Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Mineral Formation Sequences
4.2. TEs in Sulfides and IOHs
4.3. Rare Earth Elements of IOHs
4.4. Correlation Analysis
4.5. MCW Analysis
4.6. Cluster Analysis
4.7. Factor Analysis
5. Discussion
5.1. General Remarks
5.2. TEA-I: Cu, Se, Te, Bi, Sn, Au ± In
5.3. TEA-II: Cd, Zn, Sb, Tl, Ag, Mg, U, Mo, Ni, Na, K ± Eu
5.4. TEA-III: Al, Ga, Ti, W, Cr ± Ge ± (Mn, Co, Ba)
5.5. TEA-IV: Ca, Sr, As, P ± Cu, Se, Si
5.6. TEAs-V: Pb, V ± REE
5.7. TEAs VI: REEs ± Mn, Co, Ba
5.8. General Model
5.9. Comparison of IOHs from Different Hydrothermal Fields
6. Conclusions
- In this paper, we compare the trace element (TE) composition of hydrothermal and supergene sulfides and iron oxyhydroxides (IOHs). In comparison with hydrothermal sulfides (ISS, wurtzite, subhedral and euhedral pyrite), supergene sulfides are characterized by a moderate increase in seawater-derived TEs (Na, Mg, U, Mo, Ni). The IOHs are significantly enriched in seawater-derived (Na, K, Mg, Ca, Sr, P, U, Mo, V) and residual hydrothermal (Cu, Zn, Cd, Pb, Sb, Au, Se, Bi) TEs. According to the statistical analysis, the TEs are grouped into six associations (TEAs): (I) Cu, Se, Te, Bi, In, Sn, and Au; (II) Zn, Sb, Tl, Cd, Ag, Mg, U, Mo, Cr and Ni; (III) Al, Ga, Ge, Ti, Mn, Co, Ba, W, Na and K; (IV) Ca, Sr, As, P, V and Si; (V) Pb and V; and (VI) REEs except for Eu.
- The halmyrolysis of hydrothermal sulfides includes two stages, which can explain TE behavior. The Oxidation of hydrothermal sulfides and the formation of secondary sulfides is a characteristic process of the first stage. Pyrrhotite is replaced by pyrite and then by secondary chalcopyrite. The hydrothermal chalcopyrite–isocubanite aggregates and secondary chalcopyrite are transformed into bornite and Cu sulfides. Wurtzite is replaced by secondary sphalerite in assemblage with secondary Cu sulfides. The relict sulfides inherit the TEs from primary sulfides (TEA-I and TEA-II). The oxidation of primary sulfides provides local low pH reducing conditions, which are necessary both for the formation of secondary sulfides and the scavenging of some redox-sensitive elements, such as U(IV), Mo (IV) and Eu (II) on these surfaces in TEA-II. Pseudomorphic Mn-bearing pyrite after pyrrhotite can be a source of Mn for other minerals.
- The second stage of halmyrolysis is related to the oxidation of Fe(II) and the formation of IOHs under oxic conditions accompanied by the increase in pH. In TEA-III, Al, Ge, Ga, W and Cr are probably supplied from clays and/or are incorporated in the structure of IOHs with the coeval precipitation of Mn oxyhydroxides and barite. During this stage, the authigenic atacamite (Cu), opal (Si) and aragonite (Ca, Sr) are associated with oxyanions of As and P, probably absorbed by IOHs (TEA-III). Lead and V (TEA-V) are probably absorbed from seawater together with REEs (TEA-VI).
- There are high contents of Cu (1–5 wt%), Au (0.2–32 ppm with an average of 2 ppm) and Mo (0.05–0.25 wt%) are in the IOHs of the Poveda-1 hydrothermal field. The contents of some toxic elements (Co, Ni, Zn, As, Cd, Ag) decrease in a range from hydrothermal and supergene sulfides to IOHs.
- Some TE features of the IOHs from the ultramafic- and mafic-hosted hydrothermal fields differ, whereas others depend on local physicochemical conditions for the formation of primary sulfides.
- The development of the halmyrolysis model should be further elaborated in order to revise the TEs’ composition of different morphogenetic IOH types in other hydrothermal fields.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannington, M.D.; Thompson, G.; Rona, P.A.; Scott, S.D. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature 1988, 333, 64–66. [Google Scholar] [CrossRef]
- Herzig, P.M.; Hannington, M.D.; Scott, S.D.; Maliotis, G.; Rona, P.A.; Thompson, G. Gold-rich sea-floor gossans in the Troodos Ophiolite and on the Mid-Atlantic Ridge. Econ. Geol. 1991, 86, 1747–1755. [Google Scholar] [CrossRef]
- Hannington, M.D. The formation of atacamite during weathering of sulfides on the modern seafloor. Can. Mineral. 1993, 31, 945–956. [Google Scholar]
- Halbach, P.; Blum, N.; Münch, U.; Plüger, W.; Garbe-Schönberg, D.; Zimmer, M. Formation and decay of a modern massive sulfide deposit in the Indian Ocean. Miner. Deposita 1998, 33, 302–309. [Google Scholar] [CrossRef]
- Butler, I.B.; Nesbitt, R.W. Trace element distributions in the chalcopyrite wall of a black smoker chimney: Insights from laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Earth Planet. Sci. Lett. 1999, 167, 335–345. [Google Scholar] [CrossRef]
- Houghton, J.L.; Shanks, W.C.; Seyfried, W.E., Jr. Massive sulfide deposition and trace element remobilization in the Middle Valley sediment-hosted hydrothermal system, northern Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2004, 68, 2863–2873. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Lein, A.Y.; Maslennikov, V.V.; Syaoli, L.; Ulyanov, A.A. Mineralogical-geochemical features of sulfide ores from the Broken Spur hydrothermal field. Oceanology 2008, 48, 679–700. [Google Scholar] [CrossRef]
