Metal Source and Fluid Evolution in Xiaojiashan Gold Deposit in Northeastern Hunan, China: Implications of Rare Earth Elements, Fluid Inclusions, and Pyrite S Isotopic Compositions
Abstract
:1. Introduction
2. Regional Geology
3. Deposit Geology
4. Sampling and Analytical Methods
4.1. Trace Element Analysis
4.2. Sulfur Isotope Analysis
4.3. Fluid Inclusions Microthermometry
5. Results
5.1. Trace Element Geochemistry
5.2. Sulfur Isotope Compositions
5.3. Fluid Inclusion Microthermometry
6. Discussion
6.1. Source of Ore-Forming Material
6.2. Fluid Evolution
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
No. | Host Mineral | Size (μm) | Vapor (%) | Th (°C) | Tm (°C) | Ti (°C) | Salinity (wt% NaCl eq) |
---|---|---|---|---|---|---|---|
X1 | Qz | 7.5 | 40 | 186 | −1.9 | −20 | 3.2 |
Qz | 5.8 | 35 | 196 | −1.2 | −22 | 2.0 | |
Qz | 8.0 | 40 | 243 | −2.6 | −20 | 4.3 | |
Qz | 4.8 | 30 | 206 | −1.7 | −22 | 2.9 | |
Qz | 6.2 | 35 | 257 | −3.6 | −21 | 5.8 | |
Qz | 7.8 | 45 | 251 | −2.9 | −20 | 4.8 | |
Qz | 4.8 | 25 | 232 | −2.6 | −20 | 4.3 | |
Qz | 5.5 | 20 | 227 | −2.3 | −21 | 3.8 | |
Qz | 6.4 | 30 | 257 | −2.8 | −20 | 4.6 | |
Qz | 5.7 | 35 | 277 | −5.7 | −21 | 8.8 | |
Qz | 5.8 | 25 | 286 | −4.7 | −22 | 7.4 | |
Qz | 6.1 | 20 | 332 | −6.8 | −20 | 10.2 | |
Qz | 5.4 | 25 | 331 | −6.6 | −21 | 9.9 | |
Qz | 5.5 | 30 | 330 | −6.7 | −22 | 10.1 | |
Qz | 5.2 | 30 | 288 | −5.0 | −20 | 7.8 | |
Qz | 6.1 | 25 | 211 | −2.3 | −22 | 3.8 | |
Qz | 6.4 | 15 | 273 | −4.0 | −21 | 6.4 | |
Qz | 6.1 | 20 | 274 | −4.3 | −22 | 6.8 | |
Qz | 5.7 | 30 | 283 | −5.2 | −20 | 8.1 | |
Qz | 4.5 | 10 | 293 | −5.2 | −21 | 8.1 | |
Qz | 4.0 | 25 | 276 | −4.3 | −22 | 6.8 | |
Qz | 4.3 | 20 | 279 | −4.2 | −20 | 6.7 | |
X2 | Qz | 7.6 | 30 | 219 | −1.0 | −23 | 1.7 |
Qz | 6.8 | 35 | 246 | −2.4 | −22 | 4.5 | |
Qz | 8.2 | 40 | 226 | −2.4 | −20 | 4.0 | |
Qz | 6.3 | 20 | 289 | −5.4 | −22 | 8.4 | |
Qz | 5.8 | 30 | 290 | −5.2 | −21 | 8.1 | |
Qz | 5.5 | 20 | 259 | −3.0 | −20 | 4.9 | |
Qz | 4.2 | 25 | 286 | −5.5 | −23 | 8.5 | |
Qz | 8.6 | 30 | 276 | −5.8 | −22 | 8.9 | |
Qz | 7.7 | 35 | 263 | −3.8 | −21 | 6.1 | |
Qz | 7.2 | 30 | 270 | −4.2 | −20 | 6.7 | |
Qz | 6.7 | 25 | 255 | −2.8 | −22 | 4.6 | |
Qz | 6.4 | 30 | 282 | −4.5 | −21 | 7.1 | |
Qz | 5.8 | 20 | 283 | −4.8 | −23 | 7.5 | |
Qz | 6.8 | 15 | 260 | −3.5 | −20 | 5.7 | |
Qz | 5.7 | 30 | 271 | −4.0 | −22 | 6.4 | |
Qz | 4.3 | 25 | 343 | −6.4 | −21 | 9.7 | |
Qz | 4.2 | 45 | 281 | −5.2 | −20 | 8.1 | |
Qz | 3.9 | 35 | 300 | −6.5 | −21 | 9.8 | |
Qz | 3.5 | 30 | 321 | −6.5 | −22 | 9.8 | |
Qz | 6.7 | 35 | 275 | −5.3 | −21 | 8.2 | |
Qz | 6.5 | 40 | 301 | −5.6 | −20 | 8.6 | |
Qz | 6.9 | 30 | 304 | −6.2 | −22 | 9.4 | |
Qz | 5.2 | 35 | 305 | −6.4 | −20 | 9.7 | |
Qz | 6.4 | 30 | 306 | −6.3 | −21 | 9.6 | |
Qz | 5.7 | 20 | 308 | −6.6 | −22 | 9.9 | |
Qz | 6.2 | 35 | 309 | −6.4 | −22 | 9.7 | |
Qz | 6.0 | 30 | 309 | −6.3 | −23 | 9.6 | |
Qz | 6.1 | 25 | 310 | −6.5 | −20 | 9.8 | |
Qz | 5.3 | 20 | 302 | −6.5 | −21 | 9.8 | |
X1′ | Qz | 4.3 | 10 | 286 | −3.6 | 5.8 | |
Qz | 6.2 | 10 | 268 | −1.9 | −22 | 3.2 | |
Qz | 4.6 | 15 | 274 | −5.3 | 8.2 | ||
Qz | 4.9 | 15 | 272 | −5.6 | −21 | 8.6 | |
Qz | 5.1 | 10 | 228 | −4.7 | 7.4 | ||
Qz | 6.3 | 10 | 256 | −4.6 | −20 | 7.3 | |
Qz | 5.0 | 10 | 265 | −6.1 | 9.3 |
No. | Host Mineral | Size (μm) | Vapor (%) | Th (°C) | Tm (°C) | Ti (°C) | Salinity (wt% NaCl eq) |
---|---|---|---|---|---|---|---|
X3 | Qz | 6.8 | 30 | 169 | −0.5 | −22 | 0.8 |
Qz | 5.9 | 25 | 180 | −0.7 | −20 | 1.2 | |
Qz | 6.2 | 20 | 197 | −3.0 | −21 | 4.9 | |
Qz | 7.3 | 30 | 273 | −6.1 | −20 | 9.3 | |
Qz | 7.0 | 30 | 181 | −1.8 | −23 | 3.0 | |
Qz | 6.8 | 20 | 201 | −3.1 | −20 | 5.1 | |
Qz | 6.1 | 15 | 240 | −4.6 | −22 | 7.3 | |
