Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling and Preparation
2.3. Soil Analyses
2.4. Methods of Geochemical Data Interpretations
3. Results
3.1. Soil Mineralogy
3.2. Soil Geochemistry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Velde, B.; Meunier, A. The Origin of Clay Minerals in Soils and Weathered Rocks; Springer: Berlin, Germany, 2008; ISBN 978-3-540-75633-0. [Google Scholar]
- Buggle, B.; Glaser, B.; Hambach, U.; Gerasimenko, N.; Marković, S. An evaluation of geochemical weathering indices in loess–paleosol studies. Quat. Int. 2011, 240, 12–21. [Google Scholar] [CrossRef]
- Churchman, G.J.; Velde, B. Soil Clays: Linking Geology, Biology, Agriculture, and the Environment, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; Volume 277, ISBN 9780429154768. [Google Scholar]
- Egli, M.; Mirabella, A. The Origin and Formation of Clay Minerals in Alpine Soils; American Geophysical Union: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Perri, F. Chemical weathering of crystalline rocks in contrasting climatic conditions using geochemical proxies: An overview. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 556, 109873. [Google Scholar] [CrossRef]
- Price, J.R.; Velbel, M.A. Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem. Geol. 2003, 202, 397–416. [Google Scholar] [CrossRef]
- Egli, M.; Mirabella, A.; Mancabelli, A.; Sartori, G. Weathering of soils in alpine areas as influenced by climate and parent material. Clays Clay Miner. 2004, 52, 287–303. [Google Scholar] [CrossRef]
- Hamdan, J.; Burnham, C.P. The contribution of nutrients from parent material in three deeply weathering soils of Peninsular Malaysia. Geoderma 1996, 74, 219–233. [Google Scholar] [CrossRef]
- Meunier, A.; Velde, B. Illite: Origins, Evolution and Metamorphism; Springer: Berlin, Germany, 2004; p. 286. ISBN 978-3-642-05806-6. [Google Scholar] [CrossRef]
- Środoń, J. Nature of mixed-layer clays and mechanisms of their formation and alteration. Annu. Rev. Earth Planet Sci. 1999, 27, 19–53. [Google Scholar] [CrossRef]
- Parker, A. An index of weathering for silicate rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Meunier, A.; Caner, L.; Hubert, F.; El Albani, A.; Pret, D. The weathering intensity scale (WIS): An alternative approach of the chemical index of alteration (CIA). Am. J. Sci. 2013, 313, 113–143. [Google Scholar] [CrossRef]
- Kräutner, H.G. Syngenetic models for the pyrite and polymetallic sulphide ore province of the East Carpathian. In Syngenesis and Epigenesis in the Formation of the Mineral Deposits; Wauschkuhn, A., Kluth, C., Zimmermann, R.A., Eds.; Springer: Berlin, Germany, 1984; pp. 537–552. [Google Scholar]
- Balintoni, I.; Balica, C. Carpathian peri-Gondwanan terranes in the East Carpathians (Romania): A testimony of an Ordovician, North-African orogeny. Gondwana Res. 2013, 23, 1053–1070. [Google Scholar] [CrossRef]
- Stumbea, D.; Chicoș, M.M.; Nica, V. Effects of waste deposit geometry on the mineralogical and geochemical composition of mine tailings. J. Hazard. Mater. 2019, 368, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Iftode, S.P. Mineralogy and Geochemistry of the Metamorphites and of the Sulphide Mineralization Associated from the Mănăila Area (Crystalline Mesosoic-Zone, Eastern Carpathians). Ph.D. Thesis, Alexandru Ioan Cuza University of Iasi, Iasi, Romania, 2012. Available online: https://phdthesis.uaic.ro/_layouts/15/DocIdRedir.aspx?ID=PHDSERIES-1414501938-1146 (accessed on 15 June 2022). (In Romanian).
