Geochemistry, Zircon U–Pb Ages, and Hf Isotopes of the Devonian Mafic and Acidic Dykes of the Jinba Gold Deposit, NW China: Petrogenesis and Tectonic Implications
Abstract
:1. Introduction
2. Regional Geology
3. Analytical Methods
3.1. Sample Descriptions
3.2. LA-ICP-MS Zircon U–Pb Geochronology
3.3. Major and Trace Element Analyses
3.4. In Situ Zircon Lu–Hf Isotope Analysis
4. Results
4.1. Zircon U–Pb Ages
4.1.1. Granite Dykes
4.1.2. Diorite Dykes
4.2. Zircon Hf isotopic compositions
4.3. Major and Trace Elements
4.3.1. Major Elements
4.3.2. Trace Elements
5. Discussion
5.1. Emplacement Ages of Dykes and Magmatism
5.2. Petrogenesis of the Dykes
5.2.1. Granite Dyke
5.2.2. Diorite Dykes
5.3. Tectonic Setting
6. Conclusions
- Zircon U–Pb ages of granite and diorite dykes are 384~393 Ma, indicating Early–Middle Devonian magmatic activity. The mineralization age of Jinba gold deposit is Late Carboniferous–Early Permian. The mineralization age of the Jinba gold deposit does not coincide with granite dykes and diorite dykes.
- The granite dykes are mainly formed by the mixing and melting of crustal and mantle materials with slight crystallization differentiation, while diorite dykes are the product of rising mantle magma that underwent crystallization of mafic minerals and mixing with crustal material.
- The granitic and diorite dykes of the Jinba gold deposit were formed in an island arc environment related to subduction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sengör, A.M.C.; Natalin, B.A.; Burtman, V.S. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 1993, 364, 299–307. [Google Scholar] [CrossRef]
- Xiao, W.J.; Kröner, A.; Windley, B.F. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. Int. J. Earth Sci. 2009, 98, 1185–1188. [Google Scholar] [CrossRef]
- Xiao, W.; Huang, B.; Han, C.; Sun, S.; Li, J. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2010, 18, 253–273. [Google Scholar] [CrossRef]
- Safonova, I.Y.; Santosh, M. Accretionary complexes in the Asia-Pacific region: Tracing archives of ocean plate stratigraphy and tracking mantle plumes. Gondwana Res. 2014, 25, 126–158. [Google Scholar] [CrossRef]
- Kröner, A.; Kovach, V.; Belousova, E.; Hegner, E.; Armstrong, R.; Dolgopolova, A.; Seltmann, R.; Alexeiev, D.V.; Hoffmann, J.E.; Wong, J.; et al. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res. 2014, 25, 103–125. [Google Scholar] [CrossRef]
- Yakubchuk, A. Evolution of the Central Asian Orogenic Supercollage since Late Neoproterozoic revised again. Gondwana Res. 2017, 47, 372–398. [Google Scholar] [CrossRef]
- Xiao, X.C.; Tang, Y.Q.; Feng, Y.M.; Zhu, B.Q.; Li, J.Y.; Zhao, M. Tectonic Evolution of Northern Xinjiang and Its Adjacent Regions; Geological Publishing House: Beijing, China, 1992; pp. 1–169, (In Chinese with English Abstract). [Google Scholar]
- He, G.Q.; Li, M.S.; Li, D.Q.; Zhou, N.H. Paleozoic Crustal Evolution and Minerlization in Xinjiang, China; Xinjiang People’s Publishing House: Urumqi, China, 1994; pp. 1–437. (In Chinese) [Google Scholar]
- Windley, B.F.; Alexeiev, D.; Xiao, W.J.; Kröner, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Sun, M.; Santosh, M. Continental reconstruction and metallogeny of the Circum-Junggar areas and termination of the southern Central Asian Orogenic Belt. Geosci. Front. 2015, 6, 137–140. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.H.; Wang, Z.G.; Zou, T.R.; Masuda, A.; Tu, G.Z. The REE, isotopic composition of O, Pb, Sr and Nd and petrogenesis of granitoids in the Altai region. In Progress of Solid-Earth Sciences in Northern Xinjiang, China; Tu, G.C., Ed.; Science Press: Beijing, China, 1993; pp. 239–266, (In Chinese with English Abstract). [Google Scholar]