Qz | 5.7 | 20 | 308 | −6.1 | −21 | 9.3 | |
Qz | 6.0 | 10 | 270 | −5.5 | −20 | 8.5 | |
Qz | 5.8 | 30 | 310 | −6.1 | −23 | 9.3 | |
Qz | 6.8 | 25 | 314 | −6.0 | −21 | 9.2 | |
Qz | 7.5 | 20 | 241 | −5.0 | −23 | 7.8 | |
Qz | 6.5 | 25 | 201 | −3.2 | −20 | 5.2 | |
Qz | 6.2 | 20 | 231 | −4.3 | −22 | 6.8 | |
Qz | 5.7 | 15 | 237 | −4.4 | −21 | 7.0 | |
Qz | 4.8 | 20 | 229 | −4.2 | −22 | 6.7 | |
Qz | 4.5 | 15 | 238 | −4.2 | −22 | 6.7 | |
Qz | 6.1 | 25 | 252 | −5.6 | −20 | 8.6 | |
Qz | 5.8 | 20 | 242 | −5.1 | −21 | 8.0 | |
X5 | Qz | 4.8 | 30 | 167 | −1.4 | −22 | 2.4 |
Qz | 4.6 | 30 | 171 | −0.8 | −23 | 1.4 | |
Qz | 4.0 | 25 | 271 | −6.0 | −20 | 9.2 | |
Qz | 6.3 | 35 | 176 | −0.9 | −21 | 1.5 | |
Qz | 6.9 | 20 | 228 | −4.2 | −23 | 6.7 | |
Qz | 4.5 | 10 | 187 | −1.0 | −22 | 1.7 | |
Qz | 3.8 | 20 | 230 | −4.3 | −20 | 6.8 | |
Qz | 4.3 | 25 | 296 | −5.9 | −23 | 9.0 | |
Qz | 8.4 | 20 | 239 | −4.4 | −21 | 7.0 | |
Qz | 9.0 | 25 | 204 | −3.4 | −22 | 5.5 | |
Qz | 8.1 | 25 | 230 | −4.2 | −23 | 6.7 | |
Qz | 6.7 | 30 | 245 | −5.4 | −20 | 8.4 | |
Qz | 6.9 | 20 | 247 | −5.2 | −23 | 8.1 | |
Qz | 5.6 | 35 | 216 | −3.9 | −22 | 6.3 | |
Qz | 4.8 | 40 | 240 | −4.4 | −20 | 7.0 | |
Qz | 5.8 | 20 | 193 | −3.0 | −21 | 4.9 | |
Qz | 6.2 | 25 | 225 | −4.1 | −23 | 6.5 | |
Qz | 5.1 | 20 | 251 | −5.7 | −22 | 8.8 | |
X7 | Qz | 6.2 | 20 | 240 | −4.7 | −20 | 7.4 |
Qz | 5.8 | 20 | 183 | −2.6 | −24 | 4.3 | |
Qz | 5.4 | 25 | 186 | −2.3 | −21 | 3.8 | |
Qz | 4.5 | 20 | 302 | −6.9 | −23 | 10.3 | |
Qz | 5.5 | 25 | 302 | −6.8 | −21 | 10.2 | |
Qz | 7.2 | 20 | 282 | −6.8 | −24 | 10.2 | |
Qz | 6.5 | 25 | 239 | −4.5 | −20 | 7.1 | |
Qz | 5.4 | 20 | 300 | −6.8 | −21 | 10.2 | |
Qz | 5.1 | 15 | 300 | −6.7 | −22 | 10.1 | |
Qz | 4.5 | 10 | 301 | −6.8 | −20 | 10.2 | |
Qz | 7.5 | 25 | 190 | −2.7 | −24 | 4.4 | |
Qz | 7.0 | 20 | 215 | −4.0 | −21 | 6.4 | |
Qz | 6.8 | 35 | 278 | −6.5 | −22 | 9.8 | |
Qz | 6.4 | 40 | 207 | −3.2 | −23 | 5.2 | |
Qz | 5.7 | 20 | 250 | −5.5 | −24 | 8.5 | |
Qz | 5.3 | 20 | 208 | −3.3 | −20 | 5.4 | |
Qz | 6.1 | 30 | 214 | −3.6 | −24 | 5.8 | |
Qz | 5.7 | 25 | 281 | −6.7 | −21 | 10.1 | |
Qz | 6.3 | 20 | 216 | −3.8 | −22 | 6.1 | |
Qz | 5.8 | 25 | 244 | −5.2 | −24 | 8.1 | |
Qz | 6.0 | 20 | 279 | −6.5 | −24 | 9.8 | |
Qz | 5.7 | 20 | 280 | −6.8 | −20 | 10.2 | |
Qz | 6.8 | 25 | 240 | −4.5 | −20 | 7.1 | |
Qz | 5.9 | 25 | 276 | −6.1 | −22 | 9.3 | |
X8 | Qz | 6.7 | 15 | 150 | −1.7 | −21 | 2.9 |
Qz | 7.4 | 10 | 137 | −1.3 | −24 | 2.2 | |
Qz | 6.4 | 20 | 183 | −1.9 | −20 | 3.2 | |
Qz | 5.8 | 5 | 138 | −1.6 | −20 | 2.7 | |
Qz | 4.0 | 20 | 151 | −1.6 | −22 | 2.7 | |
Qz | 4.5 | 25 | 178 | −1.7 | −21 | 2.9 | |
Qz | 8.4 | 30 | 153 | −1.7 | −23 | 2.9 | |
Qz | 8.1 | 20 | 218 | −3.9 | −20 | 6.3 | |
Qz | 8.6 | 35 | 288 | −5.8 | −20 | 8.9 | |
Qz | 6.5 | 45 | 281 | −5.9 | −21 | 9.0 | |
Qz | 6.1 | 20 | 220 | −4.0 | −24 | 6.4 | |
Qz | 7.4 | 25 | 241 | −5.0 | −22 | 7.8 | |
Qz | 6.8 | 30 | 223 | −4.0 | −25 | 6.4 | |
Qz | 5.7 | 20 | 227 | −4.1 | −23 | 6.5 | |
Qz | 7.9 | 30 | 243 | −5.2 | −21 | 8.1 | |
Qz | 7.0 | 25 | 246 | −5.4 | −22 | 8.4 | |
Qz | 6.8 | 30 | 256 | −5.5 | −20 | 8.5 | |
Qz | 6.4 | 35 | 248 | −5.3 | −20 | 8.2 | |
Qz | 5.8 | 30 | 249 | −5.4 | −22 | 8.4 | |
Qz | 6.1 | 25 | 270 | −5.8 | −21 | 8.9 | |
X9 | Qz | 7.2 | 20 | 188 | −2.9 | −23 | 4.8 |
Qz | 6.5 | 15 | 286 | −7.6 | −24 | 11.2 | |
Qz | 6.2 | 25 | 209 | −3.3 | −21 | 5.4 | |
Qz | 5.7 | 10 | 184 | −2.4 | −24 | 4.0 | |
Qz | 4.6 | 5 | 211 | −3.5 | −20 | 5.7 | |
Qz | 6.4 | 20 | 213 | −3.6 | −22 | 5.8 | |
Qz | 6.9 | 25 | 295 | −7.6 | −21 | 11.2 | |
Qz | 7.2 | 20 | 270 | −6.8 | −20 | 10.2 | |
Qz | 6.4 | 30 | 293 | −7.6 | −24 | 11.2 | |
Qz | 5.7 | 35 | 291 | −7.6 | −22 | 11.2 | |
Qz | 6.5 | 30 | 294 | −7.6 | −23 | 11.2 | |
Qz | 5.8 | 25 | 240 | −4.6 | −20 | 7.3 | |