- Lein, A.Y.; Bogdanov, Y.A.; Maslennikov, V.V.; Li, S.; Ulyanova, N.V.; Maslennikova, S.P.; Ulyanov, A.A. Sulfide minerals in the Menez Gwen nonmetallic hydrothermal field (Mid-Atlantic Ridge). Lithol. Miner. Resour. 2010, 45, 305–323. [Google Scholar] [CrossRef]
- Ridley, W.I. Weathering processes. In Volcanogenic Massive Sulfide Occurrence Model; Shanks, W.C., Thurston, R., Eds.; Report 2010–5070-C; U.S. Geological Survey Scientific Investigations: Reston, VA, USA, 2012; pp. 195–201. [Google Scholar]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J.; et al. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Li, X.; Wang, J.; Chu, F.; Wang, H.; Li, Z.; Yu, X.; Bi, D.; He, Y. Variability of Fe isotope compositions of hydrothermal sulfides and oxidation products at mid-ocean ridges. J. Mar. Syst. 2016, 180, 191–196. [Google Scholar] [CrossRef]
- Edwards, K.J. Formation and Degradation of Seafloor Hydrothermal Sulfide Deposits. Spec. Pap. Geol. Soc. Am. 2004, 379, 83–96. [Google Scholar] [CrossRef]
- Fallon, E.K.; Niehorster, E.; Brooker, R.A.; Scott, T.B. Experimental leaching of massive sulphide from TAG active hydrothermal mound and implications for seafloor mining. Mar. Pollut. Bull. 2018, 126, 501–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, R.D.; Roberts, S.; Cooper, M.J. Investigating monomineralic and polymineralic reactions during the oxidation of sulphide minerals in seawater: Implications for mining seafloor massive sulphide deposits. Appl. Geochem. 2018, 90, 63–74. [Google Scholar] [CrossRef]
- Meng, X.; Li, X.; Chu, F.; Zhu, J.; Lei, J.; Li, Z.; Wang, H.; Chen, L.; Zhu, Z. TE and sulfur isotope compositions for pyrite across the mineralization zones of a sulfide chimney from the East Pacific rise (1–2°S). Ore Geol. Rev. 2020, 116, 103203. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Large, R.R.; Danyushevsky, L.V. Study of trace elements zonation in vent chimneys from the Silurian Yaman-Kasy volcanic-hosted massive sulfide deposit (Southern Urals. Russia) using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). Econ. Geol. 2009, 104, 1111–1141. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Cherkashov, G.; Artemyev, D.A.; Firstova, A.; Large, R.R.; Tseluyko, A.; Kotlyarov, V. Pyrite Varieties at Pobeda Hydrothermal Fields, Mid-Atlantic Ridge 17°070–17°080 N: LA-ICP-MS Data Deciphering. Minerals 2020, 10, 622. [Google Scholar] [CrossRef]
- Wohlgemuth-Ueberwasser, C.C.; Viljonen, F.; Petersen, S.; Vrster, C. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: An in-situ LA-ICP-MS study. Geochim. Cosmochim. Acta 2015, 159, 16–41. [Google Scholar] [CrossRef]
- Keith, M.; Hackel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace elements systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Ding, T.; Wang, J.; Tao, C.H.; Dias, A.A.; Liang, J.; Wang, Y.; Chen, J.; Wu, B.; Huang, H. Trace-element compositions of sulfides from inactive Tianzuo hydrothermal field, Southwest Indian Ridge: Implications for ultramafic rocks hosting mineralization. Ore Geol. Rev. 2022, 140, 104421. [Google Scholar] [CrossRef]
- Melekestseva, I.; Maslennikov, V.V.; Tret’yakov, G.; Maslennikova, S.P.; Danyushevsky, L.; Ross, L.; Beltenev, V.; Khvorov, A. TE geochemistry of sulfides from the Ashadze-2 hydrothermal field (12°58′ N. Mid-Atlantic Ridge): Influence of host rocks formation conditions or seawater? Minerals 2020, 10, 743. [Google Scholar] [CrossRef]
- Ayupova, N.; Melekestseva, I.; Maslennikov, V.; Sadykov, S. Mineralogy and geochemistry of clastic sulfide ores from the Talgan VHMS deposit, South Urals, Russia: Signatures of diagenetic alteration. Ore Geol. Rev. 2022, 144, 104839. [Google Scholar] [CrossRef]
- Mills, R.A.; Thomson, J.; Elderfield, H.; Hinton, R.W.; Hyslop, E. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge. Earth Planet. Sci. Lett. 1994, 124, 35–47. [Google Scholar] [CrossRef]
- Mills, R.A.; Elderfield, H. Rare earth element geochemistry of hydrothermal deposits from the active TAG Mound. 26°N Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1995, 59, 3511–3524. [Google Scholar] [CrossRef]
- Dekov, V.; Boycheva, T.; Hålenius, U.; Petersen, S.; Billström, K.; Stummeyer, J.; Kamenov, G.; Shanks, W. Atacamite and paratacamite from the ultramafic-hosted Logatchev seafloor vent field (14°45′N, Mid-Atlantic Ridge). Chem. Geol. 2011, 286, 169–184. [Google Scholar] [CrossRef]
- Ayupova, N.R.; Melekestseva, I.Y.; Maslennikov, V.V.; Tseluyko, A.S.; Blinov, I.A.; Beltenev, V.E. Uranium accumulation in modern and ancient Fe-oxide sediments: Examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and Yubileynoe massive sulfide deposit (South Urals. Russia). Sediment. Geol. 2018, 367, 164–174. [Google Scholar] [CrossRef]
- Meng, X.; Jin, X.; Li, X.; Chu, F.; Zhang, W.; Wang, H.; Zhu, J.; Li, Z. Mineralogy and geochemistry of secondary minerals and oxyhydroxides from the Xunmei hydrothermal field, Southern Mid-Atlantic Ridge (26°S): Insights for metal mobilization during the oxidation of submarine sulfides. Mar. Geol. 2021, 442, 106654. [Google Scholar] [CrossRef]
- Mitra, A.; Elderfield, H.; Greaves, M.J. Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge. Mar. Chem. 1994, 47, 217–236. [Google Scholar] [CrossRef]