- Wang, Z.G.; Zhao, Z.H.; Zou, T.R. Geochemistry of the Granitoids in Altay; Science Press: Beijing, China, 1998; pp. 1–152, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Hong, D.W.; Tong, Y.; Han, B.-F. Zircon U-Pb SHRIM Page and origin of post-orogenic Lamazhao granitic pluton from Altai orogen: Its implications for continental growth. Acta Petrol. Sin. 2005, 21, 640–650, (In Chinese with English Abstract). [Google Scholar]
- Tong, Y.; Wang, T.; Hong, D.W.; Dai, Y.J. Ages and origin of the early Devonian granites from the north part of Chinese Altai M ountains and its tectonic implications. Acta Petrol. Sin. 2007, 23, 1933–1944, (In Chinese with English Abstract). [Google Scholar]
- Chai, F.M.; Ouyang, L.J.; Dong, L.H.; Yang, F.Q.; Liu, F.; Zhang, Z.X.; Li, Q. Geochronology and geochemistry of tonodiorite in The Ashele Copper-Zinc Deposit, Xinjiang. Chin. J. Petrol. Mineral. 2013, 32, 41–52, (In Chinese with English Abstract). [Google Scholar]
- Gao, L.-L.; Chen, C.; Wang, K.-Y.; Zhang, X.-B.; Li, S.-D. Tectonic setting and geochronology of the Sarsuk Au polymetallic deposit in Xinjiang, NW China: Constraints from pyrite Re–Os, zircon U–Pb dating and Hf isotopes. Ore Geol. Rev. 2020, 124, 103641. [Google Scholar] [CrossRef]
- Xiao, W.J.; Pirajno, F.; Seltmann, R.; Safonova, I.; Chen, Y.J.; Muhtar, M.N. Metallogeny of the Southern Altaids: Key to Understanding the Accretionary Tectonics and Crustal Evolution of Central Asia. Ore Geol. Rev. 2022, 144, 104871. [Google Scholar] [CrossRef]
- Chen, K.Q.; Dang, Y.X.; Dong, Y.G.; Ding, R.F. Zircon U–Pb age of the Au–bearing quartz veins in Saidu gold deposit and its geological implications. Miner. Explor. 2010, 1, 229–233, (In Chinese with English Abstract). [Google Scholar]
- Deng, S.L. Mineralation of Ductile Shear Belt Gold Deposit of Maerkakuli in Habahe, Xinjiang. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2011. (In Chinese with English Abstract). [Google Scholar]
- Zhan, S.; Tian, Z.F.; Song, M.Y. Stable isotope characteristics of typical deposits in Habahe Gold belt, Xinjiang. Xinjiang Geol. 2016, 34, 476–480, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.W.; Xu, J.H.; Wei, X.F.; Ding, R.F. The mineralization of the Jinba gold deposit, Xinjiang, China: Evidence from Geology and Fluid inclusions. Earth Sci. 2018, 43, 14. [Google Scholar]
- Li, S.-D.; Chen, C.; Gao, L.-L.; Xia, F.; Zhang, X.-B.; Wang, K.-Y. Fluid Inclusions and H–O–C–S–Pb Isotopic Systematics of the Jinba Gold Deposit, NW China: Implications for Ore Genesis. Front. Earth Sci. 2021, 9, 638375. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, G.; Chai, F.M. LA-ICP-MS U-Pb ages and geological implications of the Habahe Pluton at the Southern Margin of the Altay, Xinjiang. Xinjiang Geol. 2012, 30, 146–151, (In Chinese with English Abstract). [Google Scholar]
- Zhang, M.; Niu, X.L.; Mo, L.C.; Niu, S.D.; Wu, H.Y.; Zhou, Q.F. Fluid inclusions characteristics and ore-forming fluid evolution of in the Tuokuzibayi gold deposit in the southern margin of Altay. Acta Petrol. Sin. 2020, 36, 1171–1185. [Google Scholar]
- Pirajno, F.; Seltmann, R.; Yang, Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosci. Front. 2011, 2, 47–75. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Y.; Xiao, G.L. Geological characteristics and genesis of Tukuzibayi Gold Deposit in Habahe County, Xinjiang. Xinjiang Geol. 2007, 25, 258–262, (In Chinese with English Abstract). [Google Scholar]
- Chen, H.Y.; Chen, Y.J.; Liu, Y.L. Mineralization of Erqis gold belt in Xinjiang and its relation to Central Asian Orogenesis. Sci. China Ser. D 2000, 30, 38–44. [Google Scholar]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Gunther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Alle, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Vonquadt, A.; Roddick, J.C.; Speigel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace-element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Ludwig, K.R. ISOPLOT 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2003; pp. 1–70. [Google Scholar]