- Moldoveanu, S.P. Geochemical characteristics of rare earth elements and selected trace elements from the Mănăila ore deposit (Eastern Carpathians). Carpath. J. Earth Environ. Sci. 2012, 7, 193–198. [Google Scholar]
- Chicoș, M.M.; Damian, G.; Stumbea, D.; Buzgar, N.; Ungureanu, T.; Nica, V.; Iepure, G. Mineralogy and geochemistry of the tailings pond from Straja Valley (Suceava County, Romania). Factors affecting the mobility of the elements on the surface of the waste deposit. Carpath. J. Earth Environ. Sci. 2016, 11, 265–280. [Google Scholar]
- Balintoni, I. The Crystalline-Mesozoic Zone of the East Carpathians. A review. In Ore Deposits and Other Classic Localities in the Eastern Carpathians: From Metamorphics to Volcanics; Iancu, O.G., Kovacs, M., Eds.; Acta Mineralogica-Petrographica. Field Guide Series; University of Szeged: Szeged, Hungary, 2010; Volume 19, pp. 13–21. [Google Scholar]
- Google Earth. Available online: https://earth.google.com/web/@47.85250831,23.25584237,210.87277493a,2445.5786484d,35y,0h,0t,0r (accessed on 16 July 2021).
- ICDD PDF-2 Database, database version 2.1302; sets 00–01–63 + 01–70–89 + 04–65–66 + 05–01; DDView program, version 4.13.3.6; JCPDS-ICDD—International Centre for Diffraction Data: Newtown Square, PA, USA, 2013.
- Hoang-Minh, T.; Kasbohm, J.; Nguyen-Thanh, L.; Nga, P.T.; Lai, L.T.; Duong, N.T.; Thanh, N.D.; Thuyet, N.T.M.; Anh, D.D.; Pusch, R.; et al. Use of TEM-EDX for structural formula identification of clay minerals: A case study of Di Linh bentonite, Vietnam. J. Appl. Cryst. 2019, 52, 133–147. [Google Scholar] [CrossRef]
- Sîrbu-Rădășanu, D.S.; Buzgar, N. The geochemistry of major and selected trace elements in soil from northern area of Iasi city (Romania). Carpath. J. Earth Environ. Sci. 2013, 8, 63–74. [Google Scholar]
- Iftode, S.P.; Huzum, R.; Sîrbu-Rădășanu, D.S.; Buzgar, N.; Iancu, O.G.; Buzatu, A. Geochemical distribution of selected trace elements in the soil-plant system from Mănăila mining area, Romania. An. Stiintifice De Univ. AI Cuza Din Iasi 2015, 61, 21–31. [Google Scholar]
- Okewale, I.A. Applicability of chemical indices to characterize weathering degrees in decomposed volcanic rocks. Catena 2020, 189, 10447. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 199, 715–717. [Google Scholar] [CrossRef]
- Munroe, J.S.; Norris, E.D.; Olson, P.M.; Ryan, P.C.; Tappa, M.J.; Beard, B.L. Quantifying the contribution of dust to alpine soils in the periglacial zone of the Uinta Mountains, Utah, USA. Geoderma 2020, 378, 114631. [Google Scholar] [CrossRef]
- Musielok, L.; Drewnik, M.; Szymansky, W.; Stolarczyk, M.; Gus-Stolarczyk, M.; Skiba, M. Conditions favoring local podzolization in soils developed from flysch regolith—A case study from the Bieszczady Mountains in southeastern Poland. Geoderma 2021, 381, 114667. [Google Scholar] [CrossRef]
- Skiba, M. Evolution of dioctahedral vermiculite in geological environments—An experimental approach. Clays Clay Miner. 2013, 61, 290–302. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Bankole, O.; Albani, A.; Meunier, A.; Gauthier-Lafaye, F. Textural and paleo-fluid flow control on diagenesis in the paleoproterozoic franceville basin, south eastern, Gabon. Precambrian Res. 2015, 268, 115–134. [Google Scholar] [CrossRef]
