Constraints on Sandstone-Type Uranium Deposits by the Tectonic Uplift and Denudation Process in the Eastern Junggar Basin, Northwest China: Evidence from Apatite Fission Track and Detrital Zircon U-Pb Ages
Abstract
:1. Introduction
2. Geological Background
2.1. Tectonic Setting
2.2. Stratigraphy
2.3. Uranium Mineralization
3. Sampling and Analysis Methods
3.1. Apatite Fission Track (AFT) Analysis
3.2. Detrital Zircon U-Pb Dating Analysis
4. Analysis Results
4.1. AFT Ages
4.2. Uplift Thermal Path of the Orogenic Belt
4.2.1. Karameri Mountain
4.2.2. Qinglidi Mountain
4.2.3. Altay Mountain
4.3. Detrital Zircon U-Pb Dating Results
4.3.1. Detrital Zircon U-Pb Ages
4.3.2. Hf Isotopic Data
5. Discussion
5.1. Uplift and Denudation of the Eastern Junggar Basin Orogenic Belt
5.1.1. Rapid Uplift Orogeny in the Permian
5.1.2. Rapid Uplift in the Cretaceous
5.1.3. Rapid Uplift in the Paleogene
5.1.4. Rapid Uplift since the Miocene
5.2. Provenance of U-Ore-Bearing Strata
5.3. Influence of Tectonic Uplift and Provenance Transformation on Uranium Mineralization
5.3.1. Influence on Uranium Source
5.3.2. Influence on Uranium Precipitation and Enrichment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wulser, P.A.; Brugger, J.; Foden, J.; Pfeifer, H.R. The Sandstone-Hosted Beverley Uranium Deposit, Lake Frome Basin, South Australia: Mineralogy, Geochemistry, and a Time-Constrained Model for Its Genesis. Econ. Geol. 2011, 106, 835–867. [Google Scholar] [CrossRef]
- Wu, B.L.; Zhang, W.Y.; Song, Z.S.; Cun, X.N.; Sun, L.; Luo, J.J.; Li, Y.Q.; Cheng, X.H.; Sun, B. Geological and Geochemical Characteristics of Uranium Minerals in the Sandstone-type Uranium Deposits in the North of Ordos Basin and Their Genetic Significance. Acta Geol. Sin. 2016, 90, 3393–3407. [Google Scholar]
- Chen, Z.L.; Lu, K.G.; Wang, G.; Chen, B.L.; Wang, G.R.; Zheng, E.J.; Cui, L.L.; Ding, W.J. Characteristics of Cenozoic Structural Movements in Southern Margin of Junggar Basin and Its’ Relationship to the Mineralization of Sandstone-Type Uranium Deposits. Acta Petrol. Sin. 2010, 26, 457–470. [Google Scholar]
- Cai, C.F.; Li, H.T.; Qin, M.K.; Luo, X.R.; Wang, F.Y.; Ou, G.X. Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore Geol. Rev. 2007, 32, 262–274. [Google Scholar] [CrossRef]
- Zhang, J.D. Innovation and Development of Metallogenic Theory for Sandstone Type Uranium Deposit in China. Uranium Geol. 2016, 32, 321–332. [Google Scholar]
- Bonnetti, C.; Cuney, M.; Bourlange, S.; Deloule, E.; Poujol, M.; Liu, X.D.; Peng, Y.B.; Yang, J.X. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: Insight from basement igneous rocks of the Erlian Basin. Miner. Depos. 2017, 52, 297–315. [Google Scholar] [CrossRef]
- Chi, G.X.; Xue, C.J. Hydrodynamic regime as a major control on localization of uranium mineralization in sedimentary basins. Sci. China Earth Sci. 2014, 57, 2928–2933. [Google Scholar] [CrossRef]
- Qin, M.K.; Huang, S.H.; He, Z.B.; Xu, Q.; Song, J.Y.; Liu, Z.Y.; Guo, Q. Evolution of Tectonic Uplift, Hydrocarbon Migration, and Uranium Mineralization in the NW Junggar Basin:An Apatite Fission-Track Thermochronology Study. Acta Geol. Sin. (Engl. Ed.). 2018, 92, 1901–1916. [Google Scholar] [CrossRef]
- Bonnetti, C.; Malartre, F.; Huault, V.; Cuney, M.; Bourlange, S.; Liu, X.D.; Peng, Y.B. Sedimentology, stratigraphy and palynological occurrences of the late Cretaceous Erlian Formation, Erlian Basin, Inner Mongolia, People’s Republic of China. Cretac. Res. 2014, 48, 177–192. [Google Scholar] [CrossRef]