- Chen, Q.Z.; Jiang, S.Y.; Duan, R.C. The geochemistry, U-Pb and Re-Os geochronology, and Hf isotopic constraints on the genesis of the Huangjiagou Mo deposit and related granite in the Dabie region, Hubei Province, China. Ore Geol. Rev. 2017, 81, 504–517. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.J.; Belousova, E.; Jackson, S.; van Achterbergh, E.; O’Reilly, S.Y.; Shee, S. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Geng, J.Z.; Li, H.K.; Zhang, J.; Zhou, H.Y.; Li, H.M. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geol. Bull. China 2011, 30, 1508–1513, (In Chinese with English Abstract). [Google Scholar]
- Griffin, W.L.; Wang, X.; Jackson, S.E.; Pearson, N.J.; O’Reilly, S.Y.; Xu, X.; Zhou, X. Zircon chemistry and magma mixing, SE China; in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 2002, 61, 237–269. [Google Scholar] [CrossRef]
- Peytcheva, I.; Quadt, A.V.; Neubauer, F.; Frank, M.; Nedialkov, R.; Heinrich, C.; Strashimirov, S. U-Pb dating, Hf-isotope characteristics and trace-REE-patterns of zircons from Medet porphyry copper deposit, Bulgaria: Implications for timing, duration and sources of ore-bearing magmatism. Mineral. Petrol. 2009, 96, 19–41. [Google Scholar] [CrossRef] [Green Version]
- Scherer, E.E.; Cameron, K.L.; Blichert-Toft, J. Lu-Hf garnet geochronology: Closure temperature relative to the Sm-Nd system and the effects of trace mineral inclusions. Geochim. Cosmochim. Acta 2000, 64, 3413–3432. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Black, L.P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Soderlund, U.; Patchett, P.; Vervoort, J.D.; Isachsen, C.E. The176Lu decay constant determined by Lu-Hf andU-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Guo, C.L.; Chen, Y.C.; Zeng, Z.L.; Lou, F. Petrogenesis of the Xihuashan granites in southeastern China: Constraints from geochemistry and in-situ analyses of zircon U-Pb-Hf-O isotopes. Lithos 2012, 148, 209–227. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Maniar, P.D.; Piccoli, P.M. Tectonic discrimination of granitoids. Geol. Soc. Am. Bull. 1989, 101, 635–643. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of the Rare Earth Elements: Meteorite Studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society, London, Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Cai, K.D. Magmatism of the Western Chinese Altai Orogen: Geochronology, Petrogenesis and Tectonic Implications. Master’s Thesis, Chinese Academy of Sciences, Beijing, China, 2007. (In Chinese with English Abstract). [Google Scholar]
- Cai, K.; Sun, M.; Yuan, C.; Zhao, G.; Xiao, W.; Long, X.; Wu, F. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: Implications for petrogenesis and tectonic evolution. Gondwana Res. 2010, 18, 638–652. [Google Scholar] [CrossRef]
- Xu, J.H.; Zhang, G.R.; Xie, Y.L.; Shan, L.H.; Zhang, S.J.; Wang, P.H.; Zou, C.H. The evolution of teconic-metallogenic fluids in the Saidu gold deposit, Southern Altay. Acta Petrol. Mineral. 2009, 28, 141–151, (In Chinese with English Abstract). [Google Scholar]
- Mi, D.J.; Su, D.Y.; Zou, C.H.; Tang, X.D. Geological characteristics of Saidu gold deposit in Habahe County of Xinjiang autonomous region. Contrib. Geol. Miner. Resour. Res. 2010, 25, 331–335, (In Chinese with English Abstract). [Google Scholar]
- Xue, X.L. Geological characteristics and geneses of Zanlander gold deposit, Habahe County, Xinjiang. World Nonferrous Metal. 2018, 4, 150, (In Chinese with English Abstract). [Google Scholar]
- Li, H.Q.; Chen, F.W. Chronology of Regional Mineralization in Xinjiang, China; Geological Publishing House: Beijing, China, 2004; pp. 40–45, (In Chinese with English Abstract). [Google Scholar]
- Yan, S.H.; Teng, R.L.; Wang, Y.T.; Chen, W.; Chen, B.L. 40Ar/39Ar dating of the Bu’ergen gold-bearing shear zone on the southern margin of the Altay Mountains, Xinjiang, and its significance. Geol. China 2006, 33, 648–655, (In Chinese with English Abstract). [Google Scholar]
