Geochemical Overprinting and Secondary Placer Crystal Formation in the La Cholla District, Quartzsite, Arizona, USA: Evidence from Copper Isotopes, Morphology, and Trace Elements
Abstract
:1. Introduction
2. History and Geological Setting
3. Materials and Methods
4. Results
5. Discussion
5.1. Geology of the La Cholla Placers
5.2. Morphology of La Cholla Gold
5.3. Geochemistry of La Cholla Placer Gold
5.3.1. Abundances of Silver and Copper in Gold Alloy and Inclusion Significance
5.3.2. Uranium and Lead Elemental Abundances
5.3.3. Copper Isotope Values
5.4. Origin and Evolution of the La Cholla Placer Gold Deposits
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyle, R.W. The Geochemistry of Gold and Its Deposits: Together with a Chapter on Geochemical Prospecting for the Element; Geological Survey of Canada: Ottawa, ON, Canada, 1979; 280p, ISBN 0-660-19591-7.
- Saunders, J.A.; Unger, D.L.; Kamenov, G.D.; Fayek, M.; Hames, W.E.; Utterback, W.C. Genesis of Middle Miocene Yellowstone-hotspot-related bonanza epithermal Au-Ag deposits, Northern Great Basin, USA. Min. Dep. 2008, 43, 715–734. [Google Scholar] [CrossRef]
- Reith, F.; Fairbrother, L.; Nolze, G.; Wilhelmi, O.; Clode, P.L.; Gregg, A.; Parsons, J.E.; Wakelin, S.A.; Pring, A.; Hough, R.; et al. Nanoparticle factories: Biofilms hold key to gold dispersion and nugget formation. Geology 2010, 38, 843–846. [Google Scholar] [CrossRef]
- Lindgren, W. Tertiary Gravels of the Sierra Nevada of California; Professional Paper 78; US Geological Survey: Washington, DC, USA, 1911; 226p.
- Watterson, J.R. Artifacts resembling budding bacteria produced in placer-gold amalgams by nitric acid leaching. Geology 1994, 20, 1144–1146. [Google Scholar] [CrossRef]
- Mossman, D.J.; Reimer, T.; Durstling, H. Microbial processes in gold migration and deposition: Modern analogues to ancient deposits. Geosci. Can. 1999, 26, 131–140. [Google Scholar]
- Reith, F.; Lengke, M.F.; Falconer, D.; Craw, D.; Southam, G. Winogradski Review: The geomicrobiology of gold. Int. Soc. Microb. Ecol. J. 2007, 1, 567–584. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Fisher-Buhner, J. The crystallography, metallography and composition of gold. Elements 2009, 5, 297–302. [Google Scholar] [CrossRef]
- Southam, G.; Lengke, M.F.; Fairbrother, L.; Reith, F. The biogeochemistry of gold. Elements 2009, 5, 303–307. [Google Scholar] [CrossRef]
- Hough, R.M.; Butt, C.R.M.; Reddy, S.M.; Verrall, M. Gold nuggets: Supergene or hypogene? Austr. J. Earth Sci. 2007, 54, 959–964. [Google Scholar] [CrossRef]
- Fairbrother, L.; Brugger, J.; Shapter, J.; Laird, J.; Southam, G.; Reith, F. Supergene gold transformation: Biogenic secondary and nano-particulate gold from arid Australia. Chem. Geol. 2012, 320, 17–31. [Google Scholar] [CrossRef]
- Craw, D.; Lilly, K. Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geol. Rev. 2016, 79, 301–315. [Google Scholar] [CrossRef]
- Stewart, J.; Kerr, G.; Prior, D.; Halfpenny, A.; Pearce, M.; Hough, R.; Craw, D. Low temperature recrystallisation of alluvial gold in paleoplacer deposits. Ore Geol. Rev. 2017, 88, 43–56. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Kamenov, G.D.; Sheets-Harris, C.; Andronikov, A.; Leatham, W.B.; Yahn, J.; Lauretta, D.S. Climate-induced geochemical and morphological evolution of placer gold deposits at Rich Hill, Arizona, USA. Geol. Soc. Am. Bull. 2017, 129, 193–202. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Henderson, J. Topographic gradients and lode gold sourcing recorded by placer gold morphology, geochemistry, and mineral inclusions in the east fork San Gabriel River, California, USA. Ore Geol. Rev. 2019, 109, 348–357. [Google Scholar] [CrossRef]
- Masson, F.X.; Beaudoin, G.; Laurendeau, D. Multi-method 2D and 3D reconstruction of gold grain morphology in alluvial deposits: A review and application to the Rivière du Moulin (Québec, Canada). Geol. Soc. Lond. Spec. Publ. 2022, 516, 337–352. [Google Scholar] [CrossRef]
- Melchiorre, E.B.; Orwin, P.M.; Reith, F.; Rea, M.A.D.; Yahn, J.; Allison, R. Biological and geochemical development of placer gold deposits at Rich Hill, Arizona, USA. Minerals 2018, 8, 56. [Google Scholar] [CrossRef]
- Pettke, T.; Frei, R. Isotope systematics in vein gold from Brusson, Val d’Ayas (NW Italy), Pb/Pb evidence for a Piemonte metaophiolite Au source. Chem. Geol. 1996, 127, 111–124. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Saunders, J.A.; Hames, W.E. Mafic Magmas as Sources for Gold in Middle-Miocene Epithermal Deposits of Northern Great Basin, USA: Evidence from Pb Isotopic Compositions of Native Gold. Econ. Geol. 2007, 102, 1191–1195. [Google Scholar] [CrossRef]
- Kamenov, G.D.; Melchiorre, E.B.; Ricker, F.N.; DeWitt, E. Insights from Pb Isotopes for Native Gold Formation during Hypogene and Supergene Processes at Rich Hill, Arizona. Econ. Geol. 2013, 108, 1577–1589. [Google Scholar] [CrossRef]
- Jones, E.L. Gold Deposits Near Quartzsite, Arizona; U.S. Geological Survey Bulletin 620; US Government Printing Office: Washington, DC, USA, 1915; pp. 45–57.
