Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt
Abstract
:1. Introduction
2. Geological Description
2.1. Metavolcanics
2.2. Biotite Granite
2.3. Muscovite Granite
3. Materials and Methods
3.1. Sampling and Sample Preparation
3.2. Gamma-Ray Spectroscopic Analysis
4. Results and Discussion
4.1. Radioactivity in Granites
4.2. Radioactive Assessment
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akpanowo, M.A.; Umaru, I.; Iyakwari, S.; Joshua, E.O.; Yusuf, S.; Ekong, G.B. Determination of natural radioactivity levels and radiological hazards in environmental samples from artisanal mining sites of Anka, North-West Nigeria. Sci. Afr. 2020, 10, e00561. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Yarmoshenko, I.; Seleznev, A.A.; Onishchenko, A.D.; Zhukovsky, M.V. Development of an appropriate method for measuring gross alpha activity concentration in low-mass size-fractionated samples of sediment using solid-state nuclear track detectors. J. Radioanal. Nucl. Chem. 2020, 323, 1047–1053. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and Effects of Ionizing Radiation—Exposures of the Public and Workers from Various Sources of Radiation; UNSCEAR 2008 Report; UNSCEAR: New York, NY, USA, 2010. [Google Scholar]
- Gaafar, I.; Hanfi, M.; El-Ahll, L.S.; Zeidan, I. Assessment of radiation hazards from phosphate rocks, Sibaiya area, central eastern desert, Egypt. Appl. Radiat. Isot. 2021, 173, 109734. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Chandrasekaran, A.; Senthilkumar, G.; Suresh Gandhi, M.; Ravisankar, R. Determination of radioactivity levels and associated hazards of coastal sediment from south east coast of Tamil Nadu with statistical approach. Iran. J. Sci. Technol. Trans. A Sci. 2018, 42, 601–614. [Google Scholar] [CrossRef]
- Awad, M.; El Mezayen, A.M.; El Azab, A.; Alfi, S.M.; Ali, H.H.; Hanfi, M.Y. Radioactive risk assessment of beach sand along the coastline of Mediterranean Sea at El-Arish area, North Sinai, Egypt. Mar. Pollut. Bull. 2022, 177, 113494. [Google Scholar] [CrossRef]
- Khandaker, U.M.; Asaduzzaman, K.; Bin Sulaiman, A.F.; Bradley, D.A.; Isinkaya, M.O. Elevated concentrations of naturally occurring radionuclides in heavy mineral-rich beach sands of Langkawi Island, Malaysia. Mar. Pollut. Bull. 2018, 127, 654–663. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Yarmoshenko, V.; Seleznev, A.A.; Malinovsky, G.; Ilgasheva, E.; Zhukovsky, M.V. Beta radioactivity of urban surface–deposited sediment in three Russian cities. Environ. Sci. Pollut. Res. 2020, 27, 40309–40315. [Google Scholar] [CrossRef]
- El-Kammar, A.M.; Salman, A.E.; Shalaby, M.H.; Mahdy, A.I. Geochemical and genetical constraints on rare metals mineralization at the central Eastern Desert of Egypt. Geochem. J. 2001, 35, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Nagar, M.S.; Bayoumi, B.M.; Morsy, W.M. Characteristics and Evaluation of Leaching Behavior of Uranium Mineralization in Qash Amir Granite, South Eastern Desert. Egypt. Am. J. Appl. Ind. Chem. 2021, 5, 7–16. [Google Scholar] [CrossRef]
- ATSDR. Case Studies in Environmental Medicine; Public Health Service of U.S. Department of Health and Human Services: Washington, DC, USA, 1992; pp. 1–28.
- ATSDR. Toxicological Profile for Uranium; Public Health Service of U.S. Department of Health and Human Services: Washington, DC, USA, 1999; pp. 1–145.