- Rui, X.; Zhu, S. The main characteristics and regional metallogenic model of Altay primary gold deposits in Xinjiang. Geol. Rev. 1994, 39, 138–148, (In Chinese with English Abstract). [Google Scholar]
- Li, G.M.; Shen, Y.C.; Liu, T.B.; Shen, P.; Zhou, N.W. Metallogenic evolution of Tuokuzibayi gold deposit in southern Altay, north Xinjiang:Evidence from characteristics of quartz vein systems, isotopic geochemistry and Ar-Ar chronology. Miner. Depos. 2007, 1, 15–32, (In Chinese with English Abstract). [Google Scholar]
- Liu, G.-R.; Li, Y.; Wang, R.; Wang, H.-P.; Yang, C.-D.; Chen, Q.; Qi, S.-J. 40Ar/39Ar dating of Muscovite from the Zhelande Au deposit, Irtysh tectonic zone, Xinjiang and Its Geological Implications. Rock Miner. Anal. 2018, 37, 705–712. [Google Scholar]
- Chappell, B.W. Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranite. Lithos 2000, 46, 535–551. [Google Scholar] [CrossRef]
- Collins, W.J.; Beams, S.D.; White, A.J.R.; Chappell, B.W. Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib. Mineral. Petrol. 1982, 80, 189–200. [Google Scholar] [CrossRef]
- Whalen, J.B.; Currie, K.L.; Chappell, B.W. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contrib. Mineral. Petrol. 1987, 95, 407–419. [Google Scholar] [CrossRef]
- McDonough, W.F.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Wilson, M. Igneous Petrogenesis; Unwin Hyman Press: London, UK, 1989; pp. 295–323. [Google Scholar]
- Francalanci, L.; Taylorsr, S.R.; Mcculloch, M.T. Geochemical and isotopic variations in the calcalkaline rocks of Aeolian arc, southern Tyrrhenian Sea, Italy: Constraints on magma genesis. Contrib. Mineral. Petrol. 1993, 113, 300–313. [Google Scholar] [CrossRef]
- Lightfoot, P.C.; Hawkesworth, C.J.; Sethna, S.F. Petrogenesis of rhyolites and trachytes from the Deccan trap: Sr, N and Pb isotope and t race element evidence. Contrib. Mineral. Petrol. 1987, 95, 44–54. [Google Scholar] [CrossRef]
- Frey, F.A.; Gerlach, D.C.; Hickey, R.L.; Lopez-Escobar, L.; Munizaga-Villavicencio, F. Petrogenesis of the Laguna del Maule volcanic complex, Chile (36° S). Contrib. Mineral. Petrol. 1984, 88, 133–149. [Google Scholar] [CrossRef]
- Ryerson, F.J.; Watson, E.B. Rutile Saturation in Magmas: Implications for Ti-Nb-Ta Depletion in Island-Arc Basalts. Earth Planet. Sci. Lett. 1987, 86, 225–239. [Google Scholar] [CrossRef]
- Jagoutz, O.; Schmidt, M.W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 2013, 371–372, 177–190. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The geochemical evolution of the continental crust. Rev. Geophys. 1995, 33, 241–265. [Google Scholar] [CrossRef]
- Kemp, A.; Hawkesworth, C.J.; Paterson, B.A.; Kinny, P.D. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 2006, 439, 580–583. [Google Scholar] [CrossRef]
- Yang, J.-H.; Wu, F.-Y.; Wilde, S.A.; Xie, L.-W.; Yang, Y.-H.; Liu, X.-M. Tracing magma mixing in granite genesis: In situ U–Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol. 2007, 153, 177–190. [Google Scholar] [CrossRef]
- Ji, W.Q.; Wu, F.Y.; Chung, S.L.; Li, J.X.; Liu, C.Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic Implications of the Composition of Volcanic ARC Magmas. Annu. Rev. Earth Planet. Sci. Lett. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hanghj, K.; Greene, A.R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise Geochem. 2007, 3, 1–70. [Google Scholar]
- Xu, J.F.; Castillo, P.R.; Chen, F.R.; Niu, H.C.; Xu, Y.G.; Zhen, Z.P. Geochemistry of late Paleozoic mafic igneous rocks from the Kuerti area, Xinjiang, northwestern China: Implications for back arc mantle evolution. Chin. Geol. 2003, 193, 137–154. [Google Scholar] [CrossRef]
