Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis
Abstract
:1. Introduction
2. Regional Geology
3. Ore Deposit Geology
4. Analytical Methods
4.1. Fluid Inclusion Measurements
4.2. H–O Isotope Analyses
4.3. C–O Isotope Analyses
4.4. S–Pb Isotope Analyses
5. Analytical Results
5.1. Fluid Inclusions
5.1.1. Microscopy Investigations of Fluid Inclusions
5.1.2. Micro-Thermometric Results
5.1.3. Laser Raman Spectroscopy
5.2. H–O Isotopes
5.3. C–O Isotopes
Sample No. | Mineral | Mineralized Stages | Sample Description | δ13CPDB (‰) | δ18OPDB (‰) | δ18OSMOW (‰) |
---|---|---|---|---|---|---|
HLT-ZK18-2-CO1 | Calcite | IV | Qz+Cal+Py vein | −0.2 | −22.1 | 8.1 |
HLT-ZK18-1-CO1 | Calcite | IV | Qz+Cal+Py vein | −2.3 | −22.8 | 7.4 |
HLT-ZK18-3-CO1 | Calcite | IV | Qz+Cal+Py vein | −3.1 | −23.5 | 6.6 |
HLT-ZK18-3-CO2 | Calcite | IV | Qz+Cal+Py vein | −0.2 | −23.3 | 6.9 |
5.4. S–Pb Isotopes
6. Discussion
6.1. Source of the Ore-forming Materials
6.2. Estimation of Trapping Pressure
6.3. Origin of the Ore-forming Fluids
6.4. Fluid Evolution and Mineralization Process
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, X.L.; Yao, S.Z.; He, M.C.; Ding, Z.J.; Cui, Y.B.; Shen, J.; Chen, B.; Zhu, B.P. Geochemistry, U–Pb geochronology and Hf isotope studies of the Daheishan porphyry Mo deposit in Heilongjiang Province, NE China. Resour. Geol. 2014, 64, 102–116. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q. Zircon U–Pb and molybdenite Re–Os dating of the Chalukou porphyry Mo deposit in the northern Great Xing’an Range, China and its geological significance. J. Asian Earth Sci. 2014, 79, 696–709. [Google Scholar] [CrossRef]
- Deng, C.Z.; Sun, D.Y.; Han, J.S.; Chen, H.Y.; Li, G.H.; Xiao, B.; Li, R.C.; Feng, Y.Z.; Li, C.L.; Lu, S. Late-stage southwards subduction of the Mongol-Okhotsk oceanic slab and implications for porphyry Cu–Mo mineralization: Constraints from igneous rocks associated with the Fukeshan deposit, NE China. Lithos 2019, 326–327, 341–357. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Ding, Q.F.; Qu, Y.; Wang, C.K.; Wang, L.L.; Xu, Q.L. Mineralization age and hydrothermal evolution of the Fukeshan Cu (Mo) deposit in the northern Great Xing’an Range, Northeast China: Evidence from fluid inclusions, H–O–S–Pb isotopes, and Re–Os geochronology. Minerals 2020, 10, 591. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Ding, Q.F.; Meng, F.B.; Chen, X.S.; Qian, Y.; Wang, L.; Wang, L.L.; Xu, Q.L. Timing and ore formation of the Xiaokele porphyry Cu (–Mo) deposit in the northern Great Xing’an Range, NE China: Constraints from geochronology, fluid inclusions, and H–O–S–Pb isotopes. Ore Geol. Rev. 2022, 143, 104806. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Chen, B. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Earth Environ. Sci. Trans. R. Soc. 2000, 91, 181–193. [Google Scholar]
- Chen, Y.J.; Zhang, C.; Li, N.; Yang, Y.F.; Deng, K. Geology of the Mo deposits in Northeast China. J. Jilin Univ. (Earth Sci. Ed.) 2012, 42, 1223–1254. (In Chinese) [Google Scholar]
- Sun, Y.G. Study on Metallogenesis and Prospecting Direction of Late Jurassic Porphyry Cu (Mo) Deposits in the Northern Segment of the Great Xing’an Range. Ph.D. Thesis, Jilin University, Changchun, China, 2021. (In Chinese with English Abstract). [Google Scholar]
