Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone
Abstract
:1. Introduction
2. Background and Field Observations
2.1. Walash Group
2.2. Bulfat Group
2.3. Metamorphic Rocks
3. Petrography
3.1. Bulfat Group
3.2. Walash group
4. Analytical Methods
5. Results
5.1. Zircon U–Pb Age
5.2. Whole Rock Chemistry
5.2.1. Ultramafic Rocks
5.2.2. Mafic Rocks (Gabbro, Basalt, and Andesite)
5.2.3. Felsic Rocks
5.3. Sr–Nd Isotope Ratios
6. Discussions
6.1. Petrogenesis and Magma Sources
6.2. Geodynamic Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammad, Y.O.; Cornell, D.H.; Qaradaghi, J.H.; Mohammad, F.O. Geochemistry and Ar–Ar Muscovite Ages of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: Implications for Arabia–Eurasia Continental Collision. J. Asian Earth Sci. 2014, 86, 151–165. [Google Scholar] [CrossRef]
- Aziz, N.R.H.; Aswad, K.J.A.; Koyi, H.A. Contrasting Settings of Serpentinite Bodies in the Northwestern Zagros Suture Zone, Kurdistan Region, Iraq. Geol. Mag. 2011, 148, 819–837. [Google Scholar] [CrossRef]
- Mohammad, Y.O. Cumulate and Tectonite Dunite from Mawat Ophiolite, Kurdistan Region, Northeastern Iraq: Field Evidence and Mineral Chemical Constraints. Iraqi Bull. Geol. Min. 2020, 16, 15–33. [Google Scholar]
- Mohammad, Y.O.; Cornell, D.H. U–Pb Zircon Geochronology of the Daraban Leucogranite, Mawat Ophiolite, Northeastern Iraq: A Record of the Subduction to Collision History for the Arabia–Eurasia Plates. Isl. Arc 2017, 26, e12188. [Google Scholar] [CrossRef]
- Mohammad, Y.O.; Maekawa, H. Origin of Titanite in Metarodingite from the Zagros Thrust Zone, Iraq. Am. Mineral. 2008, 93, 1133–1141. [Google Scholar] [CrossRef]
- Ali, S.A. Petrogenesis of Metabasalt Rocks in the Bulfat Complex, Kurdistan Region, Iraqi Zagros Suture Zone. Kirkuk Univ. J. Sci. Stud. 2015, 10, 242–252. [Google Scholar] [CrossRef]
- Ali, S.A. 39 Ma U-Pb Zircon Age for the Shaki-Rash Gabbro in the Bulfat Igneous Complex, Kurdistan Region, Iraqi Zagros Suture Zone: Rifting of an Intra-Neotethys Cenozoic Arc. Ofioliti 2017, 42, 69–80. [Google Scholar]
- Aswad, K.J.; Ali, S.A.; Sheraefy, R.M.A.; Nutman, A.P.; Buckman, S.; Jones, B.G.; Jourdan, F. 40Ar/39Ar Hornblende and Biotite Geochronology of the Bulfat Igneous Complex, Zagros Suture Zone, NE Iraq: New Insights on Complexities of Paleogene Arc Magmatism during Closure of the Neotethys Ocean. Lithos 2016, 266, 406–413. [Google Scholar] [CrossRef]
- Aswad, K.J.; Sheraefy, R.M.A.; Ali, S.A. Pre-Collisional Intrusive Magmatism in the Bulfat Complex, Wadi Rashid, Qala Deza, NE Iraq: Geochemical and Mineralogical Constraints and Implications for Tectonic Evolution of Granitoid-Gabbro Suites. Iraqi Natl. J. Earth Sci. 2013, 13, 103–137. [Google Scholar]
- Buda, G. Igneous Petrology of the Bulfat Area (North-East Iraqi Zagros Thrust Zone). Acta Mineral. Petrogr. 1993, 34, 21–39. [Google Scholar]
- Buday, T.; Jassim, S. The Regional Geology of Iraq, Vol. 2: Tectonism, Magmatism and Metamorphism; GEOSURV: Baghdad, Iraq, 1987; 352p. [Google Scholar]
- Jassim, S.Z.; Goff, J.C. Geology of Iraq; DOLIN, sro: Prague, Czech Republic, 2006. [Google Scholar]
- Ali, S.A.; Buckman, S.; Aswad, K.; Jones, B.; Ismail, S.; Nutman, A. Recognition of Late Cretaceous Hasanbag Ophiolite-Arc Rocks in the Kurdistan Region of the Iraqi Zagros Suture Zone: A Missing Link in the Paleogeography of the Closing Neotethys Ocean. Lithosphere 2012, 4, 395–410. [Google Scholar] [CrossRef]
