 ± 0.004 | 0.744 ± 0.05 | 5.590 ± 1.68 | 0.094 ± 0.56 | 0.0283 ± 0.003 | 0.0015 ± 0.0002 | 13.665 ± 1.77 |
Al-CG | 62.826 ± 0.24 | 26.534 ± 0.22 | 3.598 ± 0.10 | 2.212 ± 0.07 | 1.628 ± 0.03 | 0.149 ± 0.004 | 0.569 ± 0.005 | 0.749 ± 0.04 | 9.497 ± 1.63 | 1.515 ± 0.47 | 0.0160 ± 0.002 | 0.0074 ± 0.0002 | 5.628 ± 1.46 |
Sample ID | Pseudo First-Order Model | Pseudo Second-Order Model | Langnuir Model | Freundlish Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
k1 (h−1) | qe (mg·g−1) | R2 | k2(g·mg−1·h−1) | qe(mg·g−1) | R2 | Kl (L·mg−1) | qm (mg·g−1) | R2 | n | Kf [mg(1−n)Lng−1]−1 | R2 | |
RCG | 0.267 | 0.126 | 0.878 | 2.910 | 0.139 | 0.845 | 0.029 | 0.221 | 0.980 | 1.019 | 0.033 | 0.981 |
Ac-CG | 1.524 | 0.336 | 0.732 | 5.457 | 0.357 | 0.939 | 0.003 | 2.510 | 0.992 | 1.008 | 0.023 | 0.992 |
Ne-CG | 0.845 | 0.625 | 0.750 | 2.094 | 0.665 | 0.935 | 0.004 | 2.734 | 0.994 | 1.006 | 0.035 | 0.994 |
Al-CG | 0.400 | 2.129 | 0.856 | 0.311 | 2.283 | 0.946 | 0.004 | 3.599 | 0.995 | 1.005 | 0.045 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, T.; Min, X.; Jiang, X.; Sun, M.; Li, X. Adsorption and Desorption of Coal Gangue toward Available Phosphorus through Calcium-Modification with Different pH. Minerals 2022, 12, 801. https://doi.org/10.3390/min12070801
Ye T, Min X, Jiang X, Sun M, Li X. Adsorption and Desorption of Coal Gangue toward Available Phosphorus through Calcium-Modification with Different pH. Minerals. 2022; 12(7):801. https://doi.org/10.3390/min12070801
Chicago/Turabian StyleYe, Tiantian, Xiangyu Min, Xuzi Jiang, Mingyue Sun, and Xinju Li. 2022. "Adsorption and Desorption of Coal Gangue toward Available Phosphorus through Calcium-Modification with Different pH" Minerals 12, no. 7: 801. https://doi.org/10.3390/min12070801
APA StyleYe, T., Min, X., Jiang, X., Sun, M., & Li, X. (2022). Adsorption and Desorption of Coal Gangue toward Available Phosphorus through Calcium-Modification with Different pH. Minerals, 12(7), 801. https://doi.org/10.3390/min12070801