Qz | 6.1 | 20 | 241 | −4.7 | −21 | 7.4 | |
Qz | 8.7 | 15 | 241 | −4.8 | −23 | 7.5 | |
Qz | 10.7 | 20 | 250 | −5.2 | −24 | 8.1 | |
Qz | 7.2 | 15 | 273 | −6.1 | −21 | 9.3 | |
Qz | 6.8 | 20 | 250 | −5.5 | −23 | 8.5 | |
Qz | 6.4 | 25 | 277 | −6.5 | −20 | 9.8 | |
Qz | 5.9 | 30 | 251 | −5.5 | −24 | 8.5 | |
Qz | 6.1 | 25 | 275 | −6.1 | −21 | 9.3 | |
X3′ | Qz | 4.6 | 15 | 286 | −4.7 | 7.4 | |
Qz | 5.7 | 10 | 253 | −4.6 | −20 | 7.3 | |
Qz | 5.1 | 15 | 267 | −4.1 | 6.5 | ||
Qz | 6.2 | 20 | 250 | −4.8 | −22 | 7.5 | |
Qz | 5.4 | 10 | 224 | −3.3 | 5.4 | ||
Qz | 6.4 | 15 | 234 | −3.9 | −21 | 6.3 | |
Qz | 5.7 | 10 | 212 | −3.9 | 6.3 | ||
X5′ | Qz | 5.3 | 10 | 246 | −4.5 | 7.1 | |
Qz | 4.1 | 15 | 226 | −3.5 | 5.7 | ||
Qz | 6.5 | 5 | 237 | −4.1 | −20 | 6.5 | |
Qz | 4.7 | 20 | 179 | −1.7 | 2.9 | ||
Qz | 8.3 | 15 | 202 | −4.0 | −22 | 6.4 | |
Qz | 6.2 | 10 | 225 | −5.5 | −23 | 8.5 |
No. | Host Mineral | Size (μm) | Vapor (%) | Th (°C) | Tm (°C) | Ti (°C) | Salinity (wt% NaCl eq) |
---|---|---|---|---|---|---|---|
X10 | Qz | 5.7 | 25 | 190 | −4.4 | −21 | 7.0 |
Qz | 6.4 | 15 | 161 | −2.9 | −22 | 4.8 | |
Qz | 7.1 | 10 | 145 | −1.0 | −22 | 1.7 | |
Qz | 6.8 | 20 | 151 | −1.7 | −23 | 2.9 | |
Qz | 6.5 | 20 | 251 | −7.6 | −21 | 11.2 | |
Qz | 4.6 | 25 | 243 | −6.6 | −23 | 9.9 | |
Qz | 4.2 | 20 | 249 | −7.3 | −22 | 10.8 | |
Qz | 7.0 | 25 | 268 | −7.4 | −23 | 10.9 | |
Qz | 6.7 | 20 | 240 | −6.1 | −23 | 9.3 | |
Qz | 4.8 | 25 | 216 | −5.1 | −23 | 8.0 | |
Qz | 7.6 | 15 | 193 | −4.6 | −22 | 7.3 | |
Qz | 6.6 | 30 | 241 | −5.9 | −23 | 9.0 | |
Qz | 5.8 | 25 | 242 | −6.4 | −23 | 9.7 | |
Qz | 4.7 | 25 | 188 | −4.0 | −21 | 6.4 | |
Qz | 6.1 | 25 | 201 | −4.8 | −23 | 7.5 | |
Qz | 5.4 | 20 | 236 | −5.5 | −23 | 8.5 | |
X11 | Qz | 6.5 | 25 | 180 | −1.4 | −22 | 2.4 |
Qz | 5.7 | 30 | 179 | −3.0 | −24 | 4.9 | |
Qz | 4.5 | 25 | 223 | −7.8 | −24 | 11.4 | |
Qz | 6.2 | 30 | 238 | −5.5 | −23 | 8.5 | |
Qz | 7.0 | 20 | 181 | −3.3 | −25 | 5.4 | |
Qz | 5.2 | 10 | 183 | −3.4 | −23 | 5.5 | |
Qz | 4.8 | 5 | 201 | −4.7 | −21 | 7.4 | |
Qz | 4.3 | 20 | 184 | −4.0 | −23 | 6.4 | |
Qz | 7.2 | 25 | 186 | −3.6 | −22 | 5.8 | |
Qz | 6.4 | 20 | 211 | −3.8 | −23 | 7.4 | |
Qz | 6.1 | 20 | 213 | −5.0 | −21 | 7.8 | |
Qz | 5.8 | 15 | 204 | −4.7 | −21 | 7.4 | |
Qz | 4.6 | 20 | 226 | −5.4 | −23 | 8.4 | |
Qz | 5.1 | 25 | 206 | −4.8 | −21 | 7.5 | |
Qz | 4.9 | 20 | 197 | −4.7 | −23 | 7.4 | |
X12 | Qz | 5.2 | 25 | 150 | −1.9 | −24 | 3.2 |
Qz | 8.0 | 15 | 140 | −1.7 | −24 | 2.9 | |
Qz | 7.6 | 20 | 147 | −1.6 | −23 | 2.7 | |
Qz | 8.5 | 10 | 124 | −3.2 | −22 | 5.2 | |
Qz | 7.8 | 20 | 122 | −0.7 | −21 | 1.2 | |
Qz | 8.0 | 30 | 214 | −5.2 | −23 | 8.1 | |
Qz | 5.2 | 35 | 204 | −4.7 | −24 | 7.4 | |
Qz | 3.8 | 20 | 215 | −4.9 | −21 | 7.7 | |
Qz | 6.4 | 15 | 160 | −2.8 | −23 | 4.6 | |
Qz | 5.4 | 20 | 218 | −5.1 | −22 | 8.0 | |
Qz | 6.2 | 25 | 153 | −2.8 | −21 | 4.6 | |
Qz | 7.1 | 30 | 169 | −3.2 | −24 | 5.2 | |
Qz | 6.7 | 20 | 152 | −2.1 | −25 | 3.5 | |
Qz | 5.8 | 25 | 167 | −3.0 | −23 | 4.9 | |
Qz | 5.3 | 20 | 250 | −5.4 | −21 | 8.4 | |
Qz | 6.4 | 15 | 183 | −3.6 | −24 | 5.8 | |
Qz | 6.2 | 20 | 239 | −5.3 | −25 | 8.2 | |
Qz | 5.4 | 15 | 220 | −5.2 | −21 | 8.1 | |
Qz | 5.2 | 20 | 187 | −4.2 | −25 | 6.7 | |
X10′ | Qz | 4.1 | 20 | 185 | −1.4 | 2.4 | |
Qz | 6.4 | 15 | 169 | −1.9 | 3.2 | ||
Qz | 5.1 | 10 | 206 | −4.0 | 6.4 | ||
Qz | 5.3 | 15 | 190 | −5.3 | −22 | 8.2 | |
Qz | 4.3 | 10 | 216 | −5.3 | 8.2 | ||
Qz | 5.6 | 20 | 223 | −6.1 | 9.3 | ||
Qz | 4.8 | 15 | 201 | −2.8 | 4.6 |
References
- Myint, A.Z.; Wagner, T.; Fusswinkel, T. Calcite trace element geochemistry of Au deposits in the Singu-Tabeikkyin Gold District, Myanmar: Implications for the sources of ore-forming fluids. Ore Geol. Rev. 2022, 145, 104892. [Google Scholar] [CrossRef]