- Worden, R.H.; Griffiths, J.; Wooldridge, L.J.; Utley, J.E.P.; Lawan, A.Y.; Muhammed, D.D.; Simon, N.; Armitage, P.J. Chlorite in sandstones. Earth-Sci. Rev. 2020, 204, 103105. [Google Scholar] [CrossRef]
- Szymanski, W.; Skiba, M.; Nikorych, V.A.; Kuligiewicz, A. Nature and formation of interlayer fillings in clay minerals in Albeluvisols from the Carpathian Foothills, Poland. Geoderma 2014, 235, 396–409. [Google Scholar] [CrossRef]
- Hong, H.; Churchman, G.J.; Yin, K.; Li, R.; Li, Z. Randomly interstratified illite—Vermiculite from weathering of illite in red earth sediments in Xuancheng, southeastern China. Geoderma 2014, 214, 42–49. [Google Scholar] [CrossRef]
- Müller, C.M.; Pejcic, B.; Esteban, L.; Piane, C.D.; Raven, M.; Mizaikoff, B. Infrared attenuated total reflectance spectroscopy: An innovative strategy for analyzing mineral components in energy relevant systems. Sci. Rep. 2014, 4, 6764. [Google Scholar] [CrossRef]
- Goodman, A.; Sanguinito, S.; Tkach, M.; Natesakhawat, S.; Kutchko, B.; Fazio, J.; Cvetic, P. Investigating the role of water on CO2-Utica Shale interactions for carbon storage and shale gas extraction activities—Evidence for pore scale alterations. Fuel 2019, 242, 744–755. [Google Scholar] [CrossRef]
- Zviagina, B.B.; Drits, V.A.; Dorzhieva, O.V. Distinguishing Features and Identification Criteria for K-Dioctahedral 1M Micas (Illite-Aluminoceladonite and Illite-Glauconite-Celadonite Series) from Middle-Infrared Spectroscopy Data. Minerals 2020, 10, 153. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Skiba, M.; Maj-Szeliga, K.; Mazurek, R.; Zaleski, T. Does calcium carbonate influence clay mineral transformation in soils developed from slope deposits in Southern Poland? J. Soils Sediments 2021, 21, 257–280. [Google Scholar] [CrossRef]
- González-Santamaría, D.E.; Justel, A.; Fernández, R.; Ruiz, A.I.; Stavropoulou, A.; Rodríguez-Blanco, J.D.; Cuevas, J. SEM-EDX study of bentonite alteration under the influence of cement alkaline solutions. Appl. Clay Sci. 2021, 212, 106223. [Google Scholar] [CrossRef]
- Vaculikova, L.; Plevova, E. Identification of clay minerals and micas in sedimentary rocks. Acta Geodyn. Geomater. 2005, 2, 167–175. [Google Scholar]
- Yang, M.; Ye, M.; Han, H.; Ren, G.; Han, L.; Zhang, Z. Near-infrared spectroscopic study of chlorite minerals. J. Spectrosc. 2018, 695, 8260. [Google Scholar] [CrossRef]
- Warr, L.N. IMA—CNMNC approved mineral symbols. Miner. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Bauer, A.; Velde, B. Geochemistry at the Earth’s Surface; Springer: Berlin, Germany, 2016; Volume 327, ISBN 978-3-642-31359-2. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R.L. The influence of de sediment recycling and basement composition on evolution of mudrocks chemistry in the southwestern United States. Geochem. Cosmoshim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Barré, P.; Montagnier, C.; Chenu, C.; Abbadie, L.; Velde, B. Clay minerals as a soil potassium reservoir: Observation and quantification through X-ray diffraction. Plant Soil 2008, 302, 213–220. [Google Scholar] [CrossRef]