- Wang, L. Huoluotai, Mohe Country, Heilongjiang Province Study on Geological Characteristics and Prospecting Direction of Copper Molybdenum Deposit Summary. Master’s Thesis, Jilin University, Changchun, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Deng, C.Z.; Li, G.H. The Cu-Mo mineralization of the Late Jurassic porphyry in the Northern Great Xing’an Range: Constraints from zircon U-Pb ages of the Ore-Causative Granites. Acta Geol. Sin-Engl. 2019, 93, 236–237. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Zhao, Z.H.; Sun, F.Y.; Ding, Q.F.; Chen, X.S.; Li, J.B.; Qian, Y.; Li, Y.J. Age and petrogenesis of late Mesozoic intrusions in the Huoluotai porphyry Cu-(Mo) deposit, northeast China: Implications for regional tectonic evolution. Geosci. Front. 2022, 13, 101344. [Google Scholar] [CrossRef]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, W.M.; Feng, Z.Q.; Wen, Q.B.; Franz, N.; Liang, C.Y. A review of the Paleozoic tectonics in the eastern part of Central Asian Orogenic Belt. Gondwana Res. 2017, 43, 123–148. [Google Scholar] [CrossRef]
- Ge, W.C.; Wu, F.Y.; Zhou, C.Y.; Rahman, A.A. Emplacement age of the Tahe granite and its constraints on the tectonic nature of the Erguna block in the northern part of the Da Hinggan Range. Chin. Sci. Bull. 2005, 50, 2097–2105. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wang, B.; Wilde, S.A.; Zhao, G.C.; Cao, J.L.; Zheng, C.Q.; Zeng, W.S. Geochemistry and U–Pb zircon dating of the Toudaoqiao blueschists in the Great Xing’an Range, northeast China, and tectonic implications. J. Asian Earth Sci. 2015, 97, 197–210. [Google Scholar] [CrossRef]
- IMBGMR (Inner Mongolian Bureau of Geology and Mineral Resources). Regional Geology of Inner Mongolia; Geological Publishing House: Beijing, China, 1991; pp. 1–725. (In Chinese) [Google Scholar]
- Sun, L.X.; Ren, B.F.; Zhao, F.Q.; Ji, S.P.; Geng, J.Z. Late Paleoproterozoic magmatic records in the Eerguna massif: Evidences from the zircon U–Pb dating of granitic gneisses. Geol. Bull. China 2013, 32, 341–352, (In Chinese with English Abstract). [Google Scholar]
- Ge, W.C.; Chen, J.S.; Yang, H.; Zhao, G.C.; Zhang, Y.L.; Tian, D.X. Tectonic implications of new zircon U–Pb ages for the Xinghuadukou Complex, Erguna Massif, northern Great Xing’an Range, NE China. J. Asian Earth Sci. 2015, 106, 169–185. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Sun, F.Y.; Ding, Q.F.; Qian, Y.; Li, L.; Xu, Q.L.; Li, Y.J. Geochronology, geochemistry, and Hf isotopic compositions of Early Permian syenogranite and diabase from the northern Great Xing’an Range, NE China: Petrogenesis and tectonic implications. Can. J. Earth. Sci. 2020, 57, 1478–1491. [Google Scholar] [CrossRef]
- IMBGMR (Inner Mongolian Bureau of Geology Mineral Resources). Lithostratigraphy of Inner Mongolia; China University of Geosciences Press: Wuhan, China, 1996; pp. 1–342. (In Chinese) [Google Scholar]
- Zhang, J.H.; Ge, W.C.; Wu, F.Y.; Wilde, S.A.; Yang, J.H.; Liu, X.M. Large-scale Early Cretaceous volcanic events in the northern Great Xing’an Range, Northeastern China. Lithos 2008, 102, 138–157. [Google Scholar] [CrossRef]
- Tang, J.; Xu, W.L.; Wang, F.; Zhao, S.; Wang, W. Early Mesozoic southward subduction history of the Mongol-Okhotsk oceanic plate: Evidence from geochronology and geochemistry of Early Mesozoic intrusive rocks in the Erguna Massif, NE China. Gondwana Res. 2016, 31, 218–240. [Google Scholar] [CrossRef]