- ATSDR. Draft Toxicological Profile for Radon: Agency for Toxic Substances and Disease Registry; ATSDR: Atlanta, GA, USA, 2012; pp. 9–11, 161–167. [Google Scholar]
- La Verde, G.; Raulo, A.; D’Avino, V.; Roca, V.; Pugliese, M. Radioactivity content in natural stones used as building materials in Puglia region analysed by high resolution gamma-ray spectroscopy: Preliminary results. Constr. Build. Mater. 2020, 239, 117668. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Nathwani, D.; Eappen, K.P.; Ramachandran, T.V.; Gaware, J.J.; Mayya, Y.S. Estimation of radon emanation factor in Indian building materials. Radiat. Meas. 2007, 42, 1422–1425. [Google Scholar] [CrossRef]
- Khalaf, I.M. Geology of the area around G. Qash Amir with special emphases on the granitic rocks, south Eastern Desert, Egypt. Egypt J. Geol. 2005, 49, 49–64. [Google Scholar]
- El Mezayen, A.M.; Heikal, M.A.; El-Feky, M.G.; Shahin, H.A.; Abu Zeid, I.K.; Lasheen, S.R. Petrology, geochemistry, radioactivity, and M–W type rare earth element tetrads of El Sela altered granites, south eastern desert, Egypt. Acta Geochim. 2019, 38, 95–119. [Google Scholar] [CrossRef]
- Gaafar, I.M.; Aboelkhair, H.M.; Bayoumi, M.B. Integration of Gamma-Ray Spectrometric and Aster Data for Uranium Exploration in Qash Amer-EL-Sela Area, Southeastern Desert, Egypt. Nucl. Sci. Sci. J. 2017, 6, 17–33. [Google Scholar] [CrossRef]
- Nagar, M.S.; Shahin, H.A.; Bahige, M. Column Percolation Leaching of Uranium from El-Sela Area, South Eastern Desert, Egypt. Res. Rev. J. Chem. 2016, 5, 32–41. [Google Scholar]
- Ramadan, T.M.; Ibrahim, T.M.; Said, A.D.; Baiumi, M. Application of remote sensing in exploration for uranium mineralization in Gabal El Sela area, South Eastern Desert, Egypt. Egypt. J. Remote Sens. Space Sci. 2013, 16, 199–210. [Google Scholar] [CrossRef] [Green Version]
- El Arabi, A.M.; Ahmed, N.K.; Din, K.S. Assessment of terrestrial gamma radiation doses for some Egyptian granite samples. Radiat. Prot. Dosim. 2008, 128, 382–385. [Google Scholar] [CrossRef]
- Al-Zahrani, J.H. Journal of Radiation Research and Applied Sciences Estimation of natural radioactivity in local and imported polished granite used as building materials in Saudi Arabia. J. Radiat. Res. Appl. Sci. 2017, 10, 241–245. [Google Scholar] [CrossRef] [Green Version]
- Merdano, B. Radioactivity concentrations and dose assessment for soil samples from kestanbol granite area. Radiat. Prot. Dosim. 2006, 121, 399–405. [Google Scholar] [CrossRef]
- IAEA. Preparation and Certification of IAEA Gamma-Ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1; IAEA: Vienna, Austria, 1987; Volume 148, p. 48. [Google Scholar]
- Papadopoulos, A.; Christofides, G.; Koroneos, A.; Papadopoulou, L.; Papastefanou, C.; Stoulos, S. Natural radioactivity and radiation index of the major plutonic bodies in Greece. J. Environ. Radioact. 2013, 124, 227–238. [Google Scholar] [CrossRef]
- El Dabe, M.M.; Ismail, A.M.; Metwaly, M.; Taalab, S.A.; Hanfi, M.Y.; Ene, A. Hazards of Radioactive Mineralization Associated with Pegmatites Used as Decorative and Building Material. Materials 2022, 15, 1224. [Google Scholar] [CrossRef] [PubMed]
- Adel, E.A.H.; El-Feky, M.G.; Taha, S.H.; El Minyawi, S.M.; Sallam, H.A.; Ebyan, O.A.; Yousef, E.S.; Hanfi, M.M. Natural Radionuclide Concentrations by γ-Ray Spectrometry in Granitic Rocks of the Sol Hamed Area, Southeastern Desert of Egypt, and Their Radiological Implications. Minerals 2022, 12, 294. [Google Scholar] [CrossRef]
- Amin, R.M. Gamma radiation measurements of naturally occurring radioactive samples from commercial Egyptian granites. Environ. Earth Sci. 2012, 67, 771–775. [Google Scholar] [CrossRef]
- AlZahrani, J.H.; Alharbi, W.R.; Abbady, A.G.E. Radiological impacts of natural radioactivity and heat generation by radioactive decay of phosphorite deposits from Northwestern Saudi Arabia. Aust. J. Basic Appl. 2011, 5, 683–690. [Google Scholar]