- Shervais, J.W. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Zhang, H.-X.; Niu, H.-C.; Hiroaki, S.; Shan, Q.; Yu, X.-Y.; Ito, J.; Zhang, Q. Late Paleozoic adakite and Nb-enriched basalt from Northern Xinjiang: Evidence for the Southward subduction of the Paleo-Asian Ocean. Geol. J. China Univ. 2004, 10, 106–113, (In Chinese with English Abstract). [Google Scholar]
- Wang, T.; Hong, D.W.; Jahn, B.M.; Tong, Y.; Wang, Y.; Han, B.; Wang, X. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, Northwest China: Implications for the tectonic evolution of an accretionary orogen. J. Geol. 2006, 114, 735–751. [Google Scholar] [CrossRef]
- Liu, F.; Yang, F.; Mao, J.; Chai, F.; Geng, X. Study on ch ronology and geochemistry for A bagong g rani te in Altay orogen. Acta Petrol. Sin. 2009, 25, 1416–1425, (In Chinese with English Abstract). [Google Scholar]
- Sun, M.; Long, X.P.; Cai, K.D.; Jiang, Y.; Wang, B.; Yuan, C.; Zhao, G.; Xiao, W.; Wu, F. Early Paleozoic ridge subduction in the Chinese Altai: Insight from the abrupt change in Zircon Hf isotopic compositons. Sci. China Earth Sci. 2009, 39, 935–948. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, C.; Long, X.; Sun, M.; Xiao, W. The Kanasi potassic magnesian-rich dacites, Altai, northw estern Chinese: M etasomatism by the melts of subducted sediments. Chin. J. Geol. 2010, 45, 12–29, (In Chinese with English Abstract). [Google Scholar]
Sample | 238U | 232Th | Th /U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | 207Pb/206Pb | 207Pb/235U | 206Pb/238U | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
×10−6 | ×10−6 | Ratio | 1σ | Ratio | 1σ | Ratio | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | Age (Ma) | 1σ | ||
JB1-04 | 333 | 162 | 0.49 | 0.0550 | 0.0015 | 0.4599 | 0.0119 | 0.0606 | 0.0006 | 412.4 | 62 | 384.2 | 8 | 379.6 | 4 |
JB1-24 | 499 | 302 | 0.61 | 0.0543 | 0.0010 | 0.4545 | 0.0088 | 0.0607 | 0.0006 | 384.4 | 43 | 380.4 | 6 | 379.6 | 4 |
JB1-01 | 496 | 477 | 0.96 | 0.0549 | 0.0007 | 0.4613 | 0.0074 | 0.0609 | 0.0006 | 407.9 | 30 | 385.1 | 5 | 381.0 | 3 |
JB1-07 | 449 | 288 | 0.64 | 0.0559 | 0.0014 | 0.4683 | 0.0118 | 0.0609 | 0.0008 | 446.9 | 55 | 390.0 | 8 | 386.5 | 5 |
JB1-16 | 305 | 197 | 0.65 | 0.0547 | 0.0013 | 0.4602 | 0.0110 | 0.0610 | 0.0007 | 400.7 | 52 | 384.4 | 7 | 381.6 | 4 |
JB1-05 | 353 | 173 | 0.49 | 0.0553 | 0.0010 | 0.4648 | 0.0084 | 0.0610 | 0.0004 | 422.4 | 38 | 387.6 | 5 | 381.9 | 3 |
JB1-18 | 431 | 241 | 0.56 | 0.0546 | 0.0010 | 0.4603 | 0.0079 | 0.0611 | 0.0005 | 397.7 | 39 | 384.5 | 5 | 382.1 | 3 |
JB1-17 | 404 | 269 | 0.67 | 0.0529 | 0.0009 | 0.4473 | 0.0080 | 0.0612 | 0.0005 | 325.7 | 39 | 375.4 | 5 | 383.2 | 3 |
JB1-11 | 368 | 196 | 0.53 | 0.0535 | 0.0009 | 0.4522 | 0.0079 | 0.0613 | 0.0005 | 349.9 | 39 | 378.8 | 6 | 383.5 | 3 |
JB1-14 | 396 | 199 | 0.50 | 0.0554 | 0.0009 | 0.4675 | 0.0077 | 0.0613 | 0.0005 | 426.6 | 36 | 389.5 | 5 | 383.6 | 3 |
JB1-09 | 415 | 194 | 0.47 | 0.0548 | 0.0008 | 0.4640 | 0.0069 | 0.0614 | 0.0005 | 404.2 | 31 | 387.0 | 5 | 384.2 | 3 |
JB1-06 | 462 | 271 | 0.59 | 0.0560 | 0.0007 | 0.4732 | 0.0065 | 0.0615 | 0.0005 | 450.5 | 28 | 393.4 | 5 | 384.7 | 3 |
JB1-10 | 384 | 186 | 0.49 | 0.0545 | 0.0007 | 0.4608 | 0.0062 | 0.0615 | 0.0005 | 389.9 | 28 | 384.8 | 4 | 384.8 | 3 |
JB1-03 | 424 | 236 | 0.56 | 0.0555 | 0.0007 | 0.4693 | 0.0063 | 0.0615 | 0.0005 | 430.8 | 29 | 390.7 | 4 | 384.8 | 3 |
JB1-19 | 564 | 372 | 0.66 | 0.0543 | 0.0009 | 0.4616 | 0.0082 | 0.0615 | 0.0005 | 384.2 | 36 | 385.3 | 6 | 384.9 | 3 |
JB1-08 | 515 | 293 | 0.57 | 0.0550 | 0.0009 | 0.4658 | 0.0069 | 0.0616 | 0.0005 | 410.9 | 35 | 388.3 | 5 | 385.1 | 3 |
JB1-29 | 745 | 509 | 0.68 | 0.0550 | 0.0009 | 0.4673 | 0.0075 | 0.0616 | 0.0006 | 414.2 | 35 | 389.3 | 5 | 385.1 | 3 |
JB1-02 | 433 | 280 | 0.65 | 0.0542 | 0.0009 | 0.4599 | 0.0078 | 0.0616 | 0.0005 | 380.4 | 39 | 384.2 | 5 | 385.1 | 3 |
JB1-23 | 442 | 230 | 0.52 | 0.0540 | 0.0010 | 0.4586 | 0.0075 | 0.0616 | 0.0005 | 370.6 | 41 | 383.3 | 5 | 385.3 | 3 |
JB1-13 | 440 | 256 | 0.58 | 0.0544 | 0.0007 | 0.4619 | 0.0074 | 0.0616 | 0.0007 | 388.3 | 30 | 385.6 | 5 | 385.4 | 4 |