- Han, X.Z.; Li, S.X.; Zheng, E.J.; Li, X.G.; Cai, Y.Q.; Chen, Z.L. Neotectonic Activity Characteristics of Yili Basin and its Relation to the Formation of Sandstone-Type Uranium Deposits. Xinjiang Geol. 2004, 22, 378–381. [Google Scholar]
- Guo, Q.Y.; Li, Z.Y.; Yu, J.S.; Li, X.C. Meso-Neozoic Structural Evolution in the Western Margin of Ordos Basin with Respect to Uranium Ore Formation. Uranium Geol. 2010, 26, 137–144. [Google Scholar]
- Liu, Z.Y.; Qin, M.K.; He, Z.B.; Guo, Q.; Xu, Q.; Geng, Y.Y.; Du Deng, G. Tectonic Uplift-Denudation Inhomogeneity and Impacts On the Sandstone-Hosted Uranium Mineralization in the Southern Margin of the Junggar Basin. Geotecton. Metallog. 2017, 41, 853–864. [Google Scholar]
- Liu, W.S.; Zhao, X.Q.; Kang, S.H.; Shi, Q.P.; Zhang, Z.N. Inversion Structure and its Relationship with Sandstone Type Uranium Metallization in Erlian Basin. Uranium Geol. 2018, 34, 81–89. [Google Scholar]
- Huang, S.H.; Qin, M.K.; Xu, Q.; He, Z.B.; Liu, Z.Y.; Selby, D. Superimposed Uranium Metallogenesis Between Deep Hydrocarbon Fluid and Supergene Oxidation Fluid in the Northwestern Margin of Junggar Basin. Acta Geol. Sin. 2018, 92, 1493–1506. [Google Scholar]
- Nie, F.J.; Zhang, J.; Yan, Z.B.; Wang, Y.N.; Li, M.G.; Xia, F.; Zhu, C.H.; Wang, S.L.; Hu, J. Apatite Fission Track Chronology of the Weijing Granite and Denudation Event in the Northern Margin of North China During the Late Cretaceous and their Implications to Uranium Mineralization. Acta Geol. Sin. 2018, 92, 313–329. [Google Scholar]
- Jaireth, S.; Roach, I.C.; Bastrakov, E.; Liu, S.F. Basin-related uranium mineral systems in Australia: A review of critical features. Ore Geol. Rev. 2016, 76, 360–394. [Google Scholar] [CrossRef]
- Chen, Z.Y. Regional Distribution Regularity of Sandstone Uraniumdeposits in Asian Continent and Prospecting Strategy for Sandstone Uranium Deposits in China. Uranium Geol. 2002, 18, 129–137. [Google Scholar]
- Chen, Z.L.; Liu, J.; Gong, H.L.; Han, F.B.; Marion, B.S.; Zheng, E.J.; Wang, G. Late Cenozoic tectonic activity and its significance in the northern Junggar Basin, northwestern China. Tectonophysics 2011, 497, 45–56. [Google Scholar] [CrossRef]
- Wang, G.; Wang, G.R.; Lu, K.G.; Tang, X.F. Review On the Uranium Geology Efforts and Outlook for Future Exploration in Junggar Basin. Uranium Geol. 2016, 32, 340–349. [Google Scholar]
- Du, J.; Tang, X.F. Controlling Factors and Prospecting Direction for Uranium Metallization in Middle Jurassic at Kamusite Area in Xinjiang. Uranium Geol. 2017, 33, 129–136. [Google Scholar]
- Tang, X.F.; Wang, G.; Zhang, Z.F.; Li, Y.L.; Wu, S.M.; Li, C.L. A Study On Uranium Metallogenic Model of Jurassic in Kamust Region, Junggar Basin. Geol. Rev. 2018, 64, 647–657. [Google Scholar]
- Huang, S.H.; Qin, M.K.; Liu, Z.Y.; He, Z.B.; Geng, Y.Y. Litho-mineralogy, geochemistry, and chronology for the genesis of the Kamust sandstone-hosted uranium deposit, Junggar Basin, NW China. Geol. J. (Chichester Engl.) 2021, 57, 1530–1551. [Google Scholar] [CrossRef]
- Jahn, B.M.; Natal’In, B.; Windley, B.; Dobretsov, N. Phanerozoic continental growth in Central. J. Asian Earth Sci. 2004, 23, 599–603. [Google Scholar] [CrossRef]
- Windley, B.F.; Alexeiev, D.; Xiao, W.; Kroener, A.; Badarch, G. Tectonic models for accretion of the Central Asian Orogenic Belt. J. Geol. Soc. 2007, 164, 31–47. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.J.; Han, C.M.; Yuan, C.; Sun, M.; Lin, S.; Chen, H.L.; Li, Z.L.; Li, J.L.; Sun, S.; Xiao, W.; et al. Middle Cambrian to Permian subduction-related accretionary orogenesis of northern Xinjiang, NW China; implications for the tectonic evolution of Central Asia. J. Asian Earth Sci. 2008, 32, 102–117. [Google Scholar] [CrossRef]