- Edmonds, H.N.; German, C.R. Particle geochemistry in the Rainbow hydrothermal plume, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 2004, 68, 759–772. [Google Scholar] [CrossRef]
- Popoola, S.O.; Han, X.; Wang, Y.; Qiu, Z.; Ye, Y.; Cai, Y. Geochemical investigations of Fe-Si-Mn oxyhydroxides deposits in Wocan hydrothermal field on the slow-spreading Carlsberg Ridge, Indian Ocean: Constraints on their types and origin. Minerals 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Rusakov, V.Y.; Shilov, V.V.; Roschina, I.A.; Kononkova, N.N. Accumulation history of the metalliferous and ore-bearing sediments of the Krasnov hydrothermal field (MAR 16°38′ N) for the past 80 ka BP (part I). Geochem. Intern. 2011, 49, 1208–1238. [Google Scholar] [CrossRef]
- Barrett, T.J.; Jarvis, I.; Jarvis, K. Rare earth element geochemistry of massive sulfides-sulfates and gossans on the southern Explorer Ridge. Geology 1990, 18, 583–586. [Google Scholar] [CrossRef]
- Hekinian, R.; Hoffert, M.; Larque, P.; Cheminee, J.L.; Stoffers, P.; Bideau, D. Hydrothermal Fe and Si oxyhydroxide deposits from South Pacific intraplate volcanoes and East Pacific rise axial and off-axial regions. Econ. Geol. 1993, 88, 2099–2121. [Google Scholar] [CrossRef]
- Fallon, E.K.; Petersen, S.; Brooker, R.A.; Scott, T.B. Oxidative dissolution of hydrothermal mixed-sulphide ore: An assessment of current knowledge in relation to seafloor massive sulphide mining. Ore Geol. Rev. 2017, 86, 309–337. [Google Scholar] [CrossRef] [Green Version]
- Kuksa, K.; Bich, A.; Cherkashov, G.; Firstova, A.; Kuznetsov, V.; Bel’tenev, V. Mass-wasting processes input in proximal metalliferous sediments: A case study of the Pobeda hydrothermal fields. Mar. Geol. 2021, 438, 106517. [Google Scholar] [CrossRef]
- Hannington, M.; Herzig, P.; Scott, S.; Thompson, G.; Rona, P. Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid ocean ridges. Mar. Geol. 1991, 101, 217–248. [Google Scholar] [CrossRef]
- Monecke, T.; Petersen, S.; Hannington, M.D.; Grant, H.; Samson, I.M. The minor element endowment of modern sea-floor massive sulfides and comparison with deposits hosted in ancient volcanic successions. Econ. Geol. 2016, 18, 245–306. [Google Scholar] [CrossRef]
- Dubinin, A.V. Rare Earth Element Geochemistry in the Ocean; Nauka: Moscow, Russia, 2006; 360p. (In Russian) [Google Scholar]
- Ayupova, N.R.; Maslennikov, V.V.; Kotlyarov, V.A.; Maslennikova, S.P.; Danyushevsky, L.V.; Large, R. Se and In minerals of in the submarine oxidation zone of the Molodezhnoe copper–zinc massive sulfide deposit. Southern Urals. Dokl. Earth Sci. 2017, 473, 318–322. [Google Scholar] [CrossRef]
- Belogub, E.V.; Ayupova, N.R.; Krivovichev, V.G.; Novoselov, K.A.; Blinov, I.A.; Charykova, M.V. Se minerals in the continental and submarine oxidation zones of the South Urals volcanogenic-hosted massive sulfide deposits: A review. Ore Geol. Rev. 2020, 122, 103500. [Google Scholar] [CrossRef]
- Benjamin, S.B.; Haymon, R.M. Hydrothermal mineral deposits and fossil biota from a young (0.1 Ma) abyssal hill on the flank of the fast spreading East Pacific rise: Evidence for pulsed hydrothermal flow and tectonic tapping of axial heat and fluids. Geochem. Geophys. Geosyst. 2006, 7, Q05002. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Wang, X.; Zhang, G.; Yin, X.; Chen, D.; Wang, X. Formation of Fe-oxyhydroxides from the East Pacific rise near latitude 13°N: Evidence from mineralogical and geochemical data. Sci. China Ser. D Earth Sci. 2008, 51, 206–215. [Google Scholar] [CrossRef]
- Embile, R.F.; Walder, I.F.; Schuh, C.E.; Donatelli, J.L. Cu, Pb and Fe release from sulfide-containing tailings in seawater: Results from laboratory simulation of submarine tailings disposal. Mar. Pollut. Bull. 2018, 137, 582–592. [Google Scholar] [CrossRef] [PubMed]
- Toner, B.M.; Rouxel, O.; Santelli, C.M.; Edwards, K.J. Sea-floor weathering of hydrothermal chimney sulfides at the East Pacific rise 9°N: Chemical speciation and isotopic signature of Iron using X-ray absorption spectroscopy and laser ablation MC-ICP-MS. Geochim. Cosmochim. Acta Suppl. 2008, 72, A951. [Google Scholar]
- Beltenev, V.E.; Narkevsky, E.V.; Dobretsova, I.G.; Gablina, I.F.; Galkin, S.V.; Molodtsova, T.N.; Layba, A.A. The results of Professor Logatchev-37 cruise, MAR. In Proceedings of the XXI International Scientific Conference (school) on Marine Geology, Moscow, Russia, 16–20 November 2015; GEOS: Moscow, Russia, 2015; pp. 126–128. (In Russian). [Google Scholar]
- Beltenev, V. Polar Marine Geosurvey Expedition (PMGE) Report on Exploration Work on the Russian Exploration Area in Atlantic Ocean with an Estimate Forecast Resources of PMS of Categories P2–P3 in Blocks 31–45; Unpublished Report; Polar Marine Geosurvey Expedition (PMGE): St. Petersburg, Russia, 2015; 266p. (In Russian) [Google Scholar]
- Cherkashov, G.; Kuznetsov, V.; Kuksa, K.; Tabuns, E.; Maksimov, F.; Bel’tenev, V. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geol. Rev. 2017, 87, 147–154. [Google Scholar] [CrossRef]