- Ye, X.; Bai, F. Spectral Characteristics, Rare Earth Elements, and Ore-Forming Fluid Constrains on the Origin of Fluorite Deposit in Nanlishu, Jilin Province, China. Minerals 2022, 12, 1195. [Google Scholar] [CrossRef]
- Prasolov, E.M.; Sergeev, S.A.; Belyatsky, B.V.; Bogomolov, E.S.; Gruzdov, K.A.; Kapitonov, I.N.; Krymsky, R.S.; Khalenev, V.O. Isotopic Systematics of He, Ar, S, Cu, Ni, Re, Os, Pb, U, Sm, Nd, Rb, Sr, Lu, and Hf in the Rocks and Ores of the Norilsk Deposits. Geochem. Int. 2018, 56, 50–69. [Google Scholar] [CrossRef]
- Kraemer, D.; Viehmann, S.; Banks, D.; Sumoondur, A.; Koeberl, C.; Bau, M. Regional variations in fluid formation and metal sources in MVT mineralization in the Pennine Orefield, UK: Implications from rare earth element and yttrium distribution, Sr-Nd isotopes and fluid inclusion compositions of hydrothermal vein fluorites. Ore Geol. Rev. 2019, 107, 960–972. [Google Scholar] [CrossRef]
- Chi, G.; Diamond, L.W.; Lu, H.; Lai, J.; Chu, H. Common Problems and Pitfalls in Fluid Inclusion Study: A Review and Discussion. Minerals 2021, 11, 7. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F. Gold mineralization in China: Metallogenic provinces, deposit types and tectonic framework. Gondwana Res. 2016, 36, 219–274. [Google Scholar] [CrossRef]
- Duan, L.A.; Gu, H.L.; Deng, J.H.; Yang, X.Y. Geological study and significance of typical gold deposits in eastern Qinzhou-Hangzhou metallogenic belt: Constraint from Tianjingshan gold deposit in south Anhui Province. J. Geochem. Explor. 2018, 190, 87–108. [Google Scholar] [CrossRef]
- Huang, J.Z.; Sun, J.; Zhou, C.; Lu, W.; Xiao, R.; Guo, A.; Huang, G.F.; Tan, S.; Wei, H.T. Metallogenic Regularity and Resource Potential of Gold Deposits of Hunan Area in the Jiangnan Orogenic Belt, South China. Acta Geosci. Sin. 2020, 41, 230–252. [Google Scholar] [CrossRef]
- Mao, J.W.; Hua, R.M.; Li, X.B. A Preliminary study of large-scale metallogenesis and large clusters of mineral deposits. Miner. Depos. 1999, 18, 291–299. [Google Scholar] [CrossRef]
- Wen, Z.L.; Deng, T.; Dong, G.J.; Zou, F.H.; Xu, D.R.; Wang, Z.L.; Lin, G.; Chen, G.W. Characteristics of Ore-controlling Structures of Wangu Gold Deposit in Northeastern Hunan Province. Geotecton. Et Metallog. 2016, 40, 281–294. [Google Scholar] [CrossRef]
- Wang, J.Q.; Shu, L.S.; Santosh, M. Petrogenesis and tectonic evolution of Lianyunshan complex, South China: Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen. Gondwana Res. 2016, 39, 114–130. [Google Scholar] [CrossRef]
- Sun, S.C.; Yang, L.Q.; Zhang, L.; Olin, P.; Gao, X.; Li, R.H.; Wang, J.Y.; Li, Z.Q.; Zhang, F.; Wen, T. In-situ trace elements on pyrite and arsenopyrite of the Zhengchong gold deposit, Jiangnan Orogen: Insights for the mineralization mechanism. Ore Geol. Rev. 2020, 122, 1–28. [Google Scholar] [CrossRef]
- Xu, D.R.; Deng, T.; Chi, G.X.; Wang, Z.L.; Zou, F.H.; Zhang, J.L.; Zou, S.H. Gold mineralization in the Jiangnan Orogenic Belt of South China: Geological, geochemical and geochronological characteristics, ore deposit-type and geodynamic setting. Ore Geol. Rev. 2017, 88, 565–618. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Shao, Y.J.; Chen, M.; Algeo, T.J.; Li, H.; Dick, J.M.; Wang, C.; Wang, W.S.; Li, Z.Q.; Liu, Z.F. Insights into the genesis of orogenic gold deposits from the Zhengchong gold field, northeastern Hunan Province. China. Ore Geol. Rev. 2019, 105, 337–355. [Google Scholar] [CrossRef]
- Zhang, L.; Groves, D.I.; Yang, L.Q.; Sun, S.C.; Weinberg, R.F.; Wang, J.Y.; Wu, S.G.; Gao, L.; Yuan, L.L.; Li, R.H. Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit, Jiangnan Orogen, southern China. Miner. Depos. 2020, 55, 363–380. [Google Scholar] [CrossRef]