- He, D.F.; Zhang, L.; Wu, S.T.; Di, L.; Zhen, Y. Tectonic Evolution Stages and Features of the Junggar Basin. Oil Gas Geol. 2018, 39, 845–861. [Google Scholar]
- Xiao, W.; Windley, B.F.; Yan, Q.; Qin, K.; Chen, H.; Yuan, C.; Sun, M.; Li, J.; Sun, S. SHRIMP Zircon Age of the Aermantai Ophiolite in the North Xinjiang Area‚ China and Its Tectonic Implications. Acta Geol. Sin. 2007, 80, 6. [Google Scholar]
- Pirajno, F.; Mao, J.W.; Zhang, Z.C.; Zhang, Z.H.; Chai, F.M. The association of mafic–ultramafic intrusions and A-type magmatism in the Tian Shan and Altay orogens, NW China: Implications for geodynamic evolution and potential for the discovery of new ore deposits. J. Asian Earth Sci. 2008, 32, 165–183. [Google Scholar] [CrossRef]
- Han, B.F.; Guo, Z.J.; He, G.Q. Timing of Major Suture Zones in North Xinjiang, China:Constraints From Stitching Plutons. Acta Petrol. Sin. 2010, 26, 2233–2246. [Google Scholar]
- Zhang, Y.Y.; Gu, Z.J. New Constraints On Formation Ages of Ophiolites in Northern Junggar and Comparative Study On their Connection. Acta Petrol. Sin. 2010, 26, 421–430. [Google Scholar] [CrossRef] [Green Version]
- Xiao, W.; Huang, B.; Han, C.; Sun, S.; Li, J. A review of the western part of the Altaids: A key to understanding the architecture of accretionary orogens. Gondwana Res. 2011, 18, 253–273. [Google Scholar] [CrossRef]
- He, D.F.; Di, L.; Fan, C.; Yang, X.F. Geochronology, geochemistry and tectonostratigraphy of Carboniferous strata of the deepest Well Moshen-1 in the Junggar Basin, northwest China: Insights into the continental growth of Central Asia. Gondwana Res. 2013, 24, 560–577. [Google Scholar] [CrossRef]
- Ren, X.C. The Division of Mesozoic Structural Unit of Wulungu Depression in Jugar Basin. Pet. Geophys. 2008, 4, 38–41. [Google Scholar]
- Li, W.; Hu, J.M.; Qu, H.J. Fission Track Analysis of Junggar Basin Peripheral Orogen and its Geological Significance. Acta Geol. Sin. 2010, 84, 171–182. [Google Scholar]
- Allen; Mark, B.; Vincent; Stephen, J. Fault reactivation in the Junggar region, northwest China: The role of basement structures during Mesozoic-Cenozoic compression. J. Geol. Soc. 1997, 154, 151. [Google Scholar] [CrossRef]
- Su, Y.P.; Tang, H.F.; Cong, F. Zircon U-Pb Age and Petrogenesis of the Huangyangshan Lkalinegranite Body in East Junggar, Xinjiang. Acta Mineral. Sin. 2008, 28, 117–126. [Google Scholar]
- Gan, L.; Tang, H.F.; Han, Y.J. Geochronology and Geochemical Characteristics of the Yemaquan Granitic Pluton in East Junggar, Xinjiang. Acta Petrol. Sin. 2010, 26, 2374–2388. [Google Scholar]
- Li, D.; He, D.F.; Fan, C.; Xiang, K.; Jin, L.Y. Early Permian post-collisional magmatic events, East Junggar: Constraints from zircon SHRIMP U-Pb age, geochemistry and Hf isotope of rhyolite in the Yundukala area. Acta Petrol. Sin. 2013, 29, 317–337. [Google Scholar]
- Tian, J.; Liao, Q.A.; Fan, G.M.; Nie, X.M.; Wang, F.M. The discovery and tectonic implication of Early Carboniferous post-collisional Ⅰ-type granites from the south of Karamaili in eastern Junngar. Acta Petrol. Sin. 2015, 31, 1471–1484. [Google Scholar]
- Wu, W.W.; Liao, Q.A.; Chen, S.; Hu, C.B.; Tian, J.; Wang, F.M.; Fan, G.M. Petrogenesis and Geological Significance of Highly Frac-Tionated A-type Granites in Kalasayi, East Junggar. Geol. Bull. China 2015, 34, 385–399. [Google Scholar]