- Amplieva, E.E.; Bortnikov, N.S.; Kovalchuk, E.V.; Beltenev, V.E. The Pobeda modern submarine hydrothermal sulfide edifice cluster (Mid-Atlantic Ridge, 17 degrees 08’N): Mineralogy and chemical composition. In Proceedings of the 14th SGA Biennial Meeting, Mineral Resources to Discover, Quebec City, QC, Canada, 20–23 August 2017; 1–4, pp. 649–652. [Google Scholar]
- Gablina, I.F.; Dobretsova, I.G.; Popova, E.A.; Dara, O.M.; Sadchikova, T.A.; Gor’kova, N.V.; Mikheev, V.V. Mineral composition and geochemical zoning of bottom sediments in the Pobeda hydrothermal cluster (17°07.45′ N–17°08.7′ N Mid-Atlantic Ridge). Lithol. Miner. Resour. 2021, 56, 113–131. [Google Scholar] [CrossRef]
- Gablina, I.F.; Dobretzova, I.G.; Laiba, A.A.; Narkevsy, E.V.; Maksimov, F.E.; Kuznetsov, V.Y. Specific features of sulfide ores in the Pobeda hydrothermal cluster, Mid-Atlantic Rise 17°07′–17°08′ N. Lithol. Miner. Res. 2018, 53, 431–454. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Longerich, H.P.; Günther, D.; Jackson, S.E. Elemental fractionation in laser ablation inductively coupled plasma mass spectrometry. Fresenius’ J. Anal. Chem. 1996, 355, 538–542. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Large, R.R.; Maslennikov, V.V.; Robert, F.; Danyushevsky, L.V.; Chang, Z. Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ. Geol. 2007, 102, 1232–1267. [Google Scholar] [CrossRef]
- Thomas, H.V.; Large, R.R.; Bull, S.W.; Maslennikov, V.V.; Berry, R.F.; Fraser, R.; Froud, S.; Moye, R. Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: Insights for ore genesis. Econ. Geol. 2011, 106, 1–31. [Google Scholar] [CrossRef]
- Smirnov, V.I. Correlation Methods in Paragenetic Analysis; Nedra Publishers: Moscow, Russia, 1981; p. 174. (In Russian) [Google Scholar]
- Hirama, M.V.; de Lima Toledo, F.A.; Junior, E.C.; Costa, K.B.; de Quadros, J.P. Q-Mode and R-Mode Factor Analysis in Quantitative Studies of Microfossils of the Late Quaternary in Sediments from the Brazilian Continental Margin. Sci. Commun. Terræ 2010, 7, 41–49. [Google Scholar]
- Gablina, I.F.; Dobretsova, I.G.; Narkevskii, E.V.; Gustaitis, A.N.; Sadchikova, T.A.; Gor’kova, N.V.; Savichev, A.T.; Lyutkevich, A.D.; Dara, O.M. Influence of hydrothermal-metasomatic processes on the formation of present-day sulfide ores in carbonate bottom sediments of the mid-Atlantic Ridge (19°–20° N). Lithol. Miner. Res. 2017, 52, 335–357. [Google Scholar] [CrossRef]
- Kuznetsov, V.Y.; Cherkashov, G.; Kuksa, K.; Firstova, A.; Maksimov, F.; Bel’tenev, V.; Lazareva, L.; Levchenko, S.; Baranova, N. Chronology of seafloor massive sulfides formation within the Pobeda hydrothermal cluster (MAR). Geochronometria 2020, 47, 63–70. [Google Scholar] [CrossRef]
- Lyutkevich, A.D.; Gablina, I.F.; Dara, O.M.; Yapaskurt, V.O.; Shcherbakov, V.D.; Somov, P.A. Mineral Phases of Zinc in Ore-Bearing Sediments of the Pobeda Hydrothermal Cluster (17°07.45′–17°08.7′ N MAR). Lithol. Miner. Resour. 2022, 57, 404–420. [Google Scholar] [CrossRef]
- Zhabin, A.G.; Samsonova, N.S. Signs of disappeared pyrrhotite in VMS deposits. Proc. Sov. Mineral. Soc. 1975, 103, 346. (In Russian) [Google Scholar]
- Grommet, L.P.; Dymek, R.F.; Haskin, L.A.; Korotev, R.L. The “North American shale composite”: Its composition, major and trace element characteristics. Geochim. Cosmochim. Acta 1984, 48, 2469–2482. [Google Scholar] [CrossRef]
- Bruemmer, G.W.; Gerth, J.; Tiller, K.G. Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. Eur. J. Soil Sci. 1988, 39, 37–52. [Google Scholar] [CrossRef]
- Hrischeva, E.; Scott, S.D. Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge. Geochim. Cosmochim. Acta 2007, 71, 3476–3497. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Ayupova, N.R.; Zaykov, V.V.; Tseluyko, A.S.; Melekestseva, I.Y.; Large, R.R.; Danyushevsky, L.V.; Herrington, R.J.; Lein, A.T.; et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: Mineral and trace element comparison with modern black, grey, white and clear smokers. Ore Geol. Rev. 2017, 85, 64–106. [Google Scholar] [CrossRef]
- Edwards, K.J.; Mccollom, T.M.; Konishi, H.; Buseck, P.R. Seafloor bioalteration of sulfide minerals: Results from in situ incubation studies. Geochim. Cosmochim. Acta 2003, 67, 2843–2856. [Google Scholar] [CrossRef]
- Janecky, D.R.; Shanks, W.C., III. Computational modeling of chemical and sulfurisotopic reaction processes in seafloor hydrothermal systems: Chimneys, massivesulfides, and subjacent alteration zones. Can. Mineral. 1988, 26, 805–825. [Google Scholar]
- Woodruff, L.G.; Shanks, W.C., III. Sulfur isotope study of chimney minerals and vent fluids from 21°N, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction. J. Geophys. Res. 1988, 93, 4562–4572. [Google Scholar] [CrossRef]
- Mozgova, N.N.; Borodaev, Y.S.; Gablina, I.F.; Cherkashev, G.A.; Stepanova, T.V. Mineral assemblages as indicators of the maturity of oceanic hydrothermal sulfide mounds. Lithol. Min. Res. 2005, 40, 293–319. [Google Scholar] [CrossRef]
- Mozgova, N.N.; Efimov, A.V.; Borodaev, Y.S.; Krasnov, S.G.; Cherkashov, G.A.; Stepanova, T.V.; Ashadze, A.M. Mineralogy and chemistry of massive sulfides from the Logatchev hydrothermal field (14°45′ N Mid-Atlantic Ridge). Explor. Min. Geol. 1999, 8, 379–395. [Google Scholar]
