A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Methods
2.2.1. H2O2 Treatment
2.2.2. Flotation Experiments
2.2.3. Contact Angle Measurements
2.2.4. X-ray Photoelectron Spectroscopy (XPS)
2.2.5. Microcalorimetric Measurements
3. Results and Discussion
3.1. Flotation Results
3.2. Contact Angle Results
3.3. XPS Results
3.4. Microcalorimetry Results
4. Discussion
4.1. Roles of “Slight Oxidation” and “Significant Oxidation”
4.2. The Critical Degree of “Slight Oxidation” and “Significant Oxidation”
4.3. Verification of the Quantitative Equation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Habashi, F. Chalcopyrite. In Its Chemistry and Metallurgy; McGraw-Hill: New York, NY, USA, 1978. [Google Scholar]
- Córdoba, E.M.; Muñoz, J.A.; Blázquez, M.L.; González, F.; Ballester, A. Leaching of chalcopyrite with ferric ion. Part I: General aspects. Hydrometallurgy 2008, 93, 81–87. [Google Scholar] [CrossRef]
- Li, Y.; Kawashima, N.; Li, J.; Chandra, A.P.; Gerson, A.R. A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite. Adv. Colloid Interface Sci. 2013, 197–198, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Hirajima, T.; Suyantara, G.P.W.; Ichikawa, O.; Elmahdy, A.M.; Miki, H.; Sasaki, K. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite. Miner. Eng. 2016, 96–97, 83–93. [Google Scholar] [CrossRef]
- Moimane, T.; Plackowski, C.; Peng, Y. The critical degree of mineral surface oxidation in copper sulphide flotation. Miner. Eng. 2020, 145, 106075. [Google Scholar] [CrossRef]
- Fairthorne, G.; Fornasiero, D.; Ralston, J. Effect of oxidation on the collectorless flotation of chalcopyrite. Int. J. Miner. Process. 1997, 49, 31–48. [Google Scholar] [CrossRef]
- Hirajima, T.; Miki, H.; Suyantara, G.P.W.; Matsuoka, H.; Elmahdy, A.M.; Sasaki, K.; Imaizumi, Y.; Kuroiwa, S. Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation. Miner. Eng. 2017, 100, 83–92. [Google Scholar] [CrossRef]
- Barzyk, W.; Malysa, K.; Pomianowski, A. The influence of surface oxidation of chalcocite on its floatability and ethyl xanthate sorption. Int. J. Miner. Process. 1981, 8, 17–29. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K.; Kuroiwa, S.; Aoki, Y. Effect of H2O2 and potassium amyl xanthate on separation of enargite and tennantite from chalcopyrite and bornite using flotation. Miner. Eng. 2020, 152, 106371. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y.; Fan, R.; Duan, W.; Huang, L.; Xiao, Q. Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low-alkaline seawater flotation system. Miner. Eng. 2022, 176, 107356. [Google Scholar] [CrossRef]
- Hirajima, T.; Mori, M.; Ichikawa, O.; Sasaki, K.; Miki, H.; Farahat, M.; Sawada, M. Selective flotation of chalcopyrite and molybdenite with plasma pre-treatment. Miner. Eng. 2014, 66–68, 102–111. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K.; Yamane, M.; Takida, E.; Kuroiwa, S.; Imaizumi, Y. Effect of Fenton-like oxidation reagent on hydrophobicity and floatability of chalcopyrite and molybdenite. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 34–48. [Google Scholar] [CrossRef]
- Heyes, G.W.; Trahar, W.J. The natural flotability of chalcopyrite. Int. J. Miner. Process. 1977, 4, 317–344. [Google Scholar] [CrossRef]
- Buckley, A.N.; Woods, R. An X-ray photoelectron spectroscopic study of the oxidation of chalcopyrite. Aust. J. Chem. 1984, 37, 2403–2413. [Google Scholar] [CrossRef]