- Zhang, Y.F.; Lin, X.W.; Guo, Q.M.; Wang, X.; Zhao, D.C.; Dang, C.; Yao, S. LA-ICP-MS Zircon U-Pb Dating and Geochemistry of Aral Granitic Plutons in Koktokay Area in the Southern Altay Margin and their Source Significace. Acta Geol. Sin. 2015, 89, 339–354. [Google Scholar]
- Liu, S.B.; Dou, H.; Zhang, W.M.; Peng, Z.J.; Zhang, L.; Zhang, W.R. Discovery of Jurassic Trachyandesite and Its Geological Significance in the Northwestern of Junggar Basin. Geol. Rev. 2018, 64, 1519–1529. [Google Scholar]
- Zhang, B.W.; Zhan, X.Z.; Duanmu, C.Q. The Study on Petrogeochemistry of Kamusite Granites in Eastern Junggar and its Tectonic Significance. J. Xinjiang Univ. (Nat. Sci. Ed.) 2018, 35, 502–512. [Google Scholar]
- Dong, Z.C.; Zhao, G.C.; Pan, F.; Wang, K.; Huang, B.T. Petrogenesis of the Qinghe post-orogenic pluton and its implications for the Late Paleozoic tectonic evolution of the Altai orogenic belt. Acta Petrol. Sin. 2019, 35, 1033–1057. [Google Scholar]
- Xu, Z.H.; Yin, J.Y.; Chen, W.; Li, D.P.; Sun, J.B.; Yu, S.; Du, Q.Y.; Wu, C.Y. Chronology and Geochemistry of Late Devonian ⅰ-Type Granite in the Northeast of Eastern Junggar, Xinjiang and their Tectonic Implications. Acta Geol. Sin. 2019, 93, 2797–2812. [Google Scholar]
- Bian, W.H.; Jens, H.; Liu, Z.H.; Wang, P.J.; Matthias, H. Sedimentary and palaeoenvironmental evolution of the Junggar Basin, Xinjiang, northwest China. Palaeobiodiversity Palaeoenviron. 2010, 90, 175–186. [Google Scholar] [CrossRef]
- Reiners, P.W.; Ehlers, T.A.; Mitchell, S.G.; Montgomery, D.R. Coupled spatial variations in precipitation and long-term erosion rates across the Washington Cascades. Nature 2003, 426, 645–647. [Google Scholar] [CrossRef]
- Reiners, P.W.; Brandon, M.T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 2006, 34, 419–466. [Google Scholar] [CrossRef] [Green Version]
- Flowers, R.M.; Ketcham, R.A.; Shuster, D.L.; Farley, K.A. Apatite (U–Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta 2009, 73, 2347–2365. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Carter, A.; Donelick, R.A.; Barbarand, J.; Hurford, A.J. Improved measurement of fission-track annealing in apatite using c-axis projection. Am. Mineral. 2007, 92, 789–798. [Google Scholar] [CrossRef]
- Ketcham, R.A.; Donelick, R.A.; Carlson, W.D. Variability of apatite fission-track annealing kinetics; III, Extrapolation to geological time scales. Am. Mineral. 1999, 84, 1235–1255. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Xie, L.W.; Yang, J.H.; Xu, P. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 2006, 234, 105–126. [Google Scholar] [CrossRef]
- Xie, L.W.; Zhang, Y.B.; Zhang, H.H.; Sun, J.F.; Wu, F.Y. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Chin. Sci. Bull. 2008, 53, 1565–1573. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel; Geochronology Center: Berkeley, CA, USA, 2012; pp. 1–75. [Google Scholar]
- Yuan, W.M.; Dong, J.Q.; Bao, Z.K. Fission track evidences for tectonic activity in Altay Mountains‚ Xinjiang‚ North-Western China. Earth Sci. Front. (China Univ. Geosci. Beijing) 2004, 11, 461–468. [Google Scholar]
- Li, L.; Chen, Z.L.; Qi, W.X.; Wang, S.X.; Chen, X.H.; Wu, Y.P.; Gong, H.L.; Wei, X.C.; Yang, Y.; Li, X.Z. Apatite Fission Track Evidence for Uplifting-Exhumation Processes of Mountains Surrounding the Junggar Basin. Acta Petrol. Sin. 2008, 24, 1011–1020. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Altas of zircon textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Black, L.P.; Kamo, S.L.; Williams, I.S.; Mundil, R.; Davis, D.W.; Korsch, R.J.; Foudoulis, C. The application of SHRIMP to Phanerozoic geochronology; a critical appraisal of four zircon standards. Chem. Geol. 2003, 200, 171–188. [Google Scholar] [CrossRef]