- Keith, M.; Smith, D.J.; Jenkin, G.; Holwell, D.; Dye, M.D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: Insights into ore-forming processes. Ore Geol. Rev. 2017, 96, 269–282. [Google Scholar] [CrossRef]
- Firstova, A.; Stapanova, T.; Sukhanova, A.; Cherkashov, G.; Poroshina, I. Au and Te minerals in seafloor massive sulphides from Semyenov-2 hydrothermal field, Mid-Atlantic ridge. Minerals 2019, 9, 294. [Google Scholar] [CrossRef]
- Evrard, C.; Fouquet, Y.; Moelo, Y.; Rinnert, E.; Etoubleau, J.; Langlade, J.A. Tin concentration in hydrothermal sulfides related to ultramafic rocks along the Mid-Atlantic Ridge: A mineralogical study. Eur. J. Mineral. 2015, 27, 627–638. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Maslennikov, V.V.; Maslennikova, S.P.; Danyushevsky, L.; Large, R. Covellite from Semenov-2 hydrothermal field (13°31.13´ N, Mid-Atlantic Ridge): Enrichment in trace elements according to LA-ICP-MS analysis. Dokl. Earth Sci. 2017, 473, 291–295. [Google Scholar] [CrossRef]
- Fouquet, Y.; Walik, A.; Cambon, P.; Mevel, C.; Meyer, G.; Gente, P. Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Econ. Geol. 1993, 88, 2018–2036. [Google Scholar] [CrossRef]
- Cook, N.J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Shimizu, M.; Danyushevsky, L.; Saini- Eidukat, B.; Melcher, F. Trace and minor elements in sphalerite: A LA-ICPMS study. Geochim. Cosmochim. Acta 2009, 73, 4761–4791. [Google Scholar] [CrossRef]
- Von Damm, K.; Edmond, J.M.; Grant, B.; Measures, C. Chemistry of submarine hydrothermal solution at 21 N East Pacific Rise. Geochim. Cosmochim. Acta 1985, 49, 11347–11363. [Google Scholar] [CrossRef]
- Lalou, C.; Brichet, E. Anomalously high uranium contents in the sediment under Galapagos hydrothermal mounds. Nature 1980, 284, 251–253. [Google Scholar] [CrossRef]
- Emerson, S.R.; Huested, S.S. Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar. Chem. 1991, 34, 177–196. [Google Scholar] [CrossRef]
- Mikhaylichenko, A.I.; Mikhlin, E.B.; Patrikeev, Y.B. Rare-Earth Metals; Metallurgy: Moscow, Russia, 1987; p. 232. (In Russian) [Google Scholar]
- Kloprogge, J.T.; Ponce, C.P. Spectroscopic Studies of Syntheticand Natural Saponites: A Review. Minerals 2021, 11, 112. [Google Scholar] [CrossRef]
- Martin, F.; Petit, S.; Decarreu, A.; Ildefonse, P.; Graubit, O.; Beziat, D.; de Parseval, P.; Noa, Y. Ga/Al substitutions in synthetic kaolinites and smectites. Clay Miner. 1998, 33, 231–241. [Google Scholar] [CrossRef]
- Anantharamaiah, P.N.; Pattayil, J. Effect of size and site preference of trivalent non-magnetic metal ions (Al3+, Ga3+, In3+) substituted for Fe3+ on the magnetostructive properties of sintered CoFe2O4. J. Phys. D Appl. Phys. 2017, 50, 435005. [Google Scholar] [CrossRef]
- Gurvich, E.G. Metalliferous Sediments of the World Ocean; Springer: Berlin, Germany, 2006; 430p. [Google Scholar]
- Cornel, R.M. Simultaneous incorporation of Mn, Ni and Co in the IOH (α-FeOOH) structure. Clay Miner. 1991, 26, 427–430. [Google Scholar] [CrossRef]
- Moffett, J.W.; Ho, J. Oxidation of cobalt and manganese in sea water via a common microbially catalyzed pathway. Geochim. Cosmochim. Acta 1996, 60, 3415–3424. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Paytan, A.M.; Gonzalez-Muñoz, T.; Jroundi, F.; Abad, M.M.; Lam, P.J.; Bishop, K.B.; Horner, T.J.; Morton, P.L.; Kastner, M. Barite formation in the ocean: Origin of amorphous and crystalline precipitates. Chem. Geol. 2019, 511, 441–451. [Google Scholar] [CrossRef]
- Cao, Y.; Guo, Q.; Shu, Z.; Jiao, C.; Luo, L.; Guo, W.; Zhao, Q.; Yin, Z. Tungstate removal from aqueous solution by nanocrystalline iowaite: An iron-bearing layered double hydroxide. Environ. Pollut. 2019, 247, 118–127. [Google Scholar] [CrossRef]
- Bogdanov, Y.A.; Lisizin, A.P.; Sagalevich, A.M.; Gurvich, E.G. Hydrothermal Ore Genesis on Ocean Floor; Nauka: Moscow, Russia, 2006; 527p. (In Russian) [Google Scholar]
- Shanks, W.S. Stable isotope in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev. Mineral. Geochem. 2001, 43, 469–526. [Google Scholar] [CrossRef]
- Bolanz, R.M.; Wierzbicka-Wieczorek, M.; Čaplovičová, M.; Uhlík, P.; Göttlicher, J. Structural Incorporation of As5+ into Hematite. Environ. Sci. Technol. 2013, 47, 9140–9147. [Google Scholar] [CrossRef] [PubMed]
- Feely, R.A.; Ttefry, J.H.; Massoth, G.J.; Metz, S. A comparison of the scavenging of phosphate and arsenic from seawater by hydrothermal iron oxyhydroxides in the Atlantic and Pacific Ocean. Deep-Sea Res. 1991, 38, 617–623. [Google Scholar] [CrossRef]
- Rudnicki, M.; Elderfield, H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26°N, Mid-Atlantic Ridge. Geochim. Cosmochim. Acta 1993, 57, 2939–2957. [Google Scholar] [CrossRef]
- German, C.R.; Colley, S.; Palmer, M.R.; Khripounoff, A.; Klinkhammer, G.P. Hydrothermal plume-particle fluxes at 13°N on the East Pacific Rise. Deep. Sea Res. Part I Oceanogr. Res. Pap. 2002, 49, 1921–1940. [Google Scholar] [CrossRef]
- Dubinin, A.V. Geochemistry of iron-calcium hydroxophosphates in pelagic sediments: Origin and compositional evolution in the course of diagenesis. Geochem. Intern. 2001, 39, 585–596. [Google Scholar]