JB1-22 | 513 | 271 | 0.53 | 0.0546 | 0.0008 | 0.4640 | 0.0066 | 0.0617 | 0.0006 | 397.8 | 31 | 387.0 | 5 | 385.9 | 3 |
JB1-28 | 550 | 314 | 0.57 | 0.0538 | 0.0009 | 0.4582 | 0.0069 | 0.0618 | 0.0006 | 361.8 | 37 | 383.0 | 5 | 386.4 | 4 |
JB1-27 | 586 | 355 | 0.61 | 0.0544 | 0.0007 | 0.4642 | 0.0059 | 0.0618 | 0.0005 | 387.1 | 27 | 387.1 | 4 | 386.5 | 5 |
JB1-21 | 524 | 318 | 0.61 | 0.0542 | 0.0006 | 0.4625 | 0.0058 | 0.0618 | 0.0005 | 381.2 | 25 | 386.0 | 4 | 386.5 | 3 |
JB1-15 | 417 | 188 | 0.45 | 0.0543 | 0.0007 | 0.4621 | 0.0065 | 0.0618 | 0.0005 | 381.6 | 31 | 385.7 | 5 | 386.6 | 3 |
JB1-26 | 445 | 215 | 0.48 | 0.0553 | 0.0010 | 0.4709 | 0.0079 | 0.0618 | 0.0006 | 425.5 | 39 | 391.8 | 5 | 386.7 | 4 |
JB1-20 | 976 | 789 | 0.81 | 0.0547 | 0.0006 | 0.4661 | 0.0047 | 0.0618 | 0.0005 | 401.8 | 24 | 388.5 | 3 | 386.8 | 3 |
JB1-12 | 470 | 245 | 0.52 | 0.0537 | 0.0006 | 0.4588 | 0.0058 | 0.0619 | 0.0005 | 359.4 | 27 | 383.4 | 4 | 387.4 | 3 |
JB1-25 | 464 | 188 | 0.40 | 0.0539 | 0.0013 | 0.4610 | 0.0132 | 0.0620 | 0.0008 | 364.8 | 56 | 385.0 | 9 | 387.5 | 5 |
JB2-06 | 515 | 318 | 0.62 | 0.0559 | 0.0009 | 0.4902 | 0.0024 | 0.0628 | 0.0002 | 412.7 | 41 | 397.9 | 4 | 393.6 | 3 |
JB2-04 | 316 | 186 | 0.59 | 0.0554 | 0.0012 | 0.4852 | 0.0074 | 0.0625 | 0.0004 | 404.7 | 46 | 386.1 | 6 | 394.8 | 3 |
JB2-11 | 335 | 167 | 0.50 | 0.0544 | 0.0011 | 0.4765 | 0.0113 | 0.0631 | 0.0009 | 383.3 | 47 | 393.5 | 5 | 391.1 | 5 |
JB2-09 | 475 | 144 | 0.30 | 0.0548 | 0.0013 | 0.4713 | 0.0146 | 0.0629 | 0.0007 | 405.1 | 68 | 382.6 | 8 | 392.1 | 4 |
JB2-01 | 289 | 137 | 0.47 | 0.0570 | 0.0009 | 0.4914 | 0.0086 | 0.0626 | 0.0005 | 491.2 | 36 | 405.8 | 6 | 391.4 | 3 |
JB2-02 | 413 | 269 | 0.65 | 0.0552 | 0.0012 | 0.4772 | 0.0103 | 0.0627 | 0.0005 | 420.1 | 48 | 396.2 | 7 | 392.2 | 3 |
JB2-03 | 741 | 511 | 0.69 | 0.0555 | 0.0010 | 0.4823 | 0.0091 | 0.0630 | 0.0008 | 433.3 | 41 | 399.6 | 6 | 393.9 | 5 |
JB2-05 | 488 | 222 | 0.46 | 0.0542 | 0.0012 | 0.4702 | 0.0098 | 0.0632 | 0.0007 | 377.6 | 50 | 391.3 | 7 | 394.9 | 4 |
JB2-08 | 375 | 236 | 0.63 | 0.0547 | 0.0014 | 0.4781 | 0.0052 | 0.0627 | 0.0009 | 420.1 | 53 | 396.0 | 10 | 394.4 | 6 |
JB2-12 | 647 | 397 | 0.61 | 0.0569 | 0.0006 | 0.4883 | 0.0103 | 0.0628 | 0.0010 | 386.8 | 23 | 399.0 | 6 | 392.3 | 3 |
JB2-10 | 351 | 208 | 0.59 | 0.0553 | 0.0011 | 0.4799 | 0.0114 | 0.0632 | 0.0006 | 384.3 | 35 | 393.7 | 5 | 393.3 | 5 |
JB2-07 | 379 | 237 | 0.62 | 0.0548 | 0.0015 | 0.4751 | 0.0067 | 0.0628 | 0.0009 | 417.5 | 25 | 394.3 | 3 | 393.2 | 5 |
Sample No | Age | 176Yb/177Hf | 2σ | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(0) | εHf(t) | TDM1 | TDM2 | fLu/Hf |
---|---|---|---|---|---|---|---|---|---|---|---|---|
JB-1-01 | 381 | 0.038611 | 0.000855 | 0.001452 | 0.000032 | 0.282642 | 0.000023 | −4.60 | 3.42 | 874 | 1157 | −0.96 |
JB-1-02 | 385.1 | 0.027714 | 0.000329 | 0.001070 | 0.000013 | 0.282621 | 0.000024 | −5.33 | 2.87 | 895 | 1195 | −0.97 |
JB-1-03 | 384.8 | 0.048592 | 0.000146 | 0.001783 | 0.000006 | 0.282650 | 0.000024 | −4.30 | 3.71 | 870 | 1141 | −0.95 |
JB-1-04 | 379.6 | 0.045428 | 0.001634 | 0.001614 | 0.000058 | 0.282646 | 0.000023 | −4.46 | 3.48 | 873 | 1151 | −0.95 |
JB-1-05 | 381.9 | 0.067268 | 0.001984 | 0.002409 | 0.000050 | 0.282640 | 0.000025 | −4.65 | 3.14 | 900 | 1175 | −0.93 |
JB-1-06 | 384.7 | 0.051168 | 0.000476 | 0.001908 | 0.000012 | 0.282693 | 0.000022 | −2.78 | 5.20 | 811 | 1046 | −0.94 |
JB-1-07 | 386.5 | 0.047940 | 0.000193 | 0.001745 | 0.000008 | 0.282638 | 0.000028 | −4.75 | 3.31 | 887 | 1168 | −0.95 |
JB-1-08 | 385.1 | 0.051441 | 0.000546 | 0.001808 | 0.000018 | 0.282650 | 0.000026 | −4.33 | 3.69 | 872 | 1143 | −0.95 |
JB-1-09 | 384.2 | 0.058729 | 0.000897 | 0.002124 | 0.000035 | 0.282635 | 0.000025 | −4.86 | 3.05 | 901 | 1182 | −0.94 |
JB-1-10 | 384.8 | 0.044939 | 0.001281 | 0.001688 | 0.000052 | 0.282659 | 0.000021 | −3.99 | 4.05 | 855 | 1119 | −0.95 |