- Mohammad, Y.; Kareem, H.; Anma, R. The Kuradawe Granitic Pegmatite from the Mawat Ophiolite, Northeastern Iraq: Anatomy, Mineralogy, Geochemistry, and Petrogenesis. Can. Mineral. 2016, 54, 989–1019. [Google Scholar] [CrossRef]
- Azizi, H.; Hadi, A.; Asahara, Y.; Mohammad, Y. Geochemistry and Geodynamics of the Mawat Mafic Complex in the Zagros Suture Zone, Northeast Iraq. Open Geosci. 2013, 5, 523–537. [Google Scholar] [CrossRef]
- Al-Hamed, S.; Aswad, K.; Aziz, N. Geochemistry and Petrogenesis of Dioritic-Gabbroic Pegmatites in the Bulfat Complex, Qala Diza, Northeastern Iraq. Iraqi Natl. J. Earth Sci. 2020, 20, 64–90. [Google Scholar] [CrossRef]
- Buday, T. The Regional Geology of Iraq, Vol 1: Stratigraphy and Paleogeography; Publications of Geological Survey of Iraq: Baghdad, Iraq, 1980; 445p. [Google Scholar]
- Karo, N.M.; Oberhänsli, R.; Aqrawi, A.M.; Elias, E.M.; Aswad, K.J.; Sudo, M. New 40Ar/39Ar Age Constraints on Cooling and Unroofing History of the Metamorphic Host Rocks (and Igneous Intrusion Associates) from the Bulfat Complex (Bulfat Area), NE-Iraq. Arab. J. Geosci. 2018, 11, 234. [Google Scholar] [CrossRef]
- Nutman, A.; Ali, S.; Mohammad, Y.; Jones, B.G.; Zhang, Q. The Early Eocene (48 Ma) Qaladeza Trondhjemite Formed by Wet Partial Remelting of Mafic Crust in the Arc-Related Bulfat Igneous Complex (Kurdistan, Iraq): Constraints on the Timing of Neotethys Closure. Arab. J. Geosci. 2022, 15, 679. [Google Scholar] [CrossRef]
- Zrary, M.M.; Aqrawi, A.M.; Elias, E.M. Petrogenesis and Tectonic Setting of Shakha Rash Granitoid, Bulfat Intrusive Complex, Northeastern Iraq. Arab. J. Geosci. 2022, 15, 1375. [Google Scholar] [CrossRef]
- Elias, E.M.; Al-Jubory, Z.J.; Aqrawi, A.M. Metamorphic Evolution of the Bulfat Belt (NE-Iraq): Evidence from 40Ar/39Ar Age Spectrum Measurements. Iraqi Geol. J. 2022, 55, 1–11. [Google Scholar] [CrossRef]
- Koshnaw, R.I.; Schlunegger, F.; Stockli, D.F. Detrital Zircon Provenance Record of the Zagros Mountain Building from the Neotethys Obduction to the Arabia–Eurasia Collision, NW Zagros Fold–Thrust Belt, Kurdistan Region of Iraq. Solid Earth 2021, 12, 2479–2501. [Google Scholar] [CrossRef]
- Al-Kadhimi, J.M.A.; Sissakian, V.K.; Fattah, A.S.; Deikran, D.B. Tectonic Map of Iraq, Scale 1: 1000 000, 2nd ed.; GEOSURV: Baghdad, Iraq, 1996. [Google Scholar]
- Ali, S.A.; Buckman, S.; Aswad, K.J.; Jones, B.G.; Ismail, S.A.; Nutman, A.P. The Tectonic Evolution of a Neo-Tethyan (Eocene–Oligocene) Island-arc (Walash and Naopurdan Groups) in the Kurdistan Region of the Northeast Iraqi Zagros Suture Zone. Isl. Arc 2013, 22, 104–125. [Google Scholar] [CrossRef]
- Ali, S.A.; Aswad, K.J. SHRIMP U-Pb Dating of Zircon Inheritance in Walash Arc Volcanic Rocks (Paleogene Age), Zagros Suture Zone, NE Iraq: New Insights into Crustal Contributions to Trachytic Andesite Generation. Iraqi NJ Earth Sci. 2013, 13, 45–58. [Google Scholar]
- Azizi, H.; Moinevaziri, H. Review of the Tectonic Setting of Cretaceous to Quaternary Volcanism in Northwestern Iran. J. Geodyn. 2009, 47, 167–179. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for Names of Rock-Forming Minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Tanaka, T.; Togashi, S.; Kamioka, H.; Amakawa, H.; Kagami, H.; Hamamoto, T.; Yuhara, M.; Orihashi, Y.; Yoneda, S.; Shimizu, H. JNdi-1: A Neodymium Isotopic Reference in Consistency with LaJolla Neodymium. Chem. Geol. 2000, 168, 279–281. [Google Scholar] [CrossRef]