- Mielczarski, J.A.; Cases, J.M.; Alnot, M.; Ehrhardt, J.J. XPS characterization of chalcopyrite, tetrahedrite, and tennantite surface products after different conditioning. 1. aqueous solution at pH 10. Langmuir 1996, 12, 2519–2530. [Google Scholar] [CrossRef]
- Chander, S. Electrochemistry of sulfide flotation: Growth characteristics of surface coatings and their properties, with special reference to chalcopyrite and pyrite. Int. J. Miner. Process. 1991, 33, 121–134. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, H.; Li, W.; Zhu, Y. A fundamental study of chalcopyrite flotation in sea water using sodium silicate. Miner. Eng. 2019, 139, 105862. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Xiao, Q.; He, N.; Ren, Z.; Lartey, C.; Gerson, A.R. The influence of common monovalent and divalent chlorides on chalcopyrite flotation. Minerals 2017, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Xiao, Q.; Wei, Z.; Song, S. The influencing mechanisms of sodium hexametaphosphate on chalcopyrite flotation in the presence of MgCl2 and CaCl2. Minerals 2018, 8, 150. [Google Scholar] [CrossRef] [Green Version]
- Nakai, I.; Izawa, M.; Sugitani, Y.; Niwa, Y. X-ray photoelectron spectroscopic study of copper minerals. Miner. J. 1976, 8, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Mccarron, J.J.; Walker, G.W.; Buckley, A.N. An X-ray photoelectron spectroscopic investigation of chalcopyrite and pyrite surfaces after conditioning in sodium sulfide solutions. Int. J. Miner. Process. 1990, 30, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Chandra, A.P.; Gerson, A.R. Scanning photoelectron microscopy studies of freshly fractured chalcopyrite exposed to O2 and H2O. Geochim. Et Cosmochim. Acta 2014, 133, 372–386. [Google Scholar] [CrossRef]
- Descostes, M.; Mercier, F.; Thromat, N.; Beaucaire, C.; Gautier-Soyer, M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Appl. Surf. Sci. 2000, 165, 288–302. [Google Scholar]
- Harmer, S.L.; Thomas, J.E.; Fornasiero, D.; Gerson, A.R. The evolution of surface layers formed during chalcopyrite leaching. Geochim. Et Cosmochim. Acta 2006, 70, 4392–4402. [Google Scholar] [CrossRef]
- Acres, R.G.; Harmer, S.L.; Beattie, D.A. Synchrotron XPS, NEXAFS, and ToF-SIMS studies of solution exposed chalcopyrite and heterogeneous chalcopyrite with pyrite. Miner. Eng. 2010, 23, 928–936. [Google Scholar] [CrossRef]
- Ghahremaninezhad, A.; Dixon, D.G.; Asselin, E. Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution. Electrochim. Acta 2013, 87, 97–112. [Google Scholar] [CrossRef]
- Li, Y.; Qian, G.; Li, J.; Gerson, A.R. Kinetics and roles of solution and surface species of chalcopyrite dissolution at 650 mV. Geochim. Et Cosmochim. Acta 2015, 161, 188–202. [Google Scholar] [CrossRef]
- Wang, X.; Gao, P.; Liu, J.; Gu, X.; Han, Y. Adsorption performance and mechanism of eco-friendly and efficient depressant galactomannan in flotation separation of chalcopyrite and molybdenite. J. Mol. Liq. 2021, 326, 115257. [Google Scholar] [CrossRef]
- Yin, Q.; Kelsall, G.H.; Vaughan, D.J.; England, K. Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2). Geochim. Et Cosmochim. Acta 1995, 59, 1091–1100. [Google Scholar] [CrossRef]
- Langevoort, J.C.; Sutherland, I.; Hanekamp, L.J.; Gellings, P. On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl. Surf. Sci. 1987, 28, 167–179. [Google Scholar] [CrossRef] [Green Version]