JB-1-11 | 383.5 | 0.035134 | 0.000219 | 0.001368 | 0.000009 | 0.282618 | 0.000022 | −5.45 | 2.65 | 906 | 1207 | −0.96 |
JB-1-12 | 387.4 | 0.053721 | 0.000940 | 0.001962 | 0.000027 | 0.282632 | 0.000024 | −4.94 | 3.08 | 900 | 1183 | −0.94 |
JB-1-13 | 385.4 | 0.054529 | 0.000811 | 0.001947 | 0.000025 | 0.282652 | 0.000026 | −4.26 | 3.73 | 872 | 1140 | −0.94 |
JB-1-14 | 383.6 | 0.057263 | 0.000913 | 0.001987 | 0.000024 | 0.282687 | 0.000022 | −3.02 | 4.91 | 823 | 1064 | −0.94 |
JB-1-15 | 386.6 | 0.038809 | 0.000141 | 0.001353 | 0.000005 | 0.282642 | 0.000027 | −4.58 | 3.58 | 871 | 1151 | −0.96 |
JB-1-17 | 383.2 | 0.060300 | 0.001188 | 0.002222 | 0.000050 | 0.282611 | 0.000024 | −5.70 | 2.16 | 938 | 1238 | −0.93 |
JB-1-18 | 382.1 | 0.076424 | 0.000684 | 0.002847 | 0.000026 | 0.282628 | 0.000025 | −5.09 | 2.60 | 929 | 1209 | −0.91 |
JB-1-19 | 384.9 | 0.051151 | 0.000905 | 0.001949 | 0.000027 | 0.282587 | 0.000023 | −6.54 | 1.43 | 965 | 1285 | −0.94 |
JB-1-21 | 386.5 | 0.053689 | 0.000318 | 0.002056 | 0.000007 | 0.282613 | 0.000024 | −5.63 | 2.35 | 931 | 1229 | −0.94 |
JB-2-02 | 396.2 | 0.032874 | 0.000340 | 0.001228 | 0.000007 | 0.282407 | 0.000025 | −12.90 | −4.47 | 1201 | 1668 | −0.96 |
JB-2-03 | 399.6 | 0.112701 | 0.001062 | 0.004123 | 0.000018 | 0.282499 | 0.000028 | −9.65 | −2.21 | 1161 | 1516 | −0.88 |
JB-2-05 | 391.3 | 0.045189 | 0.001260 | 0.001745 | 0.000044 | 0.282603 | 0.000020 | −5.99 | −2.22 | 938 | 1242 | −0.95 |
JB-2-06 | 397.9 | 0.055345 | 0.000982 | 0.001929 | 0.000040 | 0.282605 | 0.000029 | −5.91 | −3.51 | 939 | 1393 | −0.94 |
JB-2-10 | 393.7 | 0.029446 | 0.000385 | 0.001136 | 0.000011 | 0.281869 | 0.000030 | −31.93 | −14.93 | 1949 | 2623 | −0.97 |
JB-2-12 | 399.0 | 0.031049 | 0.000368 | 0.001033 | 0.000007 | 0.282431 | 0.000025 | −12.04 | −1.18 | 1161 | 1545 | −0.97 |
Sample No. | JB-1 | JB-2 | JB-3 | JB-4 | JB-5 | JB-6 | JB-7 | JB-8 | JB-9 | JB-10 |
---|---|---|---|---|---|---|---|---|---|---|
Rock Type | Granite Dykes | Diorite Dykes | ||||||||
Age | 384 Ma | 393 Ma | ||||||||
SiO2% | 74.87 | 73.32 | 73.51 | 72.82 | 72.51 | 53.71 | 51.61 | 51.48 | 53.05 | 52.18 |
TiO2% | 0.22 | 0.23 | 0.23 | 0.26 | 0.25 | 1.62 | 1.66 | 1.86 | 1.60 | 1.76 |
Al2O3% | 12.88 | 13.02 | 13.36 | 14.04 | 13.08 | 15.03 | 14.70 | 15.99 | 14.96 | 14.84 |
TFe2O3% | 2.75 | 2.76 | 3.09 | 3.08 | 3.09 | 14.04 | 15.13 | 13.42 | 14.82 | 14.55 |
MnO% | 0.06 | 0.06 | 0.07 | 0.04 | 0.07 | 0.21 | 0.25 | 0.25 | 0.23 | 0.23 |
MgO% | 0.65 | 0.65 | 0.77 | 0.63 | 0.69 | 5.61 | 5.60 | 6.46 | 5.15 | 5.88 |
CaO% | 2.63 | 2.66 | 2.84 | 2.50 | 2.89 | 3.23 | 3.40 | 3.34 | 3.38 | 3.44 |
Na2O% | 3.14 | 3.24 | 3.44 | 4.46 | 3.11 | 3.26 | 3.15 | 3.96 | 2.97 | 3.62 |
K2O% | 2.66 | 2.53 | 2.12 | 1.98 | 2.40 | 2.54 | 2.10 | 1.96 | 1.94 | 1.98 |
P2O5% | 0.05 | 0.05 | 0.05 | 0.06 | 0.05 | 0.21 | 0.16 | 0.19 | 0.17 | 0.18 |
LOI% | 0.66 | 0.74 | 0.99 | 0.90 | 0.88 | 0.97 | 1.26 | 0.83 | 0.82 | 0.96 |
Total% | 100.57 | 99.31 | 100.28 | 100.97 | 100.97 | 100.43 | 99.02 | 99.74 | 99.09 | 99.62 |
A/CNK | 1.00 | 1.00 | 1.02 | 1.00 | 1.01 | 1.07 | 1.08 | 1.09 | 1.14 | 1.03 |
Mg# | 31.9 | 31.8 | 33.0 | 28.8 | 30.7 | 44.2 | 42.3 | 48.8 | 40.78 | 44.5 |
V μg/g | 32 | 36 | 38 | 43 | 41 | 329 | 418 | 306 | 390 | 335 |
Cr μg/g | 10 | 20 | 20 | 30 | 20 | 10 | 20 | 10 | 10 | 20 |
Ni μg/g | 2.3 | 2.2 | 2.3 | 3.0 | 2.6 | 4.9 | 6.7 | 6.1 | 4.8 | 5.0 |
Ga μg/g | 11.5 | 11.9 | 12.0 | 11.6 | 12.2 | 16.8 | 19.7 | 17.8 | 20.7 | 19.3 |
Rb μg/g | 86.0 | 90.7 | 71.1 | 75.6 | 92.1 | 87.2 | 81.7 | 64.9 | 50.0 | 67.2 |
Sr μg/g | 130.5 | 102.5 | 160.5 | 188 | 113.5 | 155.5 | 128.5 | 168.5 | 162 | 159.4 |
Y μg/g | 21.4 | 22.5 | 22.7 | 23.4 | 23.8 | 28.0 | 27.6 | 29.9 | 28.3 | 28.2 |
Zr μg/g | 97 | 116 | 120 | 116 | 106 | 77 | 63 | 84 | 73 | 82 |
Nb μg/g | 5.8 | 6.3 | 6.3 | 7.6 | 6.7 | 2.8 | 1.8 | 2.6 | 2.3 | 2.6 |
Cs μg/g | 1.59 | 2.25 | 1.34 | 1.04 | 2.42 | 5.40 | 5.08 | 4.47 | 4.98 | 5.18 |