- Goolaerts, A.; Mattielli, N.; De Jong, J.; Weis, D.; Scoates, J.S. Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MC-ICP-MS. Chem. Geol. 2004, 206, 1–9. [Google Scholar] [CrossRef]
- Kouchi, Y.; Obara, H.; Fujimoto, T.; Orihashi, Y.; Haruta, Y.; Yamamoto, K. Zircon U–Pb Dating by 213 Nm Nd. YAG Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Optimization of the Analytical Condition to Use NIST SRM 610 for Pb/U Fractionation Correction. Chikyu Kagaku 2015, 49, 19–35. [Google Scholar]
- Orihashi, Y.; Nakai, S.; Hirata, T. U-Pb Age Determination for Seven Standard Zircons Using Inductively Coupled Plasma–Mass Spectrometry Coupled with Frequency Quintupled Nd-YAG (Λ = 213 Nm) Laser Ablation System: Comparison with LA-ICP-MS Zircon Analyses with a NIST Glass Reference Material. Resour. Geol. 2008, 58, 101–123. [Google Scholar] [CrossRef]
- Ludwig, K. User’s Manual for a Geochronological Toolkit for Microsoft Excel; Special Publication Vol 4; Berkeley Geochronology Center: Berkeley, CA, USA, 2003. [Google Scholar]
- Hoskin, P.; Black, L. Metamorphic Zircon Formation by Solid-state Recrystallization of Protolith Igneous Zircon. J. Metamorph. Geol. 2000, 18, 423–439. [Google Scholar] [CrossRef]
- Pei, F.; Xu, W.; Yang, D.; Zhao, Q.; Liu, X.; Hu, Z. Zircon U-Pb Geochronology of Basement Metamorphic Rocks in the Songliao Basin. Chin. Sci. Bull. 2007, 52, 942–948. [Google Scholar] [CrossRef]
- Cox, K.; Bell, J.; Pankhurst, R. The Interpretation of Igneous Rocks; George Allen: London, UK, 1979. [Google Scholar]
- Pearce, J.A. A User’s Guide to Basalt Discrimination Diagrams. In Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 1996; Volume 12, p. 113. [Google Scholar]
- Sun, S.-S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes; Geological Society: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Irvine, T.N.; Baragar, W. A Guide to the Chemical Classification of the Common Volcanic Rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- O’conner, J. A Classification of Quartz-Rich Igneous Rocks Based on Feldspar Ratios. US Geol. Surv. Prof. Pap. 1965, 525B, 82. [Google Scholar]
- MacLean, W.H.; Barrett, T.J. Lithogeochemical techniques using immobile elements. J. Geochem. Explor. 1993, 48, 109–133. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.; Tindle, A.G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef]
- Pearce, J.A. Immobile Element Fingerprinting of Ophiolites. Elements 2014, 10, 101–108. [Google Scholar] [CrossRef]
- Yunliang, W.; Chengjiang, Z.; Shuzhi, X. Th/Hf-Ta/Hf Identification of Tectonic Setting of Basalts. Acta Petrol. Sin. 2001, 17, 413–421. [Google Scholar]
- Cabanis, B.; Lecolle, M. Le Diagramme La/10-Y/15-Nb/8: Un Outil Pour La Discrimination Des Séries Volcaniques et La Mise En Évidence Des Processus de Mélange et/Ou de Contamination Crustale. C. R. Acad. Sci. Sér. 2 Méc. Phys. Chim. Sci. Univers Sci. Terre 1989, 309, 2023–2029. [Google Scholar]
- Shervais, J.W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth Planet. Sci. Lett. 1982, 59, 101–118. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Zou, H.-B.; Yao, C.-Y.; Dong, Y.-G. Origin of Permian Gabbroic Intrusions in the Southern Margin of the Altai Orogenic Belt: A Possible Link to the Permian Tarim Mantle Plume? Lithos 2014, 204, 112–124. [Google Scholar] [CrossRef]