- Thabayneh, K.M. Measurement of natural radioactivity and radon exhalation rate in granite samples used in palestinian buildings. Arab. J. Sci. Eng. 2013, 38, 201–207. [Google Scholar] [CrossRef]
- Sharaf, J.M.; Hamideen, M.S. Measurement of natural radioactivity in Jordanian building materials and their contribution to the public indoor gamma dose rate. Appl. Radiat. Isot. 2013, 80, 61–66. [Google Scholar] [CrossRef]
- Senthilkumar, G.; Raghu, Y.; Sivakumar, S.; Chandrasekaran, A.; Prem Anand, D.; Ravisankar, R. Natural radioactivity measurement and evaluation of radiological hazards in some commercial flooring materials used in Thiruvannamalai, Tamilnadu, India. J. Radiat. Res. Appl. Sci. 2014, 7, 116–122. [Google Scholar] [CrossRef]
- Abbasi, A. Calculation of gamma radiation dose rate and radon concentration due to granites used as building materials in Iran. Radiat. Prot. Dosimetry 2013, 155, 335–342. [Google Scholar] [CrossRef]
- Guillén, J.; Tejado, J.J.; Baeza, A.; Corbacho, J.A.; Muñoz, J.G. Assessment of radiological hazard of commercial granites from Extremadura (Spain). J. Environ. Radioact. 2014, 132, 81–88. [Google Scholar] [CrossRef]
- Aykamiş, A.Ş.; Turhan, S.; Aysun Ugur, F.; Baykan, U.N.; Kiliç, A.M. Natural radioactivity, radon exhalation rates and indoor radon concentration of some granite samples usedas construction material in Turkey. Radiat. Prot. Dosim. 2013, 157, 105–111. [Google Scholar] [CrossRef]
- Caridi, F.; D’Agostino, M.; Marguccio, S.; Belvedere, A.; Belmusto, G.; Marcianò, G.; Sabatino, G.; Mottese, A. Radioactivity, granulometric and elemental analysis of river sediments samples from the coast of Calabria, south of Italy. Eur. Phys. J. Plus 2016, 131, 136. [Google Scholar] [CrossRef]
- USEPA. EPA Radiogenic Cancer Risk Models and Projections for the U.S. Population; USEPA: Washington, DC, USA, 2011. [Google Scholar]
- Yasmin, S.; Barua, B.S.; Khandaker, M.U.; Kamal, M.; Rashid, A.; Sani, S.F.A.; Ahmed, H.; Nikouravan, B.; Bradley, D.A. The presence of radioactive materials in soil, sand and sediment samples of potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication. Results Phys. 2018, 8, 1268–1274. [Google Scholar] [CrossRef]
- Yalcin, F.; Ilbeyli, N.; Demirbilek, M.; Yalcin, M.G.; Gunes, A.; Kaygusuz, A.; Ozmen, S.F. Estimation of natural radionuclides’ concentration of the plutonic rocks in the Sakarya zone, Turkey using multivariate statistical methods. Symmetry 2020, 12, 1048. [Google Scholar] [CrossRef]
- Hanfi, M.Y.; Abdel Gawad, A.E.; Eliwa, H.; Ali, K.; Taki, M.M.; Sayyed, M.I.; Khandaker, M.U.; Bradley, D.A. Assessment of radioactivity in Granitoids at Nikeiba, Southeastern Desert, Egypt; radionuclides concentrations and radiological hazard parameters. Radiat. Phys. Chem. 2022, 2022, 110113. [Google Scholar] [CrossRef]
- Ravisankar, R.; Chandramohan, J.; Chandrasekaran, A.; Prakash, J.P.; Vijayalakshmi, I.; Vijayagopal, P.; Venkatraman, B. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Mar. Pollut. Bull. 2015, 97, 419–430. [Google Scholar] [CrossRef]
Parameter | Definition | Formula |
---|---|---|
Raeq | The radium equivalent content (Raeq) is a radioactive parameter that is widely applied in radiation health hazards. The results of Raeq must be less than 370 Bq kg−1, which keeps the AED for the public lower than one mSv. | Raeq (Bq kg−1)= ARa + 1.43 ATh + 0.077 AK |
D (nGy/h) | The radioactive factor known as the absorbed dose rate is used to evaluate the effect of gamma radiation at a distance of 1 m from radiation sources in the air, owing to the concentrations of 238U, 232Th, and 40K. | Dair (nGy h−1) = 0.430 AU + 0.666 ATh + 0.042 AK |
AEDout | An element of radioactivity called the yearly effective dose is used to gauge radiation exposure levels over a fixed period of time (1 year). | AEDout (mSv/y) = Dair (nGy/h) × 0.2 × 8760 (h/y) × 0.7 (Sv/Gy) × 10−6 (mSv/nGy) |