Ba μg/g | 378 | 355 | 393 | 361.5 | 311 | 68.4 | 69.5 | 51.1 | 80.7 | 70.4 |
La μg/g | 20.7 | 20.8 | 21.5 | 17.6 | 19.4 | 5.1 | 4.2 | 4.8 | 4.6 | 4.7 |
Ce μg/g | 40.0 | 40.5 | 41.9 | 36.1 | 38.6 | 14.3 | 11.6 | 13.6 | 12.2 | 12.3 |
Pr μg/g | 4.40 | 4.37 | 4.70 | 4.34 | 4.46 | 2.16 | 1.89 | 2.14 | 2.11 | 2.15 |
Nd μg/g | 15.0 | 14.9 | 16.5 | 15.9 | 15.6 | 10.7 | 9.6 | 10.9 | 10.6 | 10.0 |
Sm μg/g | 2.77 | 2.75 | 3.01 | 3.53 | 3.14 | 3.56 | 3.28 | 3.52 | 3.48 | 3.39 |
Eu μg/g | 0.57 | 0.54 | 0.62 | 0.71 | 0.60 | 1.21 | 1.32 | 1.41 | 1.41 | 1.35 |
Gd μg/g | 2.48 | 2.49 | 2.75 | 3.47 | 2.83 | 4.44 | 4.44 | 4.73 | 4.41 | 4.54 |
Tb μg/g | 0.41 | 0.41 | 0.43 | 0.58 | 0.47 | 0.79 | 0.74 | 0.82 | 0.75 | 0.75 |
Dy μg/g | 2.54 | 2.75 | 2.81 | 3.83 | 3.15 | 5.21 | 5.04 | 5.53 | 5.12 | 5.38 |
Ho μg/g | 0.57 | 0.60 | 0.63 | 0.83 | 0.69 | 1.12 | 1.09 | 1.21 | 1.09 | 1.13 |
Er μg/g | 1.72 | 1.91 | 1.88 | 2.68 | 2.14 | 3.21 | 3.17 | 3.44 | 3.21 | 3.24 |
Tm μg/g | 0.29 | 0.33 | 0.31 | 0.44 | 0.36 | 0.50 | 0.47 | 0.52 | 0.50 | 0.49 |
Yb μg/g | 2.03 | 2.24 | 2.22 | 2.26 | 2.56 | 3.17 | 3.07 | 3.41 | 3.30 | 3.38 |
Lu μg/g | 0.34 | 0.37 | 0.37 | 0.53 | 0.43 | 0.48 | 0.45 | 0.49 | 0.48 | 0.44 |
Hf μg/g | 2.8 | 3.2 | 3.3 | 3.4 | 3.1 | 2.1 | 1.9 | 2.3 | 2.0 | 2.0 |
Ta μg/g | 0.50 | 0.54 | 0.47 | 0.58 | 0.57 | 0.15 | 0.11 | 0.16 | 0.13 | 0.14 |
Th μg/g | 7.40 | 7.95 | 7.01 | 7.31 | 7.39 | 0.55 | 0.46 | 0.56 | 0.51 | 0.55 |
U μg/g | 2.4 | 2.0 | 2.6 | 2.7 | 2.4 | 0.2 | 0.3 | 0.4 | 0.2 | 0.3 |
δEu | 0.66 | 0.63 | 0.66 | 0.62 | 0.62 | 0.93 | 1.06 | 1.06 | 1.1 | 1.05 |
ΣLREE/ΣHREE | 8.04 | 7.55 | 7.74 | 5.01 | 6.48 | 1.96 | 1.73 | 1.8 | 1.82 | 1.75 |
LaN/YbN | 7.31 | 6.66 | 6.95 | 5.87 | 5.44 | 1.15 | 0.98 | 1.01 | 1.00 | 1.00 |
Test Object | Location | Method | Age | Reference |
---|---|---|---|---|
Plagioclase granite | Jinba | U–Pb | 406 Ma | [23] |
Plagioclase granite | Jinba | SHRIMP U–Pb | 390 ± 5 Ma | [45] |
Diorite | Jinba | U–Pb | 393.0 ± 2.2 Ma | This study |
Granite | Jinba | U–Pb | 384.5 ± 1.2 Ma | This study [50] |
FIs from ore-bearing quartz vein hosted in Devonian strata | Saidu | Rb-Sr | 294~306 Ma | [50] |
FIs from ore-bearing quartz vein hosted in Habahe pluton | Saidu | Rb-Sr | 272 ± 19 Ma | [51] |
Sericite from ore-bearing quartz vein | Saidu | 40Ar/39Ar | 289.2 ± 3.1 Ma | [52] |
Muscovite from ore-bearing quartz vein | Saidu | 40Ar/39Ar | 294.7 ± 3.5 Ma | [53] |
Biotite from ore-bearing quartz vein | Saidu | 40Ar/39Ar | 270 ± 2.5 Ma | [19] |
Biotite from ore-bearing phyllites | Zhelande | K-Ar | 297.3 ± 3.3 Ma | [19] |
Muscovite from ore-bearing quartz vein | Zhelande | K-Ar | 293.4 ± 3.1 Ma | [19] |
FIs from ore-bearing quartz vein | Zhelande | Rb-Sr | 306.1 ± 5.0 Ma | [19] |
Muscovite from ore-bearing quartz vein | Zhelande | 40Ar/39Ar | 295.4 ± 1.6 Ma | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, F.; Li, S.; Gao, L.; Chen, C. Geochemistry, Zircon U–Pb Ages, and Hf Isotopes of the Devonian Mafic and Acidic Dykes of the Jinba Gold Deposit, NW China: Petrogenesis and Tectonic Implications. Minerals 2022, 12, 871. https://doi.org/10.3390/min12070871
Xia F, Li S, Gao L, Chen C. Geochemistry, Zircon U–Pb Ages, and Hf Isotopes of the Devonian Mafic and Acidic Dykes of the Jinba Gold Deposit, NW China: Petrogenesis and Tectonic Implications. Minerals. 2022; 12(7):871. https://doi.org/10.3390/min12070871
Chicago/Turabian StyleXia, Fang, Shunda Li, Lingling Gao, and Chuan Chen. 2022. "Geochemistry, Zircon U–Pb Ages, and Hf Isotopes of the Devonian Mafic and Acidic Dykes of the Jinba Gold Deposit, NW China: Petrogenesis and Tectonic Implications" Minerals 12, no. 7: 871. https://doi.org/10.3390/min12070871
APA StyleXia, F., Li, S., Gao, L., & Chen, C. (2022). Geochemistry, Zircon U–Pb Ages, and Hf Isotopes of the Devonian Mafic and Acidic Dykes of the Jinba Gold Deposit, NW China: Petrogenesis and Tectonic Implications. Minerals, 12(7), 871. https://doi.org/10.3390/min12070871