- Wu, K.Y.; Zha, M.; Wang, X.L.; Qu, J.X.; Chen, X. Further Researches On the Tectonic Evolution and Dynamic Setting of the Junggar Basin. Acta Geosci. Sin. 2005, 26, 217–222. [Google Scholar]
- Chen, X.; Lu, H.X.; Shu, L.S.; Wang, H.M.; Zhang, G.Q. Study On Tectonic Evolution of Junggar Basin. Geol. J. China Univ. 2002, 8, 257–267. [Google Scholar]
- Chen, F.J.; Wang, X.W.; Wang, X.W. Prototype and Tectonic Evolution of the Junggar Basin, Northwestern China. Earth Sci. Front. 2005, 12, 77–89. [Google Scholar]
- Yuan, W.M.; Carter, A.; Dong, J.Q. Mesozoic-Tertiary exhumation history of the Altai Mountains, northern Xinjiang, China: Constraints from apatite fission track data. Tectonophysics 2006, 412, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.J.; Zhang, Z.C.; Wu, C.D.; Fang, S.H.; Zhang, R. The Mesozoic and Cenozoic Exhumation History of Tianshan and Comparative Studies to the Junggar and Altai Mountains. Acta Geol. Sin. 2006, 80, 1–15. [Google Scholar]
- Grave, J.D.; Buslov, M.M.; Haute, P. Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology. J. Asian Earth Sci. 2007, 29, 188–204. [Google Scholar] [CrossRef]
- Liu, H.T.; Yuan, W.M.; Tian, P.F.; Xue, B.; Song, G.; Zhao, W.J. Denudation and Exposure History and Paleotopographic Reconstruction of the Southern Margin of the Altay Mountains Since Cretaceous. Acta Petrol. Mineral. 2012, 31, 412–424. [Google Scholar]
- Li, Z.H.; Chen, G.; Cui, J.B.; Chen, Z.J.; He, J.Y.; Ding, C.; Yang, F. Fission Track Age of Yanshanian Tectonic-Thermal Events in the Northern Junggar Basin. Geol. Sci. Technol. Inf. 2014, 33, 9–14. [Google Scholar]
- Xu, Q.Q.; Ji, J.Q.; Sun, D.X.; Zhao, L. Late Cenozoic uplift-exhumation history of Qinghe-Fuyun region, Altay, Xinjiang—Evidence from apatite fission track. Geol. Bull. China 2015, 34, 834–844. [Google Scholar]
- Song, J.Y.; Qin, M.K.; Cai, Y.Q.; Guo, Q.; He, Z.B.; Liu, Z.Y.; Cao, X.; Chen, Z.G. Uplift-Denudation of Orogenic Belts Control On the Formation of Sandstone Type Uranium (U) Deposits in Eastern Junggar, Northwest China: Implications From Apatite Fission Track (Aft). Editor. Comm. Earth Sci. J. China Univ. Geosci. 2019, 44, 3910–3925. [Google Scholar]
- Xu, M.J.; Li, C.; Zhang, X.Z.; Wu, Y.W. Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology. Int. Geol. Rev. 2014, 56, 1072–1096. [Google Scholar] [CrossRef]
- Guo, R.H.; Li, S.Z.; Yu, S.Y.; Dai, L.M.; Liu, Y.J.; Peng, Y.B.; Zhou, Z.Z.; Wang, Y.H.; Liu, Y.M.; Wang, Q. Collisional processes between the Qiangtang Block and the Lhasa Block: Insights from structural analysis of the Bangong–Nujiang Suture Zone, central Tibet. Geol. J. 2019, 54, 946–960. [Google Scholar] [CrossRef]
- Song, G.; Yuan, W.M.; Zhao, W.J.; Liu, H.T. Apatite Fission Track Analyses of Exhumation History and Antiquated Topography Reconstruction in the Southern Margin of Altai, Xinjiang. Acta Geol. Sin. 2013, 87, 967–978. [Google Scholar]
- Ding, L.; Maksatbek, S.; Cai, F.L.; Wang, H.Q.; Song, P.P.; Ji, W.Q.; Xu, Q.; Zhang, L.Y.; Muhammad, Q.; Upendra, B. Processes of initial collision and suturing between India and Asia. Sci. China Earth Sci. 2017, 60, 635–651. [Google Scholar] [CrossRef]
- Allen, M.B.; Vincent, S.J.; Wheeler, P.J. Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics 1999, 18, 639–654. [Google Scholar] [CrossRef]
- Grave, J.D.; Haute, P.; Buslov, M.M.; Dehandschutter, B.; Glorie, S. Apatite fission-track thermochronology applied to the Chulyshman Plateau, Siberian Altai Region. Radiat. Meas. 2008, 43, 38–42. [Google Scholar] [CrossRef]