- Mei, H.; Jian, X.; Zhang, W.; Fu, H.; Zhang, S. Behavioral differences between weathering and pedogenesis in a subtropical humid granitic terrain: Implications for chemical weathering intensity evaluation. Catena 2021, 203, 105368. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberto, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef]
- Dzombak, R.D.; Sheldon, N.D. Weathering intensity and presence of vegetation are key control on soil phosphorus concentrations: Implication for past and future terrestrial ecosystems. Soil Syst. 2020, 4, 73. [Google Scholar] [CrossRef]
- Skiba, M. Clay mineral formation during podzolization in an alpine environment of the Tatra Mountains, Poland. Clays Clay Miner. 2007, 55, 529–545. [Google Scholar] [CrossRef]
- Hayes, N.R.; Buss, H.L.; Moore, J.W.; Kram, P.; Pancost, D. Controls on granitic weathering fronts in contrasting climates. Chem. Geol. 2020, 535, 130–132. [Google Scholar] [CrossRef]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
Qtz | DM | Na—Plg | Chl | Σ (Mica + Chl) | |
---|---|---|---|---|---|
S3 | 33.65 | 38.06 | 21.56 | 6.72 | 44.78 |
S5 | 40.04 | 41.42 | 13.18 | 5.37 | 46.79 |
S7 | 31.99 | 41.45 | 17.34 | 9.22 | 50.67 |
S10 | 37.98 | 47.48 | 6.01 | 8.52 | 56 |
S15 | 32.47 | 36.08 | 10.95 | 20.5 | 56.58 |
S21 | 27.47 | 59.76 | 12.77 | 72.53 | |
S28 | 42.24 | 39.13 | 14.18 | 4.45 | 43.58 |
S30 | 16.35 | 53.49 | 20.9 | 9.26 | 62.75 |
002-0050 * | 01-078-5138 * | S3 | S5 | S7 | S10 | S15 | S21 | S28 | S30 |
---|---|---|---|---|---|---|---|---|---|
10.000/ 8.836 | 10.0221/ 8.816 | 9.951/ 8.879 | 10.001/ 8.835 | 9.979/ 8.854 | 10.015/ 8.823 | 9.984/ 8.85 | 10.005/ 8.831 | 10.099/ 8.748 | 9.989/ 8.845 |
4.460/ 19.891 | 4.459/ 19.896 | 4.470/ 19.844 | 4.488/ 19.896 | 4.476/ 19.821 | 4.469/ 19.848 | 4.487/ 19.769 | 4.497/ 19.792 | 4.553/ 19.487 | 4.522/ 19.613 |
3.330/ 26.750 | 3.348/ 26.604 | 3.342/ 26.655 | 3.347/ 26.615 | 3.343/ 26.643 | 3.346/ 26.607 | 3.344/ 26.369 | 3.348/ 26.606 | 3.334/ 26.713 | 3.321/ 26.821 |
Atomic (%) | S3_1 | S5_1 | S7_1 | S10_1 | S10_4 | S15_1 | S21_1 | S28_1 | S30_1 |
---|---|---|---|---|---|---|---|---|---|
O | 64.07 | 63.87 | 63.39 | 67.3 | 66.09 | 60 | 67.39 | 64.12 | 63.67 |
Si | 18.25 | 17.78 | 16.62 | 16.39 | 14.97 | 17.79 | 14.53 | 16.02 | 16.75 |
Al | 14.21 | 13.3 | 14.65 | 11.48 | 13.45 | 16.06 | 12.74 | 14.07 | 14.32 |
Fe | 0.63 | 1.04 | 0.77 | 0.92 | 0.87 | 0.89 | 0.91 | 0.86 | 0.21 |
Mg | 0.98 | 0.64 | 1.31 | 0.55 | 0.66 | 0.54 | 0.83 | ||
K | 2.65 | 2.76 | 3.94 | 2.59 | 3.73 | 3.95 | 3.97 | 3.63 | 4.08 |
Na | 0.89 | 0.79 | 0.76 | ||||||
Ti | 0.28 | ||||||||
Structural formula | |||||||||
IVSi | 3.34 | 3.26 | 3.1 | 3.34 | 3.07 | 3.06 | 3.07 | 3.08 | 3.17 |
IVAl | 0.66 | 0.74 | 0.9 | 0.66 | 0.95 | 0.94 | 0.93 | 0.92 | 0.83 |
VIAl | 1.94 | 1.70 | 1.83 | 1.68 | 1.82 | 1.82 | 1.75 | 1.79 | 1.88 |
VIFe | 0.12 | 0.19 | 0.14 | 0.19 | 0.18 | 0.15 | 0.19 | 0.17 | 0.04 |
VIMg | 0.18 | 0.12 | 0.27 | 0.10 | 0.14 | 0.10 | 0.15 | ||