- Gardner, J.R.; Woods, R. An electrochemical investigation of the natural flotability of chalcopyrite. Int. J. Miner. Process. 1979, 6, 1–16. [Google Scholar] [CrossRef]
- Hayes, R.A.; Ralston, J. The collectorless flotation and separation of sulphide minerals by Eh control. Int. J. Miner. Process. 1988, 23, 55–84. [Google Scholar] [CrossRef]
- Kelebek, S.; Smith, F.W. Collectorless flotation of galena and chalcopyrite: Correlation between flotation rate and the amount of extracted sulfur. Min. Metall. Explor. 1989, 6, 123–129. [Google Scholar] [CrossRef]
- Buckley, A.N.; Riley, K.W. Self-induced floatability of sulfide minerals—Examination of recent evidence for elemental sulfur as the hydrophobic entity. Surf. Interface Anal. 1991, 17, 655–659. [Google Scholar] [CrossRef]
- Zachwieja, J.B.; McCarron, J.J.; Walker, G.W.; Buckley, A.N. Correlation between the surface composition and collectorless flotation of chalcopyrite. J. Colloid Interface Sci. 1989, 132, 462–468. [Google Scholar] [CrossRef]
- Gao, S.; Chen, S.; Hu, R.; Li, H.Y.; Shi, Q.Z. Derivation and application of thermodynamic equations. Chin. J. Inorg. Chem. 2002, 18, 362–366. [Google Scholar]
- Zhai, L.; Yang, K.-W.; Liu, C.-C.; Xu, K.-Z.; Yang, X.; Gao, H.-Z.; Shi, Y.; Feng, L.; Jia, C.; Zhou, L.-S.; et al. Exploring antibiotic resistance based on enzyme hydrolysis by microcalorimetry. J. Therm. Anal. Calorim. 2013, 111, 1657–1661. [Google Scholar] [CrossRef]
- Wulf, O. Evidence of the existence of activated molecules in a chemical reaction. Proc. Natl. Acad. Sci. USA 1926, 12, 129–132. [Google Scholar] [CrossRef] [Green Version]
- Truhlar, D.G.; Garrett, B.C.; Klippenstein, S.J. Current Status of Transition-State Theory. J. Phys. Chem. 1996, 100, 12771–12800. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Hase, W.L.; Hynes, J.T. Current status of transition-state theory. J. Phys. Chem. 1983, 87, 2664–2682. [Google Scholar] [CrossRef]
- Fielitz, P.; Borchardt, G. Oxygen exchange at gas/oxide interfaces: How the apparent activation energy of the surface exchange coefficient depends on the kinetic regime. Phys. Chem. Chem. Phys. 2016, 18, 22031–22038. [Google Scholar] [CrossRef]
- Mekhtiev, A.D.; Alkenova, A.; Isagulov, A.; Zhumashev, K.; Portnov, V. On the possibility of the reaction (CuMoO4 + C), using the apparent activation energy method. Metalurgija 2015, 54, 519–522. [Google Scholar]
- Li, P.; Tang, J.; Chen, X.; Bai, Y.; Li, Q. Effect of temperature and pH on early hydration rate and apparent activation energy of alkali-activated slag. Adv. Mater. Sci. Eng. 2019, 1, 3531543. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Cárdenas, A.; Paredes-Salazar, E.A.; Varela, H. Apparent activation energy in electrochemical multistep reactions: A description via sensitivities and degrees of rate control. ACS Catal. 2020, 10, 9336–9345. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, Z.; Cao, Y.; Sun, C. FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces. J. Mol. Struct. 2013, 1048, 434–440. [Google Scholar] [CrossRef]
- Chen, Y.; Feng, B.; Guo, Y.; Wang, T.; Zhang, L.; Zhong, C.; Wang, H. The role of oxidizer in the flotation separation of chalcopyrite and galena using sodium lignosulfonate as a depressant. Miner. Eng. 2021, 172, 107160. [Google Scholar] [CrossRef]
