Bioleaching of a Chalcocite-Dominant Copper Ore from Salta, Argentina, by Mesophilic and Thermophilic Microorganisms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Mineral Description
2.2. Microorganisms and Culture Conditions
2.3. DNA Extraction and Amplicon Sequencing
2.4. Bioleaching Assays
3. Results and Discussion
3.1. Native Microorganisms
3.2. Bioleaching at 30 °C
3.3. Bioleaching at 45 and 65 °C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, S.; Liao, R.; Yang, B.; Fang, C.; Wang, Z.; Liu, Y.; Wu, B.; Wang, J.; Qiu, G. Chalcocite (bio)hydrometallurgy—Current state, mechanism, and future directions: A review. Chin. J. Chem. Eng. 2022, 41, 109–120. [Google Scholar] [CrossRef]
- Brar, K.K.; Magdouli, S.; Etteieb, S.; Zolfaghari, M.; Fathollahzadeh, H.; Calugaru, L.; Komtchou, S.-P.; Tanabene, R.; Brar, S.K. Integrated bioleaching-electrometallurgy for copper recovery—A critical review. J. Clean. Prod. 2021, 291, 125257. [Google Scholar] [CrossRef]
- Wu, B.; Yang, X.; Wen, J.; Wang, D. Semiconductor-Microbial Mechanism of Selective Dissolution of Chalcocite in Bioleaching. ACS Omega 2019, 4, 18279–18288. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, L.; Wu, J.; Xiao, Y.; Tao, J.; Liu, X. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments. Bioresour. Technol. 2020, 308, 123273. [Google Scholar] [CrossRef] [PubMed]
- Valenta, R.K.; Kemp, D.; Owen, J.R.; Corder, G.D.; Lèbre, É. Re-thinking complex orebodies: Consequences for the future world supply of copper. J. Clean. Prod. 2019, 220, 816–826. [Google Scholar] [CrossRef]
- Faramarzi, M.A.; Mogharabi-Manzari, M.; Brandl, H. Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 2020, 191, 105228. [Google Scholar] [CrossRef]
- Kaksonen, A.H.; Boxall, N.J.; Gumulya, Y.; Khaleque, H.N.; Morris, C.; Bohu, T.; Cheng, K.Y.; Usher, K.M.; Lakaniemi, A.-M. Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy 2018, 180, 7–25. [Google Scholar] [CrossRef]
- Nkuna, R.; Ijoma, G.N.; Matambo, T.S.; Chimwani, N. Accessing Metals from Low-Grade Ores and the Environmental Impact Considerations: A Review of the Perspectives of Conventional versus Bioleaching Strategies. Minerals 2022, 12, 506. [Google Scholar] [CrossRef]
- Mishra, S.; Panda, S.; Akcil, A.; Dembele, S. Biotechnological Avenues in Mineral Processing: Fundamentals, Applications and Advances in Bioleaching and Bio-beneficiation. Min. Proc. Ext. Met. Rev. 2022, 44, 22–51. [Google Scholar] [CrossRef]
- Lee, J.; Acar, S.; Doerr, D.L.; Brierley, J.A. Comparative bioleaching and mineralogy of composited sulfide ores containing enargite, covellite and chalcocite by mesophilic and thermophilic microorganisms. Hydrometallurgy 2011, 105, 213–221. [Google Scholar] [CrossRef]
- Niu, X.; Ruan, R.; Tan, Q.; Jia, Y.; Sun, H. Study on the second stage of chalcocite leaching in column with redox potential control and its implications. Hydrometallurgy 2015, 155, 141–152. [Google Scholar] [CrossRef]
- Watling, H.R. The bioleaching of sulphide minerals with emphasis on copper sulphides—A review. Hydrometallurgy 2006, 84, 81–108. [Google Scholar] [CrossRef]
- Zou, G.; Papirio, S.; Lai, X.; Wu, Z.; Zou, L.; Puhakka, J.A.; Ruan, R. Column leaching of low-grade sulfide ore from Zijinshan copper mine. Int. J. Miner. Process. 2015, 139, 11–16. [Google Scholar] [CrossRef]
- Vera, M.; Schippers, A.; Hedrich, S.; Sand, W. Progress in bioleaching: Fundamentals and mechanisms of microbial metal sulfide oxidation-part A. Appl. Microbiol. Biotechnol. 2022, 106, 6933–6952. [Google Scholar] [CrossRef]
- Roberto, F.F.; Schippers, A. Progress in bioleaching: Part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2022, 106, 5913–5928. [Google Scholar] [CrossRef]