- Melghit, K.; Al-Mungi, A.S. New form of iron orthovanadate FeVO4·1.5H2O prepared at normal pressure and low temperature. Mater. Sci. Eng. 2007, 136, 177–181. [Google Scholar] [CrossRef]
- Elderfield, H.; Whitfield, M.; Burton, J.D.; Bacon, M.P.; Liss, P.S. The oceanic chemistry of the rare-earth elements. Philo. Trans. R. Soc. Lond. 1988, A325, 105–126. [Google Scholar]
- Zhang, L.; Tao, C.; Su, X.; Lv, S.; Zhou, J.; Deng, X.; Yu, C.; Song, B. Characteristics of rare earth elements in the surface sediments of Southwest Indian Ridge: Implication of grain size for the identification of hydrothermal activity. Geo-Mar. Lett. 2022, 42, 7. [Google Scholar] [CrossRef]
- Boynton, W.V. Geochemistry of Rare Earth Elements: Meteorite Studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: New York, NY, USA, 1984; pp. 63–114. [Google Scholar] [CrossRef]
- Bruland, K.W.; Lohan, M.C. Controls of trace elements in sea water. In The Ocean and Marine Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 23–47. [Google Scholar]
- Sverjevsky, D.A. Euripium redox equilibria in agueous solution. Eart Planet. Sci. Lett. 1984, 67, 70–78. [Google Scholar] [CrossRef]
- Bao, S.; Zhou, H.; Peng, X.; Ji, F.; Yao, H. Geochemistry of REE and yttrium in hydrothermal fluids from Endevor segment, Juan de Fuca Ridge. Geochem. J. 2008, 42, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Bau, M. Rare earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state on Eu. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Maslennikova, S.P.; Lein, A.Y. Mineralogy and Geochemistry of Ancient and Modern Black Smokers; Russian Academy of Science: Moscow, Russia, 2019; 832p. (In Russian) [Google Scholar]
Mineral | ISS | Sp + Bn | CuS * | Wur | Py-e | Py-s | Pyh | Py-p | IOH-1 | IOH-2 | IOH-3 | IOH-4 | IOH-5 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | 23 | 10 | 11 | 28 | 20 | 15 | 32 | 36 | 31 | 46 | 37 | 16 | 11 |
V | 0.13 | 3.6 | 3.1 | 0.2 | 1.31 | 9.0 | 1.03 | 4.9 | 65 | 104 | 191 | 228 | 222 |
Mn | 9.0 | 27 | 23 | 70 | 1.01 | 1.2 | 41.9 | 1775 | 190 | 188 | 174 | 283 | 111 |
Fe,% | 38.6 | 30.5 | 4.4 | 11 | 45.45 | 45.6 | 63.0 | 46.1 | 55.1 | 56.7 | 55.7 | 54.9 | 58.2 |
Co | 1730 | 1793 | 2170 | 334 | 3035 | 1107 | 0.23 | 3.5 | 11 | 1.5 | 1.4 | 2.9 | 2.8 |
Ni | 22 | 140 | 310 | 0.8 | 157 | 64 | 6.9 | 24.5 | 58 | 3.3 | 2.9 | 4.1 | 10 |
Cu,% | 25.5 | 16.8 | 60.5 | 0.5 | 0.58 | 0.6 | 0.08 | 0.15 | 0.90 | 0.25 | 3.19 | 3.71 | 2.45 |
Zn,% | 0.5 | 19.5 | 3.8 | 54 | 0.01 | 0.05 | 0.03 | 0.02 | 0.37 | 0.21 | 0.18 | 0.17 | 0.10 |
Ga | 2.0 | 28 | 35 | 36 | 0.126 | 0.3 | DL | 0.2 | 1.5 | 1.2 | 1.5 | 2.6 | 2.3 |
Ge | DL | 11 | 7.8 | 35 | 0.88 | 1.0 | 3.1 | 3.3 | 11 | 12 | 12 | 10 | 2.6 |
As | 0.74 | 155 | 144 | 55 | 31 | 162 | 5 | 13.7 | 235 | 406 | 471 | 443 | 186 |
Se | 221 | 99 | 116 | 6.0 | 106 | 53 | DL | 3.1 | 45 | 239 | 157 | 112 | 11 |
Mo | DL | 88 | 246 | 0.4 | 13.5 | 48 | 3.1 | 71.3 | 892 | 692 | 644 | 642 | 196 |
Ag | 16.01 | 81 | 135 | 16 | 7.4 | 9.0 | 4.43 | 4.2 | 2.0 | 0.4 | 0.2 | 0.3 | 0.3 |
Cd | 19.6 | 120 | 23 | 782 | 1.4 | 0.6 | DL | 0.12 | 0.40 | 0.06 | 0.06 | 0.04 | 0.02 |
In | 4.8 | 6.4 | 3.3 | 0.05 | 0.3 | 0.05 | DL | 0.01 | 0.02 | 0.10 | 0.09 | 0.09 | 0.17 |
Sn | 2.46 | 10.9 | 12 | 11 | 0.5 | 0.4 | 2.88 | 2.20 | 5.3 | 4.8 | 6.9 | 26.9 | 7.5 |
Sb | DL | 34 | 55 | 159 | 0.8 | 5.9 | DL | 1.87 | 20 | 11 | 13 | 13 | 10 |
Te | 10.4 | 2.2 | 1.3 | 0.05 | 1.5 | 0.8 | DL | 0.33 | 0.5 | 3.2 | 2.5 | 1.5 | 0.5 |
Ba | DL | 1.0 | 0.2 | 0.01 | DL | 0.2 | DL | 0.71 | 5.8 | 4.4 | 4.0 | 3.9 | 1.3 |
W | DL | 0.2 | 0.4 | 0.02 | DL | 0.0 | DL | 0.06 | 1.0 | 0.45 | 0.60 | 0.79 | 0.58 |
Au | 0.10 | 0.5 | 0.8 | 0.09 | 0.3 | 0.2 | DL | 0.21 | 0.2 | 1.4 | 1.3 | 3.5 | 0.8 |
Tl | DL | 5.6 | 12 | 0.02 | 1.1 | 1.3 | 0.29 | 4.30 | 1.0 | 0.28 | 0.28 | 0.40 | 0.15 |
Pb | 1.14 | 253 | 235 | 141 | 21.2 | 23 | 42.7 | 33.9 | 85 | 126 | 144 | 123 | 78 |
Bi | 0.14 | 0.4 | 0.15 | 0.002 | 3.9 | 0.8 | DL | 0.10 | 0.07 | 0.36 | 0.60 | 0.95 | 0.47 |
U | DL | 13 | 45 | 0.02 | 0.85 | 4.6 | DL | 8.90 | 100 | 61 | 54 | 53 | 29 |
Na | 35.7 | 640 | 3050 | 12 | 40 | 115 | 40 | 349 | 6540 | 5490 | 6440 | 7995 | 6510 |
Mg | DL | 162 | 767 | 2,3 | 24,6 | 54 | 31,55 | 408 | 4520 | 2019 | 1516 | 2590 | 1916 |
Al | DL | 68 | 6.8 | 0.44 | 3.5 | 18 | 5.1 | 17.4 | 60 | 51 | 110 | 179 | 325 |
Si,% | 0.16 | 0.069 | 0.05 | 0.08 | 0.05 | 0.03 | 0.04 | 0.14 | 0.85 | 1.83 | 1.73 | 1.88 | 1.92 |
P | 230 | 179 | 93 | 155 | 65.5 | 73 | 430 | 189 | 2390 | 3040 | 3050 | 3610 | 2150 |
K | 11.5 | 89 | 307 | 3 | 6.1 | 24 | 12 | 43 | 560 | 411 | 446 | 440 | 316 |
Ca | 130 | 73 | 100 | DL | 145 | DL | 240 | 60 | 320 | 1025 | 1360 | 1815 | 168 |
Sr | DL | 0.8 | 1.8 | DL | 0.10 | 0.26 | DL | 0.66 | 11 | 49 | 48 | 59 | 5.9 |
Cr | DL | 1.8 | DL | DL | DL | DL | DL | 11.6 | 15 | 8.0 | 6.9 | 6.5 | 49 |
Ti | 9.0 | 12.8 | 6.6 | 7.5 | 11.4 | 8.4 | DL | DL | 4.8 | 0.9 | 1.2 | 1.8 | 9.3 |
IOH-1 | IOH-2 | IOH-3 | IOH-4 | IOH-5 | IOH-1 | IOH-2 | IOH-3 | IOH-4 | IOH-5 | ||
---|---|---|---|---|---|---|---|---|---|---|---|
La | 0.39 | 0.34 | 0.52 | 0.56 | 0.56 | Tb | 0.01 | 0.005 | 0.013 | 0.01 | 0.03 |
Ce | 0.41 | 0.29 | 0.30 | 0.48 | 0.55 | Dy | 0.08 | 0.04 | 0.11 | 0.15 | 0.18 |
Pr | 0.10 | 0.07 | 0.09 | 0.12 | 0.17 | Ho | 0.02 | 0.009 | 0.02 | 0.02 | 0.04 |
