Value of Mineralogical Monitoring for the Mining and Minerals Industry
Author Contributions
Funding
Conflicts of Interest
References
- Degen, T.; Sadki, M.; Bron, E.; König, U.; Nenert, G. The HighScore suite. Powder Diffr. 2014, 29 (Suppl. 2), S78–S83. [Google Scholar] [CrossRef] [Green Version]
- König, U. XPERT: Rietveld and XRD; International Cement Review: Dorking, UK, 2008; pp. 118–122. [Google Scholar]
- König, U.; Norberg, N. Alternative Methods for Process Control in Aluminium Industries—XRD in Combination with PLSR. In Proceedings of the ICSOBA, Quebec City, QC, Canada, 3–6 October 2016; Available online: https://icsoba.org/proceedings/34th-conference-and-exhibition-icsoba-2016/?doc=58 (accessed on 5 July 2022).
- König, U. Nickel laterites—Mineralogical Monitoring for Grade Definition and Process Optimization. Minerals 2021, 11, 1178. [Google Scholar] [CrossRef]
- Pöllmann, H.; König, U. Monitoring of Lithium Contents in Lithium Ores and Concentrate-Assessment Using X-ray Diffraction (XRD). Minerals 2021, 11, 1058. [Google Scholar] [CrossRef]
- Pernechele, M.; López, A.; Davoise, D.; Maestre, M.; König, U.; Norberg, N. Value of Rapid Mineralogical Monitoring of Copper Ores. Minerals 2021, 11, 1142. [Google Scholar] [CrossRef]
- Can, I.B.; Özçelik, S.; Ekmekçi, Z. Effects of Pyrite Texture on Flotation Performance of Copper Sulfide Ores. Minerals 2021, 11, 1218. [Google Scholar] [CrossRef]
- Melo, C.C.A.; Angélica, R.S.; Paz, S.P.A. A Method for Quality Control of Bauxites: Case Study of Brazilian Bauxites Using PLSR on Transmission XRD Data. Minerals 2021, 11, 1054. [Google Scholar] [CrossRef]
- Negrão, L.B.A.; Pöllmann, H.; Alves, T.K.C. Mineralogical Appraisal of Bauxite Overburdens from Brazil. Minerals 2021, 11, 677. [Google Scholar] [CrossRef]
- König, U.; Verryn, S.M.C. Heavy Mineral Sands Mining and Downstream Processing: Value of Mineralogical Monitoring Using XRD. Minerals 2021, 11, 1253. [Google Scholar] [CrossRef]
- Otoijamun, I.; Kigozi, M.; Adetunji, A.R.; Onwualu, P.A. Characterization and Suitability of Nigerian Barites for Different Industrial Applications. Minerals 2021, 11, 360. [Google Scholar] [CrossRef]
- Jooshaki, M.; Nad, A.; Michaux, S. A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry. Minerals 2021, 11, 816. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
König, U.; Pöllmann, H. Value of Mineralogical Monitoring for the Mining and Minerals Industry. Minerals 2022, 12, 902. https://doi.org/10.3390/min12070902
König U, Pöllmann H. Value of Mineralogical Monitoring for the Mining and Minerals Industry. Minerals. 2022; 12(7):902. https://doi.org/10.3390/min12070902
Chicago/Turabian StyleKönig, Uwe, and Herbert Pöllmann. 2022. "Value of Mineralogical Monitoring for the Mining and Minerals Industry" Minerals 12, no. 7: 902. https://doi.org/10.3390/min12070902
APA StyleKönig, U., & Pöllmann, H. (2022). Value of Mineralogical Monitoring for the Mining and Minerals Industry. Minerals, 12(7), 902. https://doi.org/10.3390/min12070902