- Yin, S.; Wang, L.; Kabwe, E.; Chen, X.; Yan, R.; An, K.; Zhang, L.; Wu, A. Copper Bioleaching in China: Review and Prospect. Minerals 2018, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Amar, A.; Castro, C.; Bernardelli, C.; Costa, C.S.; Donati, E. Influence of UVA radiation on growth, biofilm formation and bioleaching capacity of Leptospirillum ferrooxidans. Hydrometallurgy 2021, 201, 105574. [Google Scholar] [CrossRef]
- Castro, C.; Donati, E. Effects of different energy sources on cell adhesion and bioleaching of a chalcopyrite concentrate by extremophilic archaeon Acidianus copahuensis. Hydrometallurgy 2016, 162, 49–56. [Google Scholar] [CrossRef]
- Safar, C.; Castro, C.; Donati, E. Importance of Initial Interfacial Steps during Chalcopyrite Bioleaching by a Thermoacidophilic Archaeon. Microorganisms 2020, 8, 1009. [Google Scholar] [CrossRef]
- Marchevsky, N.; Barroso Quiroga, M.M.; Giaveno, A.; Donati, E. Microbial oxidation of refractory gold sulfide concentrate by a native consortium. T. Nonferr. Metal. Soc. 2017, 27, 1143–1149. [Google Scholar] [CrossRef]
- Lavalle, L.; Giaveno, A.; Pogliani, C.; Donati, E. Bioleaching of a polymetallic sulphide mineral by native strains of Leptospirillum ferrooxidans from Patagonia Argentina. Process Biochem. 2008, 43, 445–450. [Google Scholar] [CrossRef]
- Mackintosh, M.E. Nitrogen Fixation by Thiobacillus ferrooxidans. J. Gen. Microbiol. 1978, 105, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Massello, F.L.; Donati, E. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. Environ. Pollut. 2021, 268, 115709. [Google Scholar] [CrossRef] [PubMed]
- Massello, F.L. Procesos de Remediación y Recuperación de Metales Pesados Utilizando Comunidades Microbianas Extremófilas; Universidad Nacional de La Plata: La Plata, Argentina, 2022. [Google Scholar] [CrossRef]
- Golyshina, O.V.; Pivovarova, T.A.; Karavaiko, G.I.; Kondrateva, T.F.; Moore, E.R.; Abraham, W.R.; Lunsdorf, H.; Timmis, K.N.; Yakimov, M.M.; Golyshin, P.N. Ferroplasma acidiphilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea. Int. J. Syst. Evol. Microbiol. 2000, 50 Pt 3, 997–1006. [Google Scholar] [CrossRef] [Green Version]
- Golyshina, O.V.; Timmis, K.N. Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ. Microbiol. 2005, 7, 1277–1288. [Google Scholar] [CrossRef]
- Dopson, M.; Baker-Austin, C.; Hind, A.; Bowman, J.P.; Bond, P.L. Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl. Environ. Microbiol. 2004, 70, 2079–2088. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, R.; Hu, P.; Zeng, W.; Xie, Y.; Wu, C.; Qiu, G. Isolation and characterization of Ferroplasma thermophilum sp. nov., a novel extremely acidophilic, moderately thermophilic archaeon and its role in bioleaching of chalcopyrite. J. Appl. Microbiol. 2008, 105, 591–601. [Google Scholar] [CrossRef]
- Quatrini, R.; Jedlicki, E.; Holmes, D.S. Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. J. Ind. Microbiol. Biotechnol. 2005, 32, 606–614. [Google Scholar] [CrossRef]
- Zhang, S.; Yan, L.; Xing, W.; Chen, P.; Zhang, Y.; Wang, W. Acidithiobacillus ferrooxidans and its potential application. Extremophiles 2018, 22, 563–579. [Google Scholar] [CrossRef]
- Dong, Y.; Lin, H.; Xu, X.; Zhou, S. Bioleaching of different copper sulfides by Acidithiobacillus ferrooxidans and its adsorption on minerals. Hydrometallurgy 2013, 140, 42–47. [Google Scholar] [CrossRef]
- Giaveno, M.A.; Urbieta, M.S.; Ulloa, J.R.; Toril, E.G.; Donati, E.R. Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microb. Ecol. 2013, 65, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Urbieta, M.S.; Rascovan, N.; Vazquez, M.P.; Donati, E. Genome analysis of the thermoacidophilic archaeon Acidianus copahuensis focusing on the metabolisms associated to biomining activities. BMC Genomics 2017, 18, 445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreou, L.V. Preparation of genomic DNA from bacteria. Methods Enzymol. 2013, 529, 143–151. [Google Scholar] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2022; Available online: https://www.Rproject.org/ (accessed on 15 November 2021).