Nd | 0.55 | 0.31 | 0.46 | 0.56 | 0.80 | Er | 0.04 | 0.02 | 0.09 | 0.10 | 0.17 |
Sm | 0.04 | 0.02 | 0.04 | 0.04 | 0.12 | Tm | 0.005 | 0.001 | 0.007 | 0.004 | 0.01 |
Eu | 0.64 | 0.25 | 0.25 | 0.25 | 0.29 | Yb | 0.02 | 0.013 | 0.07 | 0.11 | 0.12 |
Gd | 0.07 | 0.04 | 0.11 | 0.09 | 0.12 | Lu | 0.004 | 0.003 | 0.006 | 0.014 | 0.013 |
IOH-1 | Cean | Euan | LREENASC/HREENASC | LaNASC/YbNASC | IOH-4 | Cean | Euan | LREENASC/HREENASC | LaNASC/YbNASC |
av | 0.4 | 75 | 0.7 | 1.1 | av | 0.3 | 18 | 0.4 | 1.2 |
dv | 0.1 | 104 | 0.5 | 0.9 | dv | 0.1 | 14 | 0.3 | 2.6 |
max | 0.7 | 593 | 2.3 | 2.8 | max | 0.5 | 56 | 1.1 | 10.6 |
min | 0.1 | 15 | 0.2 | 0.1 | min | 0.1 | 6 | 0.2 | 0.1 |
med | 0.4 | 44 | 0.5 | 0.6 | med | 0.3 | 13 | 0.3 | 0.4 |
IOH-2 | Cean | Euan | LREENASC/HREENASC | LaNASC/YbNASC | IOH-5 | Cean | Euan | LREENASC/HREENASC | LaNASC/YbNASC |
av | 0.4 | 45 | 0.8 | 2.9 | av | 0.4 | 19 | 0.3 | 0.3 |
dv | 0.1 | 46 | 0.6 | 3.6 | dv | 0.1 | 28 | 0.2 | 0.2 |
max | 0.6 | 230 | 3.7 | 15.1 | max | 0.7 | 102 | 0.6 | 0.7 |
min | 0.1 | 9 | 0.2 | 0.2 | min | 0.1 | 6 | 0.2 | 0.1 |
med | 0.4 | 29 | 0.6 | 1.4 | med | 0.4 | 9 | 0.3 | 0.2 |
IOH-3 | Cean | Euan | LREENASC/HREENASC | LaNASC/YbNASC | Ce anomaly: Cean = Ce/CeNASC/(0.5 × La/LaNASC + 0.5 × Nd/NdNASC Eu anomaly: Euan = Eu/EuNASC/(0.5 × Sm/SmNASC + 0.5 × Cd/CdNASC) | ||||
av. | 0.3 | 30 | 0.6 | 1.0 | |||||
dv. | 0.2 | 40 | 0.6 | 1.6 | |||||
max. | 1.1 | 208 | 3.8 | 6.8 | |||||
min. | 0.1 | 3 | 0.1 | 0.1 | |||||
med. | 0.3 | 16 | 0.3 | 0.4 |
As | Ge | Pb | V | Si | Sr | La | Ca | W | Sb | Lu | Ni | U | Ag | Zn | Mg | Sb | ||
P | 0.87 | 0.68 | 0.58 | 0.57 | 0.56 | 0.55 | 0.53 | 0.49 | 0.42 | 0.41 | 0.40 | Cd | 0.57 | 0.43 | 0.43 | 0.43 | 0.40 | 0.39 |
Lu | W | Al | La | Ga | P | Eu | Ce | As | Pb | In | Zn | Mo | Sb | Ni | Mg | Tl | ||
V | 0.72 | 0.69 | 0.69 | 0.68 | 0.63 | 0.57 | 0.56 | 0.53 | 0.49 | 0.48 | 0.46 | U | 0.64 | 0.62 | 0.61 | 0.59 | 0.55 | 0.29 |
Ce | Lu | Pb | V | Eu | P | As | Ge | Sr | Al | Ca | Ca | Sr | Si | Se | Sn | Bi | ||
La | 0.86 | 0.82 | 0.73 | 0.68 | 0.54 | 0.53 | 0.53 | 0.50 | 0.49 | 0.42 | 0.42 | Cu | 0.66 | 0.63 | 0.61 | 0.46 | 0.33 | 0.29 |
W | Ce | Sb | Lu | Zn | Ga | Pb | V | La | Al | Ni | Sn | Al | Ga | V | Bi | Si | ||
Eu | 0.72 | 0.64 | 0.63 | 0.60 | 0.59 | 0.57 | 0.56 | 0.56 | 0.54 | 0.52 | 0.44 | In | 0.80 | 0.55 | 0.49 | 0.46 | 0.37 | 0.37 |
La | Ce | V | Pb | Eu | Al | Co | W | P | Ga | Sr | Si | Cu | Sr | Ca | Ge | Te | ||
Lu | 0.82 | 0.77 | 0.72 | 0.64 | 0.60 | 0.56 | 0.43 | 0.43 | 0.40 | 0.40 | 0,37 | Se | 0.62 | 0.46 | 0.41 | 0.36 | 0.31 | 0.28 |
Zn | Ni | Eu | Mg | W | U | Mo | P | Tl | Cd | Ge | U | Sb | Zn | Ni | Mg | Cd | ||
Sb | 0.72 | 0.64 | 0.63 | 0.62 | 0.61 | 0.61 | 0.53 | 0.41 | 0.40 | 0.39 | 0.38 | Mo | 0.62 | 0.53 | 0.50 | 0.35 | 0.34 | 0.27 |
Ca | Si | Cu | P | Pb | Ge | La | As | Mn | Se | V | Mn | Lu | La | V | Au | Ge | ||
Sr | 0.94 | 0.81 | 0.63 | 0.55 | 0.52 | 0.52 | 0.49 | 0.47 | 0.47 | 0.41 | 0.39 | Co | 0.50 | 0.43 | 0.41 | 0.39 | 0.39 | 0.38 |
La | Ge | Lu | As | Ce | P | Eu | Sr | V | Ca | Si | Ge | P | As | Mn | ||||
Pb | 0.73 | 0.71 | 0.64 | 0.62 | 0.58 | 0.58 | 0.56 | 0.52 | 0.48 | 0.39 | 0.35 | Ba | 0.42 | 0.38 | 0.36 | 0.33 | ||
Ga | Eu | V | Al | Sb | Zn | Lu | P | Ce | Mg | Tl | Te | Au | Sn | In | Ga | |||
W | 0.73 | 0.72 | 0.69 | 0.62 | 0.61 | 0.59 | 0.43 | 0.42 | 0.40 | 0.32 | 0.30 | Bi | 0.62 | 0.43 | 0.37 | 0.37 | 0.33 | |
Ga | Cr | V | W | Ce | Lu | In | Eu | La | Sn | Co | Sr | Ca | Ge | Ba | P | |||
Al | 0.69 | 0.70 | 0.69 | 0.62 | 0.58 | 0.56 | 0.55 | 0.52 | 0.42 | 0.31 | Mn | 0.50 | 0.47 | 0.37 | 0.35 | 0.33 | 0.32 | |
P | Ge | Pb | La | Si | V | Sr | Ca | Ba | Lu | Co | Cd | Tl | Na | Ni | Zn | U | ||
As | 0.87 | 0.74 | 0.62 | 0.53 | 0.51 | 0.49 | 0.47 | 0.38 | 0.36 | 0.34 | 0.32 | Ag | 0.43 | 0.37 | 0.35 | 0.30 | 0.27 | 0.25 |
Sr | Ca | Se | Cu | P | Ge | As | In | Pb | La | Sn | Mg | Ag | Ni | Sb | Co | Ti | ||
Si | 0.81 | 0.76 | 0.62 | 0.61 | 0.56 | 0.53 | 0.51 | 0.37 | 0.35 | 0.34 | 0.31 | Na | 0.43 | 0.35 | 0.3 | 0.21 | 0.2 | 0.2 |
La | Lu | Eu | Pb | Al | V | W | Ti | In | Ga | P | Bi | Pb | ||||||
Ce | 0.86 | 0.77 | 0.64 | 0.58 | 0.58 | 0.53 | 0.40 | 0.40 | 0.38 | 0.35 | 0.34 | Te | 0.62 | 0.31 | ||||
As | Pb | P | Si | Sr | La | Ba | Co | Sb | V | Eu | Bi | |||||||
Ge | 0.74 | 0.71 | 0.68 | 0.53 | 0.52 | 0.50 | 0.42 | 0.38 | 0.38 | 0.37 | 0.34 | Au | 0.43 | |||||
Ni | Zn | Sb | U | Na | Cd | Tl | Eu | Mo | W | In | Bi | Ca | Sr | Si | Al | |||
Mg | 0.81 | 0.64 | 0.62 | 0.55 | 0.43 | 0.40 | 0.37 | 0.35 | 0.34 | 0.32 | Sn | 0.80 | 0.37 | 0.34 | 0.31 | 0.31 | 0.31 | |
Mg | Zn | Sb | U | Cd | Tl | Eu | Mo | Na | K | W | Zn | Ni | Sb | Na | Ag | Cd | ||
Ni | 0.81 | 0.67 | 0.64 | 0.59 | 0.57 | 0.48 | 0.44 | 0.35 | 0.30 | 0.29 | 0.29 | Tl | 0.49 | 0.48 | 0.40 | 0.37 | 0.37 | 0.36 |
Sb | Ni | U | Mg | W | Eu | Mo | Tl | Cd | Ga | Al | Sn | In | Ce | |||||
Zn | 0.72 | 0.67 | 0.64 | 0.64 | 0.59 | 0.59 | 0.50 | 0.49 | 0.43 | 0.39 | Ti | 0.61 | 0.49 | 0.43 | 0.40 | |||
Sr | Si | Cu | P | La | As | Pb | V | Mn | Se | Ge | Al | W | V | Eu | ||||
Ca | 0.94 | 0.76 | 0.66 | 0.49 | 0.42 | 0.38 | 0.39 | 0.38 | 0.36 | 0.36 | 0.35 | Cr | 0.70 | 0.50 | 0,46 | 0,44 | ||