- Aldanmaz, E.; Pearce, J.A.; Thirlwall, M.; Mitchell, J. Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. J. Volcanol. Geotherm. Res. 2000, 102, 67–95. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S. Chemical Geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Azizi, H.; Hadad, S.; Stern, R.J.; Asahara, Y. Age, Geochemistry, and Emplacement of the ~40-Ma Baneh Granite–Appinite Complex in a Transpressional Tectonic Regime, Zagros Suture Zone, Northwest Iran. Int. Geol. Rev. 2019, 61, 195–223. [Google Scholar] [CrossRef]
- Rezaei, F.; Azizi, H.; Asahara, Y. Tectonic Significance of the Late Eocene (Bartonian) Calc-Alkaline Granitoid Body in the Marivan Area, Zagros Suture Zone, Northwest Iran. Int. Geol. Rev. 2022, 64, 1081–1096. [Google Scholar] [CrossRef]
- Azizi, H.; Tsuboi, M. The Van Microplate: A New Microcontinent at the Junction of Iran, Turkey, and Armenia. Front. Earth Sci. 2021, 8, 574385. [Google Scholar] [CrossRef]
- Sepahi, A.A.; Shahbazi, H.; Siebel, W.; Ranin, A. Geochronology of Plutonic Rocks from the Sanandaj-Sirjan Zone, Iran and New Zircon and Titanite U-Th-Pb Ages for Granitoids from the Marivan Pluton. Geochronometria 2014, 41, 207–215. [Google Scholar] [CrossRef]
- Amin-Rasouli, H.; Azizi, H.; Asahara, Y.; Armstrong-Altrin, J.S.; Mahmodyan, S. Whole-Rock Chemistry and Sr Isotope Concentrations in the Upper Cretaceous Shale, Western Iran: Evidence for a Transition from Trench to Fore-Arc Setting. Arab. J. Geosci. 2022, 15, 1513. [Google Scholar] [CrossRef]
- Gholipour, S.; Azizi, H.; Masoudi, F.; Asahara, Y.; Tsuboi, M. Zircon U-Pb Ages, Geochemistry, and Sr-Nd Isotope Ratios for Early Cretaceous Magmatic Rocks, Southern Saqqez, Northwestern Iran. Geochemistry 2021, 81, 125687. [Google Scholar] [CrossRef]
- Mohammad, Y.O.; Ali, S.A.; Aziz, N.R.; Yara, I.O.; Abdulla, K.L. Comment on “Generation and Exhumation of Granitoid Intrusions in the Penjween Ophiolite Complex, NW Zagros of the Kurdistan Region of Iraq: Implications for the Geodynamic Evolution of the Arabia-Eurasia Collision Zone” by Ismail et al., 2020, V. 376–377, 105714. Lithos 2021, 390, 105915. [Google Scholar]
- Mohammad, Y.O.; Karim, K.H. Timing of the Arabia-Eurasia Continental Collision—Evidence from Detrital Zircon U-Pb Geochronology of the Red Bed Series Strata of the Northwest Zagros Hinterland, Kurdistan Region of Iraq: COMMENT. Geology 2019, 47, e471. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Wasserburg, G. Nd Isotopic Variations and Petrogenetic Models. Geophys. Res. Lett. 1976, 3, 249–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammad, Y.; Abdulla, K.; Azizi, H. Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone. Minerals 2023, 13, 1367. https://doi.org/10.3390/min13111367
Mohammad Y, Abdulla K, Azizi H. Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone. Minerals. 2023; 13(11):1367. https://doi.org/10.3390/min13111367
Chicago/Turabian StyleMohammad, Yousif, Kurda Abdulla, and Hossein Azizi. 2023. "Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone" Minerals 13, no. 11: 1367. https://doi.org/10.3390/min13111367
APA StyleMohammad, Y., Abdulla, K., & Azizi, H. (2023). Late Cretaceous-Paleocene Arc and Back-Arc System in the Neotethys Ocean, Zagros Suture Zone. Minerals, 13(11), 1367. https://doi.org/10.3390/min13111367