- Gou, J.; Sun, D.Y.; Ren, Y.S.; Hou, X.G.; Yang, D.G. Geochemical and Hf isotopic compositions of Late Triassic–Early Jurassic intrusions of the Erguna Block, Northeast China: Petrogenesis and tectonic implications. Int. Geol. Rev. 2017, 59, 347–367. [Google Scholar] [CrossRef]
- Sun, Y.G.; Li, B.L.; Sun, F.Y.; Ding, Q.F.; Wang, B.Y.; Li, Y.J.; Wang, K. Mineralization events in the Xiaokele porphyry Cu (–Mo) deposit, NE China: Evidence from zircon U–Pb and K–feldspar Ar–Ar geochronology and petrochemistry. Resour. Geol. 2020, 70, 254–272. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. Rev. Mineral. Mich. Mineral. Soc. Am. 1984, 12, 644. [Google Scholar]
- Clayton, W.M.; Mayeda, T.K. The use of bromine pent a fluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta. 1963, 27, 43–52. [Google Scholar] [CrossRef]
- Friedman, I. Deuterium content of natural waters and other substances. Geochim. Cosmochim. Acta 1953, 4, 89–103. [Google Scholar] [CrossRef]
- McCrea, J.M. On the isotopic chemistry of carbonates and a paleotemperature scale. J. Chem. Phys. 1950, 18, 849–857. [Google Scholar] [CrossRef]
- Steele-MacInnis, M.; Lecumberri-Sanchez, P.; Bodnar, R.J. HOKIEFLINCS_H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Comput. Geosci. 2012, 49, 334–337. [Google Scholar] [CrossRef]
- Lecumberri-Sanchez, P.; Steele-MacInnis, M.; Bodnar, R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim. Cosmochim. Acta 2012, 92, 14–22. [Google Scholar] [CrossRef]
- Collins, P.L.F. Gas hydrates in CO2-bearing fluid inclusions and use freezing data for estimation of salinity. Econ. Geol. 1979, 74, 1435–1444. [Google Scholar] [CrossRef]
- Clayton, R.N.; O’Neil, J.R.; Mayeda, T.K. Oxygen isotope exchange between quartz and water. J. Geophys. Res. Atmos. 1972, 77, 3057–3067. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Friedman, I.; O’Neil, J.R. Complication of Stable Isotope Fractionation Factors of Geochemical Interest. In Data of Geochemistry, 6th ed.; Fleischer, M., Ed.; US Government Printing Office: Washington, DC, USA, 1977. [Google Scholar]
- Veizer, J.; Hoefs, J. The nature of 18O/16O and 13C/12C secular trends in sedimentary carbonate rocks. Geochim. Cosmochim. Acta 1976, 40, 1387–1395. [Google Scholar] [CrossRef]
- Hoefs, J. Stable Isotope Geochemistry, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 130–135. [Google Scholar]
- Taylor, H.P.; Frechen, J.; Degens, E.T. Oxygen and carbon isotope studies of carbonatites from the Laacher See District, West Germany and the Alnö District, Sweden. Geochim. Cosmochim. Acta 1967, 31, 407–430. [Google Scholar] [CrossRef]
- Ohmoto, H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Chaussidon, M.; Albarède, F.; Sheppard, S.M.F. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth Planet. Sci. Lett. 1989, 92, 144–156. [Google Scholar] [CrossRef]
- Field, C.W.; Zhang, L.; Dilles, J.H.; Rye, R.O.; Reed, M.H. Sulfur and oxygen isotopic record in sulfate and sulfide minerals of early, deep, pre-main stage porphyry Cu–Mo and late main stage base-metal mineral deposits, Butte district, Montana. Chem. Geol. 2005, 215, 61–93. [Google Scholar] [CrossRef] [Green Version]
- Salas, R.D.; Ochoa-Landin, L.; Ruiz, J.; Eastoe, C.; Meza-Figueroa, D.; Zuniga-Hernandez, H.; Mendivil-Quijada, H.; Quintanar-Ruiz, F. Geology, stable isotope, and U-Pb geochronology of the Mariquita porphyry copper and Lucy Cu-Mo deposits, Cananea District, Mexico: A contribution to regional exploration. J. Geochem. Explor. 2013, 124, 140–154. [Google Scholar] [CrossRef]