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, E.W.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; Volume 10. [Google Scholar]
- Schippers, A.; Hedrich, S.; Vasters, J.; Drobe, M.; Sand, W.; Willscher, S. Biomining: Metal recovery from ores with microorganisms. Adv. Biochem. Eng. Biotechnol. 2014, 141, 1–4. [Google Scholar]
- Johnson, D.B. Development and application of biotechnologies in the metal mining industry. Environ. Sci. Pollut. Res. Int. 2013, 20, 7768–7776. [Google Scholar] [CrossRef]
- Donati, E.R.; Sand, W. Microbial Processing of Metal Sulfides, 1st ed.; Springer: Berlin, Germany, 2007. [Google Scholar]
- Wakeman, K.; Auvinen, H.; Johnson, D.B. Microbiological and geochemical dynamics in simulated heap leaching of a polymetallic sulfide ore. Biotechnol. Bioeng. 2008, 101, 739–750. [Google Scholar] [CrossRef]
- Dopson, M.; Holmes, D.S. Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl. Microbiol. Biotechnol. 2014, 98, 8133–8144. [Google Scholar] [CrossRef]
- Dopson, M.; Baker-Austin, C.; Koppineedi, P.R.; Bond, P.L. Growth in sulfidic mineral environments: Metal resistance mechanisms in acidophilic micro-organisms. Microbiology 2003, 149, 1959–1970. [Google Scholar] [CrossRef] [Green Version]
- Furqan, M.A.; Farooq, U.; Liaquat, R.; Alghamdi, H.A.; Ahmad, B.; Qureshi, Z.; Jamal, A.; Tauseef, I.; Haleem, S.K.; Ullah, I.; et al. Catalytic Efficiency of Acidithiobacillus ferrooxidans for Bioleaching Copper from Chalcocite Containing Sulfide Ore from Reko Diq Deposits. Pol. J. Environ. Stud. 2020, 29, 1593–1600. [Google Scholar] [CrossRef]
- Quatrini, R.; Johnson, D.B. Acidithiobacillus ferrooxidans. Trends. Microbiol. 2019, 27, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Nunez, H.; Moya-Beltran, A.; Covarrubias, P.C.; Issotta, F.; Cardenas, J.P.; Gonzalez, M.; Atavales, J.; Acuna, L.G.; Johnson, D.B.; Quatrini, R. Molecular Systematics of the Genus Acidithiobacillus: Insights into the Phylogenetic Structure and Diversification of the Taxon. Front. Microbiol. 2017, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Sand, W.; Gehrke, T.; Jozsa, P.-G.; Schippers, A. (Bio)chemistry of bacterial leaching—Direct vs. indirect bioleaching. Hydrometallurgy 2001, 59, 159–175. [Google Scholar] [CrossRef]
- Schippers, A.; Sand, W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur. Appl. Environ. Microbiol. 1999, 65, 319–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.; Chen, L.; Wang, J.; Miao, J.; Shen, L.; Yu, R.; Gu, G.; Qiu, G.; Zeng, W. Passivation of Chalcopyrite during Bioleaching by Acidithiobacillus ferrivorans at Low Temperature. Dissolution Miner. 2019, 9, 332. [Google Scholar] [CrossRef] [Green Version]
- Donati, E.R.; Castro, C.; Urbieta, M.S. Thermophilic microorganisms in biomining. World J. Microbiol. Biotechnol. 2016, 32, 179. [Google Scholar] [CrossRef] [PubMed]