- Peng, B.; Frei, R. Nd–Sr–Pb isotopic constraints on metal and fluid sources in W-Sb–Au mineralization at Woxi and Liaojiaping (Western Hunan, China). Miner. Depos. 2004, 39, 313–327. [Google Scholar] [CrossRef]
- Li, W.; Cook, N.J.; Xie, G.Q.; Mao, J.W.; Ciobanu, C.L.; Fu, B. Complementary Textural, Trace Element, and Isotopic Analyses of Sulfides Constrain Ore-Forming Processes for the Slate-Hosted Yuhengtang Au Deposit. South China. Econ. Geol. 2021, 116, 1825–1848. [Google Scholar] [CrossRef]
- Tan, H.J.; Shao, Y.J.; Liu, Q.Q.; Zhang, Y.; Feng, Y.Z.; Zhang, Y.C.; Shah, S.A. Textures, trace element geochemistry and in-situ sulfur isotopes of pyrite from the Xiaojiashan gold deposit, Jiangnan Orogen: Implications for ore genesis. Ore Geol. Rev. 2022, 144, 104843. [Google Scholar] [CrossRef]
- Gu, X.X.; Schulz, O.; Vavtar, F.; Liu, J.M.; Zheng, M.H.; Fu, S.H. Rare earth element geochemistry of the Woxi W-Sb–Au deposit, Hunan Province. South China. Ore Geol. Rev. 2007, 31, 319–336. [Google Scholar] [CrossRef]
- Gu, X.X.; Zhang, Y.M.; Schulz, O.; Vavtar, F.; Liu, J.M.; Zheng, M.H.; Zheng, L. The Woxi W-Sb–Au deposit in Hunan, South China: An example of Late Proterozoic sedimentary exhalative (SEDEX) mineralization. J. Asian Earth Sci. 2012, 57, 54–75. [Google Scholar] [CrossRef]
- Liu, L.M.; Peng, S.L.; Wu, Y.Z. Features of metallogenic-tectonics and mechanism of tectonic-metallization for vein-type gold deposits in the north-eastern Hunan, China. Geotecton. Et Metallog. 1997, 21, 197–204, (In Chinese, with English abstract). [Google Scholar]
- Dong, G.J.; Xu, D.R.; Wang, L.; Chen, G.H.; He, Z.L.; Fu, G.G.; Wu, J.; Wang, Z.L. Determination of mineralizing ages on gold ore deposits in the eastern Hunan province, south China and isotopic tracking on ore-forming fluids-Re-discussing gold ore deposit type. Geotecton. Et Metallog. 2008, 32, 482–491. [Google Scholar] [CrossRef]
- Hunan, G.S.I. Work Report on Detailed Investigation of Xiaojiashan Gold Deposit, Liling; Private communication; Hunan, G.S.I.: Changsha, China, 2015; (internal report in Chinese). [Google Scholar]
- Xie, H.Y.; Mao, W.H.; Hu, S.M.; Zhang, W.D. Geological characteristics and prospecting prospect of Xiaojiashan gold deposit. Land Resour. Her. 2007, 34–37. (In Chinese) [Google Scholar] [CrossRef]
- Liu, S.L.; Xu, H.; Wen, T.; Cao, W.; Zhang, Q. Ore-controlling regularities and metallogenic prediction of Xiaojiashan gold deposits, northeastern Huna. Miner. Explor. 2016, 7, 445–449. [Google Scholar] [CrossRef]
- Zhang, C.G.; Zha, D.H.; Liu, M.H.; Zhou, H.S.; Shi, X.J.; Yan, Y.T.; Huang, K. Gold Element Fractal Characteristics and Geological Significance of Xiaojiashan Gold Deposit. J. Xinyang Norm. Univ. (Nat. Sci. Ed.) 2019, 32, 421–425. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Shao, Y.J.; Liu, Q.Q.; Zhang, X.; Zhan, Y.D.; Wang, C.; Wu, H.H.; Sun, J. Pyrite textures, trace element and sulfur isotopes of Yanlinsi slate-hosted deposit in the Jiangnan Orogen, South China: Implications for gold mineralization processes. Ore Geol. Rev. 2022, 148, 105029. [Google Scholar] [CrossRef]
- Jiang, X.X.; Li, J.; Zhao, T. Ore-forming Material Source of Xiaojiashan Gold Deposit of Northeastern Hunan. Land Resour. Her. 2016, 13, 1–7. [Google Scholar] [CrossRef]
- Tao, S.L.; Lai, J.Q.; Song, W.G.; Zha, D.H. Geological characteristics and metallogenic conditions of Xiaojiashan gold deposit in Liling of Hunan. Miner. Resour. Geol. 2015, 29, 195–202, (In Chinese with English abstract). [Google Scholar]
- Lin, S. Research on Mineralizing Fluid Geochemistry Characteristics of Xiaojiashan Gold Deposit. South. Met. 2020, 6, 27–33. [Google Scholar] [CrossRef]