- Tapponnier, P.; Peltzer, G.; Armijo, R. On the mechanics of the collision between India and Asia. Geol. Soc. Lond. Spec. Publ. 1986, 19, 113–157. [Google Scholar] [CrossRef]
- Dobretsov, N.L.; Buslov, M.M.; Delvaux, D.; Berzin, N.A.; Ermikov, V.D. Meso- and Cenozoic Tectonics of the Central Asian Mountain Belt: Effects of Lithospheric Plate Interaction and Mantle Plumes. Int. Geol. Rev. 1996, 38, 430–466. [Google Scholar] [CrossRef]
- Yang, S.; Liu, G.; Jin, L.Y.; Zheng, H.F. Geochronology, Geochemistry and Tectonic Significance of Songkarsu Granites in Karamali, Eastern Junggar. Geoscience 2021, 35, 492–503. [Google Scholar]
- Li, Y.P.; Li, J.Y.; Sun, G.H.; Zhu, Z.X.; Yang, Z.Q. Basement of Junggar basin: Evidence from detrital zircons in sandstone of previous Devonian Kalamaili formation. Acta Petrol. Sin. 2007, 23, 1577–1590. [Google Scholar]
- Tang, H.F.; Zhao, Z.Q.; Huang, R.S.; Han, Y.J.; Su, Y.P. Primary Hf Isotopic Study On Zircons From the A-Type Granites in Eastern Junggar of Xinjiang, Northwest China. Acta Mineral. Sin. 2008, 28, 335–342. [Google Scholar]
- Li, J.D.; Yang, T.N.; Li, Y.P.; Zhu, Z.X. Geological Features of the Karamaili Faulting Belt, Eastern Junggar Region, Xinjiang, China and its Constraints On the Reconstruction of Late Paleozoic Ocean-Continental Framework of the Central Asian Region. Geol. Bull. China 2009, 28, 1817–1826. [Google Scholar]
- Zhou, G.; Zhang, Z.C.; Wu, G.G.; Dong, L.H.; He, Y.K.; Dong, Y.G.; He, L.X.; Qin, J.H.; Zhao, Z.H.; Liu, G.R. Postorogenic Extension and Continental Growth of the Northeastern Margin of the Juggar:Evidences from Petrography and Geochemistry of the Hadansun Intrusive Complex. Acta Geol. Sin. 2009, 83, 331–346. [Google Scholar]
- Xiao, W.J.; Zhang, L.C.; Qin, K.Z.; Sun, S.; Li, J.L. Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): Implications for the continental growth of central Asia. Am. J. Sci. 2004, 304, 370–395. [Google Scholar] [CrossRef] [Green Version]
- Long, X.P.; Sun, M.; Yuan, C.; Xiao, W.J.; Chen, H.L.; Zhao, Y.J.; Cai, K.D.; Li, J.L. Genesis of Carboniferous Volcanic Rocks in the Eastern Junggar: Constraints on the Closure of the Junggar Ocean. Acta Petrol. Sin. 2006, 22, 31–40. [Google Scholar]
- Wu, X.Q.; Liu, D.; Li, Z.S. Post-Collisional Volcanism of Kalamaili Suture Zone. Earth Sci. Front. 2009, 16, 220–230. [Google Scholar] [CrossRef]
- Han, B.; He, G.; Wang, S. Postcollisional mantle-derived magmatism, underplating and implications for basement of the Junggar Basin. Sci. China Ser. D Earth Sci. 1999, 42, 113–119. [Google Scholar] [CrossRef]
- Zhao, Z.H.; Guo, Z.J.; Han, B.F.; Wang, Y. The geochemical characteristics and tectonic-magmatic implications of the latcst-Paleozoic volcanic rocks from Santanghu basin, eastern Xinjiang, northwest China. Acta Petrol. Sin. 2006, 22, 199–214. [Google Scholar]
- Yang, G.X.; Li, Y.J.; Si, G.H.; Wu, H.; Jin, Z.; Zhang, Y.Z. LA-ICPMS U-Pb Zircon Dating of the Beilekuduke Granite in Kalamaili Area, East Junggar, Xinjiang, China and its Geological Implication. Geotecton. Metallog. 2010, 34, 133–138. [Google Scholar]
- Fang, Y.N.; Wu, C.D.; Guo, Z.J.; Hou, K.J.; Dong, L.; Wang, L.; Li, L.L. Provenance of the southern Junggar Basin in the Jurassic: Evidence from detrital zircon geochronology and depositional environments. Sediment. Geol. 2015, 315, 47–63. [Google Scholar] [CrossRef]