- Liu, J.; Mao, J.W.; Wu, G.; Wang, F.; Luo, D.F.; Hu, Y.Q. Fluid inclusions and H–O–S–Pb isotope systematics of the Chalukou giant porphyry Mo deposit, Heilongjiang Province, China. Ore Geol. Rev. 2014, 59, 83–96. [Google Scholar] [CrossRef]
- Zhang, F.F.; Wang, Y.H.; Liu, J.J.; Wang, J.P.; Zhao, C.B.; Song, Z.W. Origin of the Wunugetushan porphyry Cu–Mo deposit, Inner Mongolia, NE China: Constraints from geology, geochronology, geochemistry, and isotopic compositions. J. Asian Earth Sci. 2016, 117, 208–224. [Google Scholar] [CrossRef]
- Mi, K.F.; Liu, Z.J.; Li, C.F.; Liu, R.B.; Wang, J.P.; Peng, R.M. Origin of the Badaguan porphyry Cu-Mo deposit, Inner Mongolia, northeast China: Constraints from geology, isotope geochemistry and geochronology. Ore Geol. Rev. 2017, 81, 154–172. [Google Scholar] [CrossRef]
- Huang, M.L.; Bi, X.W.; Gao, J.F.; Xu, L.L.; Xiao, J.F.; Liu, S.T.; Wang, X.S.; Zhou, T. Sulfur and lead isotopic variations in the giant Yulong porphyry Cu (Mo-Au) deposit from the eastern Tibetan Plateau: Implications for origins of S and Pb, and metal precipitation. J. Geochem. Explor. 2019, 197, 70–83. [Google Scholar] [CrossRef]
- Zartman, R.; Doe, B. Plumbotectonics: The model. Tectonophysics 1981, 75, 135–162. [Google Scholar] [CrossRef]
- Roedder, E.; Bodnar, R.J. Geologic pressure determinations from fluid inclusion studies. Annu. Rev. Earth Planet. Sci. 1980, 8, 263–301. [Google Scholar] [CrossRef]
- Brown, P.E.; Hagemann, S.G. Macflincor and its application to fluids in Archean lode-gold deposits. Geochim. Cosmochim. Acta 1995, 59, 3943–3952. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure-composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar]
- Bowers, T.S.; Helgeson, H.C. Calculation of the thermodynamic and geochemical consequences of nonideal mixing in the system H2O-CO2-NaCl on phase relations in geologic systems: Equation of state for H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1983, 47, 1247–1275. [Google Scholar] [CrossRef]
- Joyce, D.B.; Holloway, J.R. An experimental determination of the thermodynamic properties of H2O-CO2-NaCl fluids at high pressures and temperatures. Geochim. Cosmochim. Acta 1993, 57, 733–746. [Google Scholar] [CrossRef]
- Gehrig, M.; Lentz, H.; Franck, E. The system water-carbon dioxide-sodium chloride to 773 K and 300 MPa. Phys. Chem. 1986, 90, 525–533. [Google Scholar] [CrossRef]
- Rusk, B.G.; Reed, M.; Dilles, J.H. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry copper-molybdenum deposit at Butte, Montana. Econ. Geol. 2008, 103, 307–332. [Google Scholar] [CrossRef]
- Hedenquist, J.W.; Lowenstern, J.B. The role of magmas in the formation of hydrothermal ore deposits. Nature 1994, 370, 519–527. [Google Scholar] [CrossRef]
- Barnes, H.L. Solubilities of ore minerals. In Geochemistry of Hydrothermal Ore Deposits; Barnes, H.L., Ed.; Wiley: New York, NY, USA, 1979; pp. 404–460. [Google Scholar]
- Rye, R.O. The evolution of magmatic fluids in the epithermal environment: The stable isotope perspective. Econ. Geol. 1993, 88, 733–752. [Google Scholar] [CrossRef]
- Harris, A.C.; Golding, S.D. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits. Geology 2002, 30, 335–338. [Google Scholar] [CrossRef]