AEDin | AEDin (mSv/y) = Dair (nGy/h) × 0.8 × 8760 (h/y) × 0.7 (Sv/Gy) × 10−6 (mSv/nGy) | |
Hex | The radiological parameters used to evaluate the risk of gamma radiation are known as the external hazard index. When radon and its decay products are exposed internally, the internal hazard index is used. | |
Hin | ||
Iγ | Due to the various combinations of distinct natural activities in the sample, another index was proposed by a group of specialists to determine the amount of radiation hazard linked with the natural radionuclides in the samples. | |
AGDE | The radioactive measure known as the yearly gonadal dose equivalent is used to calculate the doses of gamma radiation that are absorbed by the gonads. | AGDE (mSv y−1) = 3.09ARa + 4.18ATh + 0.314AK |
ELCR | The radioactive factor used to determine whether gamma radiation exposure has caused lethal cancer is called excess lifetime cancer. | ELCR = AEDout × DL × RF |
Variables * | U-238 | Th-232 | K-40 | Raeq | Hin | Hex | Iγ | Dair | AEDout | AEDin | AGDE | ELCR |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(Bq/kg) | (Bq/kg) | (Bq/kg) | (Bq/kg) | nGy/h | mSv | mSv | mSv | |||||
N | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 136 | 136 |
Mean | 193 | 63 | 1034 | 362 | 1.50 | 0.98 | 1.30 | 169.2 | 0.21 | 0.83 | 1.18 | 0.0007 |
SD | 268 | 29 | 382 | 298.21 | 1.52 | 0.81 | 1.01 | 137.0 | 0.17 | 0.67 | 0.92 | 0.0006 |
Min | 22.23 | 9.74 | 125.20 | 65.09 | 0.24 | 0.18 | 0.25 | 31.56 | 0.04 | 0.15 | 0.23 | 0.0001 |
Max | 2099.50 | 182.70 | 1658.90 | 2351.01 | 12.03 | 6.35 | 7.89 | 1078 | 1.32 | 5.29 | 7.24 | 0.0046 |
Skew | 4.19 | 0.77 | −0.46 | 3.41 | 3.82 | 3.41 | 3.25 | 3.37 | 3.37 | 3.37 | 3.27 | 3.37 |
Kurtosis | 22.15 | 2.69 | −1.04 | 16.79 | 19.57 | 16.80 | 15.68 | 16.45 | 16.45 | 16.45 | 15.81 | 16.45 |
Country | 238U | 232Th | 40K | References |
---|---|---|---|---|
Egypt | 193 | 63 | 1034 | Present study |
Egypt | 137 | 82 | 1082 | [28] |
Saudi Arabia | 28.82 | 34.83 | 665.08 | [29] |
Palestine | 71 | 82 | 780 | [30] |
Jordan | 41.52 | 58.42 | 897 | [31] |
India | 25.88 | 42.82 | 560.6 | [32] |
Iran | 77.4 | 44.5 | 1017.2 | [33] |
Spain | 84 | 42 | 1138 | [34] |
Greece | 74 | 85 | 881 | [25] |
Turkey | 80 | 101 | 974 | [35] |
Nigeria | 63.29 | 226.67 | 832.59 | [1] |
Italy | 85.86 | 24.71 | 1340.49 | [36] |
U-238 | Th-232 | K-40 | Raeq | Hin | Hex | Iγ | Dair | AEDout | AEDin | ELCR | AGDE | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
U-238 | 1 | |||||||||||
Th-232 | 0.58 | 1 | ||||||||||
K-40 | 0.02 | 0.67 | 1 | |||||||||
Raeq | 0.98 | 0.73 | 0.21 | 1 | ||||||||
Hin | 0.99 | 0.66 | 0.12 | 0.99 | 1 | |||||||
Hex | 0.98 | 0.73 | 0.20 | 0.99 | 1.00 | 1 | ||||||
Iγ | 0.97 | 0.74 | 0.24 | 0.99 | 0.99 | 0.99 | 1 | |||||
Dair | 0.98 | 0.73 | 0.21 | 0.99 | 0.99 | 0.99 | 0.99 | 1 | ||||
AEDout | 0.98 | 0.73 | 0.21 | 0.99 | 0.99 | 0.99 | 0.99 | 1 | 1 | |||
AEDin | 0.98 | 0.73 | 0.21 | 0.99 | 0.99 | 0.99 | 0.99 | 1 | 1 | 1 | ||
ELCR | 0.98 | 0.73 | 0.21 | 0.99 | 0.99 | 0.99 | 0.99 | 1 | 1 | 1 | 1 | |
AGDE | 0.97 | 0.74 | 0.23 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emad, B.M.; Sayyed, M.I.; Somaily, H.H.; Hanfi, M.Y. Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt. Minerals 2022, 12, 884. https://doi.org/10.3390/min12070884
Emad BM, Sayyed MI, Somaily HH, Hanfi MY. Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt. Minerals. 2022; 12(7):884. https://doi.org/10.3390/min12070884
Chicago/Turabian StyleEmad, Bahaa M., M. I. Sayyed, Hamoud H. Somaily, and Mohamed Y. Hanfi. 2022. "Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt" Minerals 12, no. 7: 884. https://doi.org/10.3390/min12070884
APA StyleEmad, B. M., Sayyed, M. I., Somaily, H. H., & Hanfi, M. Y. (2022). Natural Radioactivity and Radiological Hazard Effects from Granite Rocks in the Gabal Qash Amir Area, South Eastern Desert, Egypt. Minerals, 12(7), 884. https://doi.org/10.3390/min12070884