- Geng, Y.Y.; Liu, Z.Y.; He, Z.B.; Huang, S.H.; Guo, Q.; Xu, Q.; Song, J.Y. Provenance and Ore-Forming Tectonic Setting of Sandstone-Type Uranium Deposits in the Southern Margin of Junggar Basin--Insights From U-Pb Ages and Hf Isotopes of Detrital Zircons. Geol. Rev. 2020, 66, 393–409. [Google Scholar]
- Zhu, W.B.; Wang, F.J.; Cao, Y.Y.; Wang, S.L. Tectono-magmatic events in Tianshan Mountains and adjacent areas during Yanshanian Movement period. Acta Geol. Sin. 2020, 94, 1331–1346. [Google Scholar]
- Bao, Z.K.; Yuan, W.M.; Dong, J.Q.; Gao, S.K. Apatite Fission Track Dating and Thermal History of Qing-He Region in Altay Mountains. Nucl. Tech. 2005, 28, 722–725. [Google Scholar]
- Zhang, Q.F.; Hu, A.Q.; Zhang, G.X.; Fan, S.K.; Pu, Z.P. Evidence from Isotopic Age for Presence of Mesozoic-Cenozoic Magmatic Activities in Altai Region, Xinjiang. Geochimica 1994, 3, 269–280. [Google Scholar]
- Cao, Y.Y.; Chen, F.; Zhao, F.; Wang, F.J.; Paerhati, Z. Tectono-Magmatic Events in Junggar Basin During Jurassic Period. Xinjiang Geol. 2020, 38, 341–347. [Google Scholar]
- Lambert, I.; Jaireth, S.; McKay, A.; Miezitis, Y. Australia’s Uranium Endowment: Metallogeny, Exploration and Potential; Springer: Heidelberg, Germany, 2005. [Google Scholar]
- Zhang, J.D.; Li, Z.Y. Uranium Potential and Regional Metallogeny in China. Acta Geol. Sin. Engl. Ed. 2008, 82, 741–744. [Google Scholar]
- Hou, B.H.; Keeling, J.; Li, Z.Y. Paleovalley-related uranium deposits in Australia and China: A review of geological and exploration models and methods. Ore Geol. Rev. 2017, 88, 201–234. [Google Scholar] [CrossRef]
- Geng, Y.Y.; Liu, Z.Y.; Huang, S.H.; He, Z.B. Geochronology and Geochemistry of the Kalamaili Granitic Rocks and Uranium Ore-Forming Potential at the Northeastern Margin of Junggar Basin, China. J. Earth Sci. Environ. 2022, 44, 20–41. [Google Scholar]
- Sun, X.; Wang, G.R.; Wang, G.; Lu, K.G. Middle Jurassic-Oligocene Paleoclimate Environment and its Influence On Mineralization of Sandstone-Type Uranium Deposit in Kamuster Area, Eastern of the Junggar Basin. Xinjiang Geol. 2019, 37, 242–246. [Google Scholar]
- Ji, H.L.; Guo, Q.; Qin, M.K.; Liu, Z.Y.; He, Z.B.; Yang, F. Relationship of Sedimentary Facies and Uranium Mineralization of the Middle Jurassic Toutunhe Formation in the Kamuster Area, Eastern Part of the Junggar Basin. Acta Geol. Sin. 2021, 95, 3455–3471. [Google Scholar]
Location | No. | Lithology | Nc | ρs (105/cm2) Ns | ρi (105/cm2) Ni | ρd (105/cm2) Nd | P (χ2) % | Central Age (Ma) (±1σ) | Pooled Age (Ma) (±1σ) | L (μm) (Number of Tracks) | Data Sources |
---|---|---|---|---|---|---|---|---|---|---|---|
Karameri Mountain | K-7 | Tuffaceous sandstone | 35 | 3.184 (776) | 3.784 (922) | 11.615 (5864) | 99.7 | 197 ± 13 | 197 ± 13 | 13.9 ± 2.1 (100) | This study |
K-8 | Diorite | 20 | 3.666 (284) | 5.745 (445) | 9.487 (5864) | 35.7 | 123 ± 12 | 123 ± 11 | 14.6 ± 1.8 (56) | ||
K-9 | Diorite Porphyrite | 35 | 1.62 (491) | 2.316 (702) | 11.463 (5864) | 85 | 162 ± 12 | 162 ± 12 | 13.4 ± 2.1 (69) | ||
Qinglidi Mountain | Q-2 | Granite | 27 | 25.050 (1981) | 47.480 (2497) | 16.919 (6887) | 48.88 | 250.8 ± 7.5 | 247.5 ± 7.3 | 12.45 ± 1.56 (101) | This study |
Q-3 | Granite | 31 | 6.842 (494) | 13.580 (1422) | 8.530 (6645) | 49.05 | 237.4 ± 12.2 | 228.9 ± 12.2 | 12.72 ± 1.26 (78) | ||
Q-6 | Granodiorite | 32 | 19.049 (4715) | 26.216 (6489) | 10.766 (5864) | 0 | 158 ± 10 | 158 ± 8 | 13.5 ± 2.4 (135) | ||
Q-8 | Rhyolite | 28 | 3.420 (548) | 12.445 (1994) | 13.998 (7380) | 47.1 | 74 ± 5.2 | 74 ± 5.0 | 12.7 ± 2.0 (108) | ||
Q-12 | Granite | 35 | 3.824 (474) | 13.715 (1700) | 12.912 (7124) | 35.2 | 74 ± 5 | 73 ± 5 | 12.4 ± 2.2 (69) | ||