- Chen, Y.J.; Zhang, C.; Wang, P.; Pirajno, F.; Li, N. The Mo deposits of Northeast China: A powerful indicator of tectonic settings and associated evolutionary trends. Ore Geol. Rev. 2017, 81, 602–640. [Google Scholar]
- Seedorff, E.; Dilles, J.H.; Proffett, J.M.; Einaudi, M.T.; Zurcher, L.; Stavast, W.J.A.; Johnson, D.A.; Barton, M.D. Porphyry deposits: Characteristics and origin of hypogene features. Econ. Geol. 2005, 100, 251–298. [Google Scholar]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Mungall, J.E. Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 2002, 30, 915–918. [Google Scholar] [CrossRef]
- Chen, Y.J.; Pirajno, F.; Li, N.; Guo, D.S.; Lai, Y. Isotope systematic and fluid inclusion studies of the Qiyugou breccias pipe-hosted gold deposit, Qinling Orogen, Henan Province, China: Implications for ore genesis. Ore Geol. Rev. 2009, 35, 245–261. [Google Scholar]
- Li, N.; Ulrich, T.; Chen, Y.-J.; Thomsen, T.B.; Pease, V.; Pirajno, F. Fluid evolution of the Yuchiling porphyry Mo deposit, East Qinling, China. Ore Geol. Rev. 2012, 48, 442–459. [Google Scholar] [CrossRef]
- Yang, Y.F.; Li, N.; Chen, Y.J. Fluid inclusion study of the Nannihu giant porphyry Mo–W deposit, Henan Province, China: Implications for the nature of porphyry ore-fluid systems formed in a continental collision setting. Ore Geol. Rev. 2012, 46, 83–94. [Google Scholar] [CrossRef]
- Ulrich, T.; Guenther, D.; Heinrich, C.A. Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 1999, 399, 676–679. [Google Scholar] [CrossRef]
- Heinrich, C.A. The physical and chemical evolution of low-salinity magmatic fluids at the porphyry to epithermal transition: A thermodynamic study. Miner. Depos. 2005, 39, 864–889. [Google Scholar]
- Liang, H.Y.; Sun, W.D.; Su, W.C.; Zartman, R.E. Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ. Geol. 2009, 104, 587–596. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Porphyry copper systems. Econ. Geol. 2010, 105, 3–41. [Google Scholar] [CrossRef]
- Fournier, R.O. Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ. Geol. 1999, 94, 1193–1211. [Google Scholar] [CrossRef]
- Hezarkhani, A.; William-Jones, A.E.; Gammons, C.H. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Miner. Dep. 1999, 34, 770–783. [Google Scholar] [CrossRef]
- Williams, P.J.; Dong, G.Y.; Ryan, C.G.; Pollard, P.J.; Rotherham, J.F.; Mernagh, T.P.; Chapman, L.H. Geochemistry of hypersaline fluid inclusions from the Starra (Fe oxide)-Au-Cu deposit, Cloncurry district, Queensland. Econ. Geol. Bull. Soc. Econ. Geol. 2001, 96, 875–883. [Google Scholar]
- Landtwing, M.R.; Pettke, T.; Halter, W.E.; Heinrich, C.A.; Redmond, P.B.; Einaudi, M.T.; Kunze, K. Copper deposition during quartz dissolution by cooling magmatic–hydrothermal fluids: The Bingham porphyry. Earth Planet. Sci. Lett. 2005, 235, 229–243. [Google Scholar] [CrossRef]
- Harris, A.C.; Kamenetsky, V.S.; White, N.C.; Achterbergh, E.V.; Ryan, C.G. Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science 2003, 302, 2109–2111. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Hu, R.Z.; Richards, J.P.; Bi, X.W.; Zhong, H. Genesis and Magmatic Hydrothermal Evolution of the Yangla Skarn Cu Deposit, Southwest China. Econ. Geol. 2015, 110, 631–652. [Google Scholar] [CrossRef]