- Suyantara, G.P.W.; Hirajima, T.; Miki, H.; Sasaki, K.; Yamane, M.; Takida, E.; Kuroiwa, S.; Imaizumi, Y. Selective flotation of chalcopyrite and molybdenite using H2O2 oxidation method with the addition of ferrous sulfate. Miner. Eng. 2018, 122, 312–326. [Google Scholar] [CrossRef]
Species | BE (eV) | Conditions (H2O2 Concentration, v/v %) | ||||
---|---|---|---|---|---|---|
0% | 0.06% | 0.1% | 0.14% | 1% | ||
S 2p | 161.4 | 39.22 | 34.15 | 32.47 | 28.35 | 25.87 |
O 1s | 532.1 | 32.61 | 40.73 | 42.21 | 48.53 | 54.89 |
Fe 2p | 710.8 | 14.17 | 12.74 | 12.29 | 11.03 | 10.20 |
Cu 2p | 932.6 | 14.00 | 12.38 | 13.03 | 12.09 | 9.04 |
Species | BE (eV) | FWHM (eV) | Conditions (H2O2 Concentration, v/v%) | ||||
---|---|---|---|---|---|---|---|
0% | 0.06% | 0.1% | 0.14% | 1% | |||
S2− | 161.4 | 0.7–0.8 | 34.17 | 25.61 | 21.13 | 21.68 | 21.08 |
S22− | 162.2 | 0.7–0.9 | 4.30 | 11.68 | 15.11 | 13.35 | 11.86 |
Sn2−/S0 | 163.2–163.7 | 1.1–1.3 | 14.05 | 14.81 | 14.85 | 11.89 | 11.54 |
SO32− | 166.3 | 1.1–1.3 | 0.70 | 0.17 | 0.42 | 0.31 | 0.71 |
SO42− | 168.8 | 1.5–1.6 | 2.60 | 2.99 | 3.56 | 5.30 | 8.91 |
Energy loss | 165.1 | 1.4–1.7 | 2.37 | 2.31 | 1.11 | 2.55 | 3.23 |
Total S 2p | 58.19 | 57.57 | 56.18 | 55.08 | 57.33 | ||
Fe in CuFeS2 | 706.1 | 2.1 | 5.98 | 4.01 | 3.50 | 3.48 | 3.33 |
Fe-O/OH | 710.8 | 1.4 | 9.38 | 10.12 | 10.36 | 10.45 | 11.13 |
Fe-SO | 713.8 | 2.1 | 5.67 | 7.39 | 7.41 | 7.50 | 8.16 |
Total Fe 2p | 21.03 | 21.52 | 21.27 | 21.43 | 22.62 | ||
Cu in CuFeS2 | 932.2 | 1.2 | 20.78 | 20.91 | 22.55 | 23.49 | 20.05 |
Total Cu 2p | 20.78 | 20.91 | 22.55 | 23.49 | 20.05 | ||
∑ SO32− + SO42− + Fe–O/OH/SO | 18.35 | 20.67 | 21.75 | 23.56 | 28.91 | ||
∑ S22− + Sn2−/S0 + Fe/Cu in CuFeS2 | 45.11 | 51.41 | 56.01 | 52.21 | 46.78 | ||
Oxidation degree | 0.407 | 0.402 | 0.388 | 0.451 | 0.618 |
Conditions | T(K) | Q(mJ) | k(×10−3 s−1) | n | R2 |
---|---|---|---|---|---|
0.06 vol.% H2O2 | 303.15 | −8239.9 | 0.0337 | 0.918 | 0.991 |
308.15 | −7856.4 | 0.1108 | 1.0589 | 0.998 | |
313.15 | −7423.6 | 0.2979 | 1.1295 | 0.986 | |
0.1 vol.% H2O2 | 303.15 | −10,468.9 | 0.0352 | 1.056 | 0.9994 |
308.15 | −8146.9 | 0.1184 | 1.1508 | 0.9841 | |
313.15 | −7865.1 | 0.3159 | 0.8435 | 0.991 | |
0.14 vol.% H2O2 | 303.15 | −15,560.5 | 0.0452 | 0.8455 | 0.9959 |
308.15 | −15,122.7 | 0.1256 | 1.0657 | 0.9857 | |
313.15 | −14,775.4 | 0.3560 | 0.9708 | 0.9896 | |
H2O2 concentration (vol.%) | lnA (s−1) | Ea (kJ·mol−1) | Δ (kJ·mol−1) | Δ (J·K−1·mol−1) | |
0.06 | 64.909 | 172.07 | 169.51 | 420.16 | |
0.1 | 64.941 | 173.27 | 169.47 | 420.43 | |
0.14 | 61.164 | 162.87 | 179.74 | 455.70 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, Y.; Chen, W.; Duan, W.; Xiao, Q.; Jiang, T. A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery. Minerals 2022, 12, 888. https://doi.org/10.3390/min12070888
Yang X, Li Y, Chen W, Duan W, Xiao Q, Jiang T. A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery. Minerals. 2022; 12(7):888. https://doi.org/10.3390/min12070888
Chicago/Turabian StyleYang, Xu, Yubiao Li, Wen Chen, Wanqing Duan, Qing Xiao, and Tingting Jiang. 2022. "A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery" Minerals 12, no. 7: 888. https://doi.org/10.3390/min12070888
APA StyleYang, X., Li, Y., Chen, W., Duan, W., Xiao, Q., & Jiang, T. (2022). A Quantitative Relationship between Oxidation Index and Chalcopyrite Flotation Recovery. Minerals, 12(7), 888. https://doi.org/10.3390/min12070888