- Xie, G.Q.; Mao, J.W.; Li, W.; Fu, B.; Zhang, Z.Y. Granite-related Yangjiashan tungsten deposit, southern China. Miner. Depos. 2019, 54, 67–80. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Xu, D.R.; Dong, G.J.; Chi, G.X.; Deng, T.; Cai, J.X.; Ning, J.T.; Wang, Z.L. The role of structural reactivation for gold mineralization in northeastern Hunan Province, South China. J. Struct. Geol. 2021, 145, 104306. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Sun, S.C.; Qi, P.; Wu, S.G.; Gao, L. Mineralization mechanism of Yangshanzhuang gold deposit, northeastern Hunan Province. Acta Petrol. Sin. 2017, 33, 2273–2284, (In Chinese with English abstract). [Google Scholar]
- Jia, B.B.; Peng, H.Q.; Chen, J. Changsha of Regional Geological Survey Report in 1:250000; Private communication; Geological Bureau of Hunan Province: Changsha, China, 2002; (internal report in Chinese). [Google Scholar]
- Li, J.H.; Zhang, Y.Q.; Dong, S.W.; Mang, Z.L.; Li, Y. LA-MC-ICPMS Zircon U-Pb Geochronology of the Hongxiaqiao and Banshanpu Granitoids in Eastern Hunan Province and Its Geological Implications. Acta Geosci. Sin. 2015, 36, 187–196. [Google Scholar] [CrossRef]
- Xu, D.R.; Deng, T.; Dong, G.J.; Ning, J.T.; Wang, Z.L.; Zhang, J.L.; Zou, F.H.; Zhou, Y.Q.; Chen, G.W.; Yu, D.S.; et al. Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province: Implications for petrogenesis and tectonic setting associated with polymetallic mineralization. Earth Sci. Front. 2017, 24, 104–122. [Google Scholar] [CrossRef]
- Huang, C.; Fan, G.M.; Jiang, G.L.; Luo, L.; Xu, Z.L. Structural Ore-Controlling Characteristics and Electron Spin Resonance Dating of the Yanlinsi Gold Deposit in Northeastern Hunan Province. Geotecton. Et Metallog. 2012, 36, 76–84. [Google Scholar] [CrossRef]
- Sun, W.D.; William, F.M. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Liu, L.M.; Peng, S.L.; Wu, Y.Z. Genetic features forming vein-type gold deposits in northeastern Hunan. Geotecton. Et Metallog. 1999, 30, 4–7, (In Chinese with English abstract). [Google Scholar]
- Luo, X.L. Discussion on the material sources of gold deposits in Precambrian strata in Hunan. J. Guilin Univ. Technol. 1990, 10, 13–25. [Google Scholar]
- Goldstein, R.H.; Reynolds, T.J. Systematics of Fluid Inclusions in Diagenetic Minerals. Soc. Sediment. Geol. Short Course 1994, 31, 199. [Google Scholar]
- Hall, D.L.; Sterner, S.M.; Bodnar, R.J. Freezing point depression of NaCl-KCl-H2O solution. Econ. Geol. 1988, 83, 197–202. [Google Scholar] [CrossRef]
- Liu, Y.C. Geochemical signatures of the Huangjindong gold deposit. Geol. Explor. 1989, 11, 43–48, (In Chinese with English abstract). [Google Scholar]
- Ma, D.S.; Liu, Y.J. Geochemical characteristics and genesis of strata bound gold deposits in jiangnan gold metallogenic belt. Sci. Sin. 1991, 4, 424–433. (In Chinese) [Google Scholar]
- Taylor, S.R.; McClenan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell Scientific Publications: Oxford, UK, 1985; p. 46. [Google Scholar]
- Allègre, C.; Minster, J.F. Quantitative models of trace element behavior in magmatic processes. Earth Planet. Sci. Lett. 1978, 38, 1–25. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The Composition and Evolution of the Continental Crust: Rare Earth Element Evidence from Sedimentary Rocks; Phi. Trans. R. Soc.: London, UK, 1981; Volume 301, pp. 381–399. [Google Scholar]
- Ohmoto, H.; Rye, R.O. Isotopes of sulfur and carbon. In Geochemistry of Hydrother-Mal Ore Deposits; Barnes, H.L., Ed.; John Wiley&Sons: Hoboken, NJ, USA, 1979; pp. 509–567. [Google Scholar]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ulrich, T.; Günther, D.; Heinrich, C.A. The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions: Bajo de la Alumbrera, Argentina. Econ. Geol. 2001, 96, 1743–1774. [Google Scholar] [CrossRef]