W | Al | V | Eu | In | Lu | Zn | Sb | Ce | La | Critical coefficient is 0.29. p < 0.001 Number of analyses is 144 (Table S2) | ||||||||
Ga | 0.73 | 0.69 | 0.63 | 0.57 | 0.49 | 0.40 | 0.39 | 0.37 | 0.35 | 0.29 |
Ni | Zn | Eu | Sb | Cd | Mg | U | Ag | Tl | W | Mo | In | |
Factor 1 | 0.790 | 0.722 | 0.678 | 0.653 | 0.615 | 0.610 | 0.555 | 0.488 | 0.486 | 0.432 | 0.355 | −0.324 |
Sn | Fe | Te | Au | Se | Cu | Bi | ||||||
−0.346 | −0.388 | −0.413 | −0.438 | −0.481 | −0.497 | −0.564 | ||||||
Fe | Ti | Gd | Nd | Tb | Zn | Cu | Pr | Mn | Pb | Dy | Tm | |
Factor 2 | 0.363 | −0.328 | −0.330 | −0.331 | −0.335 | −0.348 | −0.363 | −0.374 | −0.374 | −0.398 | −0.420 | −0.422 |
Eu | Yb | Bi | Ge | Ho | As | Er | Co | Ce | Lu | Al | Sb | |
−0.424 | −0.430 | −0.431 | −0.432 | −0.439 | −0.443 | −0.448 | −0.460 | −0.463 | −0.463 | −0.465 | −0.484 | |
W | Ca | La | Si | Sr | Ga | V | P | Sn | In | |||
−0.492 | −0.517 | −0.518 | −0.519 | −0.524 | −0.532 | −0.594 | −0.636 | −0.654 | −0.730 | |||
Ag | Cd | V | La | Ce | Eu | Tm | Tb | Er | Lu | Ho | Dy | |
Factor 3 | 0.576 | 0.453 | −0.371 | −0.453 | −0.470 | −0.473 | −0.478 | −0.498 | −0.501 | −0.505 | −0.507 | −0.508 |
Yb | Pr | Sm | Nd | Gd | Fe | Pb | ||||||
−0.515 | −0.543 | −0.552 | −0.552 | −0.603 | −0.621 | −0.653 | ||||||
Cu | Sr | Ca | Si | Bi | Au | Te | ||||||
Factor 4 | 0.513 | 0.423 | 0.380 | 0.341 | −0.452 | −0.456 | −0.638 | |||||
Te | Se | Co | Au | |||||||||
Factor 5 | 0.368 | 0.317 | −0.659 | −0.554 | ||||||||
Se | Ge | Si | Cu | Sr | As | Ca | P | Al | Ti | Sn | ||
Factor 6 | 0.573 | 0.494 | 0.403 | 0.389 | 0.371 | 0.326 | 0.306 | 0.302 | −0.358 | −0.438 | −0.500 |
SMS Site | Fe,% | Na | Mg | Al | Si | P | K | Ca | Sr | Ti | V | |
Pobeda | av | 56 | 7441 | 2752 | 152 | 13,526 | 2814 | 559 | 949 | 36 | 5.0 | 155 |
sd | 2.6 | 4541 | 2204 | 262 | 5552 | 1054 | 475 | 798 | 31 | 12 | 143 | |
Cr | Mn | Co | Ni | Cu | Zn | Ga | As | Se | Mo | Ag | ||
n = 140 | av | 19 | 353 | 7.4 | 19 | 24,495 | 2076 | 1.8 | 396 | 146 | 688 | 1.1 |
sd | 70 | 597 | 14 | 27 | 13,772 | 1113 | 2,2 | 241 | 115 | 336 | 2.2 | |
Cd | In | Sn | Sb | Ba | La | Au | Tl | Pb | U | |||
av | 0.2 | 0.10 | 13 | 14 | 5.8 | 0.5 | 2.1 | 0.6 | 135 | 64 | ||
sd | 0.3 | 0,11 | 24 | 5.9 | 6.7 | 0.5 | 3.4 | 0.6 | 89 | 32 | ||
Rainbow | Fe,% | Na | Mg | Al | Si | P | K | Ca | Sr | Ti | V | |
av | 60 | 11,888 | 972 | 290 | 17,527 | 2553 | 625 | 1695 | 41 | 3.0 | 295 | |
sd | 2.4 | 3991 | 411 | 916 | 5746 | 923 | 476 | 5052 | 55 | 3.3 | 146 | |
Cr | Mn | Co | Ni | Cu | Zn | Ga | As | Se | Mo | Ag | ||
n = 56 | av | 19 | 1083 | 1739 | 6 | 259 | 15,453 | 0.4 | 172 | 14 | 23 | 1.1 |
sd | 15 | 558 | 1074 | 3 | 765 | 11,505 | 0.2 | 78 | 93 | 24 | 2.7 | |
Cd | In | Sn | Sb | Ba | La | Au | Tl | Pb | U | |||
av | 4.7 | 0.02 | 0.7 | 2.8 | 20 | 3.5 | DL | 3.7 | 502 | 5.9 | ||
sd | 4.3 | 0.02 | 1.0 | 1.0 | 19 | 2.3 | 5.0 | 556 | 2.6 |
GSC | Fe,% | Na | Mg | Al | Si | P | K | Ca | Sr | Ti | V | |
n = 66 | av | 62 | 2774 | 840 | 449 | 10,442 | 3925 | 255 | 849 | 20 | 5.8 | 311 |
sd | 0.3 | 981 | 160 | 805 | 1304 | 1787 | 174 | 234 | 6.4 | 10 | 499 | |
Cr | Mn | Co | Ni | Cu | Zn | Ga | As | Se | Mo | Ag | ||
av | 12 | 154 | 5.8 | 1.0 | 12,811 | 1775 | 16 | 123 | 2,5 | 285 | 0.1 | |
sd | 10 | 425 | 13 | 1.4 | 4313 | 1219 | 26 | 167 | 1.0 | 404 | 0.1 | |
Cd | In | Sn | Sb | Ba | La | Au | Tl | Pb | U | |||
av | 0.2 | 14 | 0.4 | 52 | 3.7 | 0.1 | DL | 0.3 | 424 | 44 | ||
sd | 0.2 | 6.9 | 0.3 | 21 | 5.8 | 0.2 | 0.2 | 326 | 33 | |||
EPR 9°50′ N | Ti | V | Cr | Mn | Fe,% | Co | Ni | Cu | Zn | As | Se | |
n = 8 | av | 19 | 5.2 | 3.0 | 13 | 62 | 2127 | 1 | 3798 | 1037 | 29 | 697 |
sd | 28 | 4.2 | 2.3 | 3.8 | 8197 | 1727 | 1 | 3592 | 866 | 39 | 1190 | |
Mo | Ag | Cd | Sn | Sb | Te | Ba | La | Tl | Pb | U | ||
av | 449 | 1.9 | 2.7 | 7.0 | 0.7 | 0.3 | 1.3 | 0.5 | 0.4 | 33 | 2.3 | |
sd | 392 | 1.5 | 2.3 | 5.0 | 1.0 | 0.5 | 1.0 | 0.5 | 0.5 | 39 | 4.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maslennikov, V.V.; Cherkashov, G.A.; Firstova, A.V.; Ayupova, N.R.; Beltenev, V.E.; Melekestseva, I.Y.; Artemyev, D.A.; Tseluyko, A.S.; Blinov, I.A. Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data. Minerals 2023, 13, 4. https://doi.org/10.3390/min13010004
Maslennikov VV, Cherkashov GA, Firstova AV, Ayupova NR, Beltenev VE, Melekestseva IY, Artemyev DA, Tseluyko AS, Blinov IA. Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data. Minerals. 2023; 13(1):4. https://doi.org/10.3390/min13010004
Chicago/Turabian StyleMaslennikov, Valeriy V., Georgy A. Cherkashov, Anna V. Firstova, Nuriya R. Ayupova, Victor E. Beltenev, Irina Yu. Melekestseva, Dmitry A. Artemyev, Aleksandr S. Tseluyko, and Ivan A. Blinov. 2023. "Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data" Minerals 13, no. 1: 4. https://doi.org/10.3390/min13010004
APA StyleMaslennikov, V. V., Cherkashov, G. A., Firstova, A. V., Ayupova, N. R., Beltenev, V. E., Melekestseva, I. Y., Artemyev, D. A., Tseluyko, A. S., & Blinov, I. A. (2023). Trace Element Assemblages of Pseudomorphic Iron Oxyhydroxides of the Pobeda-1 Hydrothermal Field, 17°08.7′ N, Mid-Atlantic Ridge: The Development of a Halmyrolysis Model from LA-ICP-MS Data. Minerals, 13(1), 4. https://doi.org/10.3390/min13010004