VITi | 0.05 | ||||||||
Sum VI | 2.06 | 2.12 | 2.09 | 2.13 | 1.99 | 2.07 | 2.09 | 2.06 | 2.07 |
XIIK | 0.49 | 0.51 | 0.73 | 0.53 | 0.76 | 0.68 | 0.82 | 0.70 | 0.77 |
XIINa | 0.18 | 0.14 | 0.15 | ||||||
Sum XII | 0.49 | 0.51 | 0.73 | 0.53 | 0.95 | 0.82 | 0.82 | 0.85 | 0.77 |
Charge | |||||||||
XII site | 0.49 | 0.51 | 0.73 | 0.53 | 0.95 | 0.82 | 0.82 | 0.84 | 0.77 |
IV site | −0.66 | −0.74 | −0.90 | −0.66 | −0.94 | −0.94 | −0.93 | −0.92 | −0.83 |
VI site | 0.17 | 0.23 | 0.17 | 0.13 | −0.01 | 0.12 | 0.12 | 0.07 | 0.06 |
IV + VI sum | −0.49 | −0.51 | −0.73 | −0.53 | −0.95 | −0.82 | −0.82 | −0.85 | −0.77 |
Sme * | Sme * | Ilt-Vrm * | Sme * | Ms * | Ilt * | Ilt * | Ilt * | Ilt-Vrm * |
Basic Statistic | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | MnO | CaO | Na2O | K2O | P2O5 | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
Soil (n = 34) | |||||||||||
average | 52.67 | 0.85 | 20.20 | 8.31 | 0.89 | 0.09 | 0.24 | 0.52 | 3.93 | 0.22 | 4.64 |
median | 52.11 | 0.94 | 20.32 | 8.75 | 0.83 | 0.06 | 0.23 | 0.11 | 3.89 | 0.23 | 4.59 |
min | 46.95 | 0.51 | 16.53 | 4.77 | 0.47 | 0.02 | 0.18 | 0.01 | 3.54 | 0.10 | 4.08 |
max | 59.43 | 1.07 | 26.46 | 11.89 | 1.50 | 0.22 | 0.36 | 4.52 | 4.50 | 0.34 | 5.53 |
CVR% | 5.95 | 24.25 | 9.16 | 30.42 | 41.32 | 137 | 19.94 | 416 | 3.79 | 40.61 | |
Parent material (n = 20) | |||||||||||
average | 72.56 | 0.21 | 12.95 | 7.06 | 1.67 | 0.05 | 0.33 | 2.91 | 1.28 | 0.04 | - |
median | 73.90 | 0.07 | 13.80 | 2.40 | 1.35 | 0.03 | 0.15 | 2.80 | 1.30 | 0.02 | - |
min | 55.20 | 0.03 | 4.50 | 1.20 | 0.45 | 0.00 | 0.01 | 1.20 | 0.36 | 0.01 | - |
max | 85.10 | 0.88 | 20.70 | 30.90 | 4.50 | 0.27 | 1.80 | 5.30 | 3.10 | 0.18 | - |
CVR% | 7.12 | 52.19 | 18.80 | 64.86 | 57.11 | 98.84 | 127.81 | 92.38 | 39.71 | 49.92 | - |
Basic Statistic | CIA | PIA | WIP |
---|---|---|---|
soil | |||
average | 78.57 | 92.99 | 41.21 |
median | 80.31 | 95.59 | 38.10 |
min | 58.87 | 62.78 | 34.00 |
max | 83.49 | 97.78 | 79.50 |
CVR % | 4.41 | 5.09 | 15.27 |
Parent material (rock) | |||
average | 69.65 | 80.66 | 41.89 |
median | 69.69 | 80.82 | 43.43 |
min | 58.05 | 60.65 | 15.47 |
max | 76.29 | 91.72 | 67.88 |
CVR % | 7.13 | 11.46 | 40.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirbu-Radasanu, D.S.; Huzum, R.; Dumitraş, D.-G.; Stan, C.O. Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians). Minerals 2022, 12, 1161. https://doi.org/10.3390/min12091161
Sirbu-Radasanu DS, Huzum R, Dumitraş D-G, Stan CO. Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians). Minerals. 2022; 12(9):1161. https://doi.org/10.3390/min12091161
Chicago/Turabian StyleSirbu-Radasanu, Doina Smaranda, Ramona Huzum, Delia-Georgeta Dumitraş, and Cristina Oana Stan. 2022. "Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians)" Minerals 12, no. 9: 1161. https://doi.org/10.3390/min12091161
APA StyleSirbu-Radasanu, D. S., Huzum, R., Dumitraş, D. -G., & Stan, C. O. (2022). Mineralogical and Geochemical Implications of Weathering Processes Responsible for Soil Generation in Mănăila Alpine Area (Tulgheş 3 Unit—Eastern Carpathians). Minerals, 12(9), 1161. https://doi.org/10.3390/min12091161