- Olson, G.J.; Brierley, J.A.; Brierley, C.L. Bioleaching review part B: Progress in bioleaching: Applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2003, 63, 249–257. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhou, H. Disentangling effects of temperature on microbial community and copper extraction in column bioleaching of low grade copper sulfide. Bioresour. Technol. 2018, 268, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Halinen, A.-K.; Rahunen, N.; Kaksonen, A.H.; Puhakka, J.A. Heap bioleaching of a complex sulfide ore: Part II. Effect of temperature on base metal extraction and bacterial compositions. Hydrometallurgy 2009, 98, 101–107. [Google Scholar] [CrossRef]
- Watling, H.R.; Johnson, J.J.; Shiers, D.W.; Gibson, J.A.E.; Nichols, P.D.; Franzmann, P.D.; Plumb, J.J. Effect of temperature and inoculation strategy on Cu recovery and microbial activity in column bioleaching. Hydrometallurgy 2016, 164, 189–201. [Google Scholar] [CrossRef]
- Franzmann, P.D.; Haddad, C.M.; Hawkes, R.B.; Robertson, W.J.; Plumb, J.J. Effects of temperature on the rates of iron and sulfur oxidation by selected bioleaching Bacteria and Archaea: Application of the Ratkowsky equation. Miner. Eng. 2005, 18, 1304–1314. [Google Scholar] [CrossRef]
- Norris, P.R. Thermophiles and Bioleaching. In Biomining: Theory, Microbes and Industrial Processes; Rawlings, D.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 247–258. [Google Scholar]
- Castro, C.; Donati, E.R. Improving zinc recovery by thermoacidophilic archaeon Acidianus copahuensis using tetrathionate. T. Nonferr. Metal. Soc. 2016, 26, 3004–3014. [Google Scholar] [CrossRef]
- Phyo, H.A.; Jia, Y.; Tan, Q.; Zhao, S.; Liang, X.; Ruan, R.; Niu, X. Effect of particle size on chalcocite dissolution kinetics in column leaching under controlled Eh and its implications. Physicochem. Probl. Miner. Process. 2020, 56, 676–692. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amar, A.; Massello, F.L.; Costa, C.S.; Castro, C.; Donati, E.R. Bioleaching of a Chalcocite-Dominant Copper Ore from Salta, Argentina, by Mesophilic and Thermophilic Microorganisms. Minerals 2023, 13, 52. https://doi.org/10.3390/min13010052
Amar A, Massello FL, Costa CS, Castro C, Donati ER. Bioleaching of a Chalcocite-Dominant Copper Ore from Salta, Argentina, by Mesophilic and Thermophilic Microorganisms. Minerals. 2023; 13(1):52. https://doi.org/10.3390/min13010052
Chicago/Turabian StyleAmar, Agustina, Francisco L. Massello, Cristina S. Costa, Camila Castro, and Edgardo R. Donati. 2023. "Bioleaching of a Chalcocite-Dominant Copper Ore from Salta, Argentina, by Mesophilic and Thermophilic Microorganisms" Minerals 13, no. 1: 52. https://doi.org/10.3390/min13010052
APA StyleAmar, A., Massello, F. L., Costa, C. S., Castro, C., & Donati, E. R. (2023). Bioleaching of a Chalcocite-Dominant Copper Ore from Salta, Argentina, by Mesophilic and Thermophilic Microorganisms. Minerals, 13(1), 52. https://doi.org/10.3390/min13010052