- Deng, J.; Yang, L.Q.; Gao, B.F.; Sun, Z.S.; Guo, C.Y.; Wang, Q.F.; Wang, J.P. Fluid evolution and metallogenic dynamics during tectonic regime transition: Example from the Jiapigou gold belt in northeast China. Resour. Geol. 2009, 59, 140–152. [Google Scholar] [CrossRef]
- Rezeau, H.; Moritz, R.; Beaudoin, G. Formation of Archean batholith-hosted gold veins at the Lac Herbin deposit, Val-d’Or district, Canada: Mineralogical and fluid inclusion constraints. Min. Depos. 2017, 52, 421–442. [Google Scholar] [CrossRef]
Lithology | Sampling Position | Stage | Testing | |
---|---|---|---|---|
X1 | Quartz associated with pyrite | Drillhole | Stage I | Trace, S isotope, Temperature |
X2 | quartz | Exploration tunnel | Trace, Temperature | |
X3 | Quartz associated with sulfide | Drillhole | Stage II | Trace, S isotope, Temperature |
X5 | Quartz associated with pyrite | Drillhole | Trace, S isotope, Temperature | |
X7 | Quartz associated with sulfide | Exploration tunnel | Trace, S isotope, Temperature | |
X8 | Quartz associated with sulfide | Exploration tunnel | Temperature | |
X9 | Quartz associated with sulfide | Exploration tunnel | Temperature | |
X10 | Quartz associated with pyrite | Drillhole | Stage III | Trace, S isotope, Temperature |
X11 | Quartz associated with ankerite | Exploration tunnel | Trace, S isotope, Temperature | |
X12 | Quartz associated with ankerite | Exploration tunnel | Temperature | |
X4 | Sericite slate (X5 hanging -wall) | Drillhole | Hosted rock | Trace |
X6 | Sandy slate (X5 foot -wall) | Drillhole | Trace |
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X10 | X11 | |
---|---|---|---|---|---|---|---|---|---|
V | 22 | 93 | 64 | 117 | 120 | 86 | 7 | 13 | 15 |
Cr | 90 | 90 | 70 | 80 | 90 | 70 | 90 | 90 | 110 |
Co | 3.7 | 13.2 | 7.9 | 6.9 | 15.8 | 9.3 | 2.0 | 2.5 | 3.1 |
Ni | 17.7 | 27.0 | 19.2 | 17.2 | 35.9 | 22.6 | 5.0 | 8.4 | 8.5 |
Cu | 27.8 | 7.4 | 20.4 | 38.2 | 36.4 | 42.3 | 6.7 | 120.5 | 175.0 |
Zn | 33 | 114 | 39 | 96 | 95 | 89 | 35 | 760 | 332 |
As | 2120 | 88.8 | 161.5 | 4370 | 64.7 | 228 | 3700 | 4170 | 9350 |
Rb | 26.4 | 150.0 | 109.0 | 246 | 185.0 | 143.0 | 17.0 | 21.5 | 27.4 |
Sr | 170.0 | 155.0 | 116.5 | 58.5 | 120.0 | 130.0 | 10.8 | 90.7 | 45.9 |
P | 210 | 1290 | 410 | 470 | 580 | 560 | 100 | 800 | 40 |
Y | 6.7 | 13.6 | 10.1 | 11.3 | 10.9 | 11.5 | 1.0 | 4.2 | 2.2 |
Zr | 67.5 | 148.0 | 105.5 | 171.5 | 138.5 | 117.0 | 12.3 | 16.9 | 21.5 |
Nb | 2.5 | 11.2 | 8.1 | 6.1 | 10.3 | 9.5 | 0.9 | 1.3 | 2.0 |
Sb | 29.3 | 2.64 | 3.87 | 5.85 | 4.00 | 9.85 | 8.77 | 72.7 | 78.8 |
Cs | 2.68 | 8.99 | 5.93 | 15.45 | 11.05 | 7.79 | 1.24 | 1.29 | 1.56 |
Ba | 90 | 560 | 320 | 640 | 570 | 360 | 40 | 50 | 70 |
La | 14.3 | 30.9 | 29.1 | 33.5 | 33.1 | 28.1 | 2.7 | 4.9 | 6.0 |
Ce | 29.3 | 71.1 | 62.8 | 74.9 | 72.6 | 61.0 | 5.79 | 11.85 | 13.25 |
Pr | 3.33 | 9.19 | 7.66 | 8.70 | 8.62 | 7.18 | 0.62 | 1.60 | 1.49 |
Nd | 12.5 | 34.8 | 28.2 | 32.0 | 31.9 | 27.0 | 2.4 | 6.6 | 5.5 |
Sm | 2.75 | 7.55 | 5.77 | 6.46 | 6.91 | 5.71 | 0.40 | 1.94 | 1.01 |
Eu | 0.65 | 1.71 | 1.18 | 1.27 | 1.30 | 1.12 | 0.14 | 0.84 | 0.19 |
Gd | 2.58 | 7.73 | 4.79 | 6.27 | 5.92 | 5.36 | 0.32 | 1.86 | 0.78 |
Tb | 0.36 | 1.17 | 0.67 | 0.92 | 0.85 | 0.80 | 0.03 | 0.22 | 0.09 |
Dy | 2.09 | 7.32 | 4.33 | 6.11 | 5.53 | 4.85 | 0.28 | 1.12 | 0.69 |
Ho | 0.41 | 1.53 | 0.91 | 1.23 | 1.15 | 1.03 | 0.06 | 0.24 | 0.15 |
Er | 1.14 | 4.26 | 2.46 | 3.87 | 3.19 | 2.96 | 0.15 | 0.54 | 0.42 |
Tm | 0.14 | 0.62 | 0.35 | 0.55 | 0.48 | 0.44 | 0.02 | 0.07 | 0.06 |