Q-13 | Granite | 30 | 17.975 (1926) | 36.371 (3897) | 12.285 (7124) | 0.3 | 124 ± 7 | 123 ± 7 | 12.5 ± 2.4 (113) | ||
03-45 | Granite | 24 | 1.987 (316) | 9.980 (1586) | 13.540 (3372) | 0 | 43.2 ± 4.7 | \ | 12.37 ± 0.22 (61) | Li et al. [57] | |
03-46 | Granite | 24 | 1.483 (201) | 7.710 (1045) | 13.530 (3369) | 0.9 | 41.6 ± 4.7 | \ | 12.82 ± 0.26 (60) | ||
03-47-2 | Granite | 24 | 16.010 (1497) | 22.010 (2058) | 13.520 (3366) | 8.5 | \ | 171.0 ± 15.5 | 12.99 ± 0.23 (62) | ||
D407-1 | Granite | 25 | 1.731 (297) | 4.720 (810) | 9.340 (10,438) | 99.8 | 66 ± 5 | 66 ± 5 | 12.6 ± 2.2 (102) | Li et al. [34] | |
D407-2 | Granite | 23 | 122.956 (3880) | 19.553 (617) | 3.715 (4878) | 34.4 | 151 ± 10 | 153 ± 9 | \ | ||
D407-3 | Granite | 22 | 2.457 (293) | 8.586 (1024) | 9.442 (10,438) | 14.1 | 52 ± 4 | 52 ± 4 | 12.8 ± 2.7 (123) | ||
D407-4 | Granite | 24 | 1.419 (288) | 4.257 (864) | 9.545 (10,438) | 46.8 | 61 ± 5 | 61 ± 5 | 11.7 ± 2.4 (117) | ||
D407-5 | Granite | 25 | 3.215 (351) | 9.984 (1090) | 9.648 (10,438) | 99.1 | 60 ± 4 | 60 ± 4 | 11.9 ± 2.6 (77) | ||
D407-6 | Granite | 24 | 1.998 (321) | 6.025 (973) | 9.751 (10,438) | 72.1 | 62 ± 4 | 62 ± 4 | 11.2 ± 2.6 (104) | ||
D407-7 | Granite | 21 | 125.559 (3876) | 24.036 (742) | 3.659 (4878) | 13.8 | 124 ± 8 | 126 ± 8 | \ | ||
Altay Mountain | A-2 | Amphibolite | 12 | 11.971 (273) | 45.033 (1027) | 12.518 (7380) | 3.4 | 65 ± 6.7 | 64 ± 5.3 | 12.6 ± 1.9 (54) | This study |
A-3 | Granite | 31 | 2.133 (117) | 8.66 (475) | 12.813 (7380) | 8.4 | 61 ± 8.3 | 61 ± 6.9 | 12.5 ± 2.1 (76) | ||
A-4 | Granite | 28 | 9.285 (1423) | 28.157 (4315) | 13.011 (7380) | 0 | 82 ± 5.4 | 83 ± 4.7 | 12.7 ± 1.8 (123) | ||
A-5 | Sandstone | 24 | 8.765 (2409) | 24.294 (6677) | 13.208 (7380) | 0 | 92 ± 5.6 | 92 ± 4.9 | 13.4 ± 1.8 (114) | ||
A-6 | Granite | 28 | 3.14 (308) | 13.914 (1365) | 13.405 (7380) | 99.8 | 58 ± 4.6 | 58 ± 4.6 | 13.1 ± 2.0 (106) | ||
A-7 | Granite | 26 | 0.236 (34) | 1.65 (238) | 13.602 (7380) | 60.5 | 37 ± 7.2 | 38 ± 7.1 | 10.4 ± 2.8 (7) | ||
A-8 | Tuff | 28 | 4.102 (1098) | 20.234 (5416) | 13.8 (7380) | 8.9 | 54 ± 3.4 | 54 ± 3.2 | 13.2 ± 1.9 (107) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Peng, S.; Qin, M.; Huang, S.; Geng, Y.; He, Z. Constraints on Sandstone-Type Uranium Deposits by the Tectonic Uplift and Denudation Process in the Eastern Junggar Basin, Northwest China: Evidence from Apatite Fission Track and Detrital Zircon U-Pb Ages. Minerals 2022, 12, 905. https://doi.org/10.3390/min12070905
Liu Z, Peng S, Qin M, Huang S, Geng Y, He Z. Constraints on Sandstone-Type Uranium Deposits by the Tectonic Uplift and Denudation Process in the Eastern Junggar Basin, Northwest China: Evidence from Apatite Fission Track and Detrital Zircon U-Pb Ages. Minerals. 2022; 12(7):905. https://doi.org/10.3390/min12070905
Chicago/Turabian StyleLiu, Zhangyue, Suping Peng, Mingkuan Qin, Shaohua Huang, Yingying Geng, and Zhongbo He. 2022. "Constraints on Sandstone-Type Uranium Deposits by the Tectonic Uplift and Denudation Process in the Eastern Junggar Basin, Northwest China: Evidence from Apatite Fission Track and Detrital Zircon U-Pb Ages" Minerals 12, no. 7: 905. https://doi.org/10.3390/min12070905
APA StyleLiu, Z., Peng, S., Qin, M., Huang, S., Geng, Y., & He, Z. (2022). Constraints on Sandstone-Type Uranium Deposits by the Tectonic Uplift and Denudation Process in the Eastern Junggar Basin, Northwest China: Evidence from Apatite Fission Track and Detrital Zircon U-Pb Ages. Minerals, 12(7), 905. https://doi.org/10.3390/min12070905