Mineralized Stages | Host Minerals | FI Types | N | Tm-CO2 (°C) | Tm-cla (°C) | Th-CO2 (°C) | Th-total (°C) | Tm-ice (°C) | Th-s (°C) | Th-v (°C) | Salinity (wt.% NaCl Equivalent) |
---|---|---|---|---|---|---|---|---|---|---|---|
I | Quartz | L-type | 32 | / | / | / | / | −8.1 to −4.5 | / | 406–479 | 7.2–11.8 |
V-type | 12 | / | / | / | / | −7.9 to −5.8 | / | 427–471 | 8.9–11.6 | ||
S-type | 20 | / | / | / | / | / | 424–485 | / | 50.1–57.8 | ||
C-type | 8 | −57.4 to −56.8 | 3.5–5.5 | 28.2–30.5 | 429–470 | / | / | / | 8.3–11.3 | ||
II | Quartz | L-type | 34 | / | / | / | / | −6.6 to −3.1 | / | 307–398 | 5.1–10.0 |
V-type | 14 | / | / | / | / | −6.4 to −3.8 | / | 326–396 | 6.2–9.7 | ||
S-type | 17 | / | / | / | / | / | 356–414 | / | 43.0–48.9 | ||
III | Quartz | L-type | 47 | / | / | / | / | −4.5 to −0.9 | 223–336 | 1.6–7.2 | |
V-type | 16 | / | / | / | / | −3.6 to −1.8 | / | 265–332 | 3.1–5.9 | ||
IV | Quartz | L-type | 40 | / | / | / | / | −2.6 to −0.7 | 143–249 | 1.2–4.3 |
Sample No. | Mineralized Stages | Mineral | δ18OV-SMOW (‰) | T (°C) | δ18OH2O (‰) | δD (‰) |
---|---|---|---|---|---|---|
HLT-ZK18-2-HO1 | I | Quartz | 9.6 | 450 | 6.5 | −108.1 |
HLT-ZK18-1-HO1 | II | Quartz | 8.3 | 370 | 3.5 | −126.2 |
HLT-ZK18-1-HO2 | II | Quartz | 7.8 | 370 | 3.0 | −122.5 |
HLT-ZK18-1-HO3 | III | Quartz | 7.5 | 290 | 0.2 | −132.9 |
HLT-ZK18-2-HO2 | III | Quartz | 9.2 | 290 | 1.9 | −130.9 |
HLT-ZK18-3-HO1 | IV | Quartz | 9.2 | 200 | −2.5 | −139.1 |
Sample No. | Mineral | Mineralized Stages | Sample Description | δ34SV–CDT (‰) |
---|---|---|---|---|
HLT-ZK18-1-S1 | Pyrite | I | Qz+Hem+Py vein | 2.8 |
HLT-ZK18-1-S2 | Pyrite | I | Qz+Kfs+Py vein | 2.3 |
HLT-ZK18-2-S1 | Chalcopyrite | II | Qz+Kfs+Ccp vein | 1.8 |
HLT-ZK18-1-S3 | Pyrite | II | Qz+Kfs+Ccp+Py vein | 1.4 |
HLT-ZK18-1-S4 | Chalcopyrite | III | Qz+Ser+Ccp+Py vein | 0.2 |
HLT-ZK18-2-S2 | Molybdenite | III | Qz+Ser+Mol vein | 3.7 |
HLT-ZK18-3-S1 | Pyrite | IV | Qz+Cal+Py vein | 1.4 |
Sample No. | Mineral | Mineralized Stages | Sample Description | 206Pb/204Pb | Error | 207Pb/204Pb | Error | 208Pb/204Pb | Error |
---|---|---|---|---|---|---|---|---|---|
HLT-ZK18-1-Pb1 | Pyrite | I | Qz+Kfs+Py vein | 18.409 | 0.003 | 15.564 | 0.002 | 38.255 | 0.005 |
HLT-ZK18-1-Pb2 | Chalcopyrite | II | Qz+Ccp vein | 18.352 | 0.002 | 15.552 | 0.002 | 38.212 | 0.005 |
HLT-ZK18-2-Pb1 | Pyrite | III | Qz+Mol+Py vein | 18.435 | 0.002 | 15.571 | 0.002 | 38.284 | 0.005 |
HLT-ZK18-1-Pb3 | Pyrite | III | Qz+Mol+Py vein | 18.428 | 0.001 | 15.578 | 0.001 | 38.309 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Li, B.; Chen, X.; Meng, F.; Ding, Q.; Qian, Y.; Wang, L. Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis. Minerals 2022, 12, 1072. https://doi.org/10.3390/min12091072
Sun Y, Li B, Chen X, Meng F, Ding Q, Qian Y, Wang L. Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis. Minerals. 2022; 12(9):1072. https://doi.org/10.3390/min12091072
Chicago/Turabian StyleSun, Yonggang, Bile Li, Xusheng Chen, Fanbo Meng, Qingfeng Ding, Ye Qian, and Linlin Wang. 2022. "Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis" Minerals 12, no. 9: 1072. https://doi.org/10.3390/min12091072
APA StyleSun, Y., Li, B., Chen, X., Meng, F., Ding, Q., Qian, Y., & Wang, L. (2022). Fluid Inclusions and C–H–O–S–Pb Isotopes of the Huoluotai Porphyry Cu (Mo) Deposit in the Northern Great Xing’an Range, NE China: Implications for Ore Genesis. Minerals, 12(9), 1072. https://doi.org/10.3390/min12091072