Yb | 1.02 | 4.22 | 2.52 | 3.37 | 3.07 | 2.89 | 0.18 | 0.52 | 0.45 |
Lu | 0.15 | 0.63 | 0.37 | 0.51 | 0.47 | 0.44 | 0.01 | 0.07 | 0.05 |
Hf | 1.8 | 6.5 | 5.0 | 5.4 | 5.1 | 4.9 | 0.4 | 0.6 | 0.7 |
Ta | 0.3 | 1.0 | 0.8 | 1.0 | 1.1 | 0.9 | 0.1 | 0.1 | 0.2 |
Au | 0.775 | 0.074 | 0.012 | 0.587 | 0.007 | 0.09 | 4.12 | 6.08 | 10 |
Pb | 61.7 | 24.6 | 13.8 | 12.5 | 26.8 | 31.7 | 441 | 1525 | 459 |
Th | 4.9 | 12.5 | 10.6 | 15.1 | 14.8 | 12.6 | 1.0 | 1.7 | 2.0 |
U | 2.4 | 2.5 | 2.3 | 2.8 | 3.2 | 2.4 | 0.3 | 0.5 | 0.6 |
ΣREE | 72.62 | 198.83 | 159.21 | 180.76 | 182.99 | 153.48 | 13.21 | 35.22 | 31.38 |
LREE | 64.73 | 171.35 | 142.81 | 157.93 | 162.33 | 134.71 | 12.16 | 30.58 | 28.69 |
HREE | 7.89 | 27.48 | 16.4 | 22.83 | 20.66 | 18.77 | 1.05 | 4.64 | 2.69 |
LREE/HREE | 8.2 | 6.24 | 8.71 | 6.92 | 7.86 | 7.18 | 11.58 | 6.59 | 10.67 |
La(N)/Yb(N) | 10.83 | 6.34 | 9.25 | 7.47 | 8.53 | 7.5 | 11.56 | 8.41 | 10.84 |
δEu | 0.73 | 0.68 | 0.67 | 0.6 | 0.61 | 0.61 | 1.16 | 1.33 | 0.63 |
δCe | 0.98 | 1.04 | 1.01 | 1.01 | 1.03 | 1.02 | 0.99 | 1.04 | 1.01 |
La(N)/Sm(N) | 3.62 | 3.19 | 3.64 | 3.51 | 3.41 | 3.41 | 4.68 | 2.03 | 4.35 |
Gd(N)/Yb(N) | 2.09 | 1.52 | 1.57 | 1.54 | 1.6 | 1.53 | 1.47 | 2.96 | 1.43 |
Sample | δ34SVCDT | Sources | Sample | δ34SVCDT | Sources |
---|---|---|---|---|---|
X1 | −8.0 | This study | Pt2 | −13.10~−6.26 | [21] |
X3 | −6.9 | Yanlinsi | −5.73 | ||
X5 | −7.1 | −4.57 | |||
X7 | −5.0 | Xiaojianshan | −33.3~−0.99 | [18] | |
X10 | −3.1 | −5.25~−2.05 | [28] | ||
X11 | −7.6 | Yanlinsi | −10.34~+6.12 | [22] | |
Pt2 | −10.4 | [40] | Zhengchong | −8.9~−0.1 | [14] |
Pt2 | −12.56~−5.93 | [13] |
Stage | No. | Size (μm) | Vapor (%) | Th (°C) | Tm (°C) | Ti (°C) | Salinity (wt%) NaCl |
---|---|---|---|---|---|---|---|
I | X1 | 4.0–8.0 | 10–45 | 186–332 | −6.8–−1.9 | −22–−20 | 3.2–10.2 |
X2 | 3.5–8.6 | 15–45 | 219–343 | −6.4–−1.0 | −23–−20 | 1.7–9.7 | |
II | X3 | 4.0–7.5 | 10–30 | 169–314 | −6.1–−0.5 | −23–−20 | 0.8–9.3 |
X5 | 3.8–9.0 | 5–40 | 167–296 | −6.0–−0.8 | −23–−20 | 1.4–9.2 | |
X7 | 4.5–7.5 | 10–40 | 183–302 | −6.9–-2.3 | −23–−20 | 3.8–10.3 | |
X8 | 4.0–8.6 | 5–45 | 137–288 | −5.9–−1.3 | −25–−20 | 2.2–9.0 | |
X9 | 4.6–10.7 | 5–35 | 184–295 | −7.6–−2.4 | −24–−20 | 4.0–11.2 | |
III | X10 | 3.8–7.6 | 10–30 | 145–268 | −7.6–−1.0 | −23–−21 | 1.7–11.2 |
X11 | 4.3–7.2 | 5–30 | 179–238 | −7.8–−1.4 | −25–−21 | 2.4–11.4 | |
X12 | 3.8–8.5 | 10–35 | 122–250 | −5.4–−0.7 | −25–−21 | 1.2–8.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, D.; Lin, S.; Liu, L.; Huan, C.; Qiu, H.; Tu, B. Metal Source and Fluid Evolution in Xiaojiashan Gold Deposit in Northeastern Hunan, China: Implications of Rare Earth Elements, Fluid Inclusions, and Pyrite S Isotopic Compositions. Minerals 2023, 13, 121. https://doi.org/10.3390/min13010121
Hou D, Lin S, Liu L, Huan C, Qiu H, Tu B. Metal Source and Fluid Evolution in Xiaojiashan Gold Deposit in Northeastern Hunan, China: Implications of Rare Earth Elements, Fluid Inclusions, and Pyrite S Isotopic Compositions. Minerals. 2023; 13(1):121. https://doi.org/10.3390/min13010121
Chicago/Turabian StyleHou, Dongzhuang, Shu Lin, Lang Liu, Chao Huan, Huafu Qiu, and Bingbing Tu. 2023. "Metal Source and Fluid Evolution in Xiaojiashan Gold Deposit in Northeastern Hunan, China: Implications of Rare Earth Elements, Fluid Inclusions, and Pyrite S Isotopic Compositions" Minerals 13, no. 1: 121. https://doi.org/10.3390/min13010121
APA StyleHou, D., Lin, S., Liu, L., Huan, C., Qiu, H., & Tu, B. (2023). Metal Source and Fluid Evolution in Xiaojiashan Gold Deposit in Northeastern Hunan, China: Implications of Rare Earth Elements, Fluid Inclusions, and Pyrite S Isotopic Compositions. Minerals, 13(1), 121. https://doi.org/10.3390/min13010121