- Blake, W.P. Report of the Territorial Geologist. In Report of the Governor of Arizona for 1899; Arizona Territorial Government: Phoenix, AZ, USA, 1899; pp. 42–153. [Google Scholar]
- Tenney, J.B. Unpublished Field Notes; Arizona Bureau of Mines: Tucson, AZ, USA, 1933.
- Wilson, E.D. Arizona Gold Placers and Placering, 5th ed.; Bulletin 160; Arizona Bureau of Mines and Mineral Technology: Tucson, AZ, USA, 1952; p. 148.
- Keiser, W. Lost Mines and Prospectors’ Lore; Yuma County Historical Society, Inc.: Yuma, AZ, USA, 1978; p. 49. [Google Scholar]
- Melchiorre, E.B. Gold Atlas of Quartzsite, Arizona: Volume 2, Southern Dome Rock Mountains; Rock Doc Publications: San Bernardino, CA, USA, 2013; p. 298. [Google Scholar]
- Velasquez, C.M.L. Geochemical Classification of Placer and Lode Gold Deposits within the Northern Dome Rock Mountains of the Quartzsite Mining District. Master’s Thesis, California State University, San Bernardino, AZ, USA, 2012. [Google Scholar]
- Wilson, E.D.; Cunningham, J.B.; Butler, G.M. Arizona Lode Gold Mines and Gold Mining; Bulletin 137; Arizona Bureau of Mines and Mineral Technology: Tucson, AZ, USA, 1952; p. 261.
- Harding, L.E.; Coney, P.J. The geology of the McCoy Mountains Formation, southeastern California and southwestern Arizona. Geol. Soc. Am. Bull. 1985, 96, 755–769. [Google Scholar] [CrossRef]
- Tosdal, R.M.; Haxel, G.B.; Wright, J.E.; Jenney, J.P.; Reynolds, S.J. Jurassic geology of the Sonoran Desert region, southern Arizona, southeastern California, and northernmost Sonora: Construction of a continental-margin magmatic arc. Geol. Evol. Ariz. Ariz. Geol. Soc. Dig. 1989, 17, 397–434. [Google Scholar]
- Shuster, J. Structural and chemical characterization of placer gold grains: Implications for bacterial contributions to grain formation. Geomicro. J. 2015, 32, 158–169. [Google Scholar] [CrossRef]
- Armstrong, J.T. Quantitative analysis of silicates and oxide minerals: Comparison of Monte-Carlo, ZAF and Phi-Rho-Z procedures. In Proceedings of the Microbeam Analysis Society; Newbury, D.E., Ed.; San Francisco Press: San Francisco, CA, USA, 1988; pp. 239–246. [Google Scholar]
- Donovan, J.J.; Snyder, D.A.; Rivers, M.L. An improved interference correction for trace element analysis. Microbeam An. 1993, 2, 23–28. [Google Scholar] [CrossRef]
- Knight, J.B.; McTaggart, K.C. Composition of Gold from Southwestern British Columbia: British Columbia; Geological Fieldwork 1988, Paper Vol. 1989-1; Ministry of Energy, Mines and Petroleum Resources: Ottawa, ON, Canada, 1989; pp. 387–394.
- Douma, Y.; Knight, J.B. Mounting samples in methylmethocrylate for SEM and EMP analysis. J. Sed. 1994, A64, 675–677. [Google Scholar] [CrossRef]
- Saunders, J.A.; Mathur, R.; Kamenov, G.D.; Shimizu, T.; Brueseke, M.E. New isotopic evidence bearing on bonanza (Au-Ag) epithermal ore-forming processes. Miner. Depos. 2015, 51, 1–11. [Google Scholar] [CrossRef]
- Mathur, R.; Titley, S.; Barra, F.; Brantley, S.; Wilson, M.; Phillips, A.; Munizaga, F.; Maksaev, V.; Vervoort, J.; Hart, G. Exploration potential of Cu isotope fractionation in porphyry copper deposits. J. Geochem. Explor. 2009, 102, 1–6. [Google Scholar] [CrossRef]
- Blott, S.J.; Pye, K. Particle shape: A review and new methods of characterization and classification. Sedimentology 2008, 55, 31–63. [Google Scholar] [CrossRef]
- Zingg, T. Beitrag zur schotteranalyse. Schweiz. Mineral. Petrogr. Mitt. 1935, 15, 39–140. [Google Scholar]
- McCulloch, R.; Lewis, B.; Keill, D.; Shumaker, M. Applied Gold Placer Exploration and Evaluation Techniques; Special Publication 115; Montana Bureau of Mines and Geology: Butte, MT, USA, 2003; p. 115.
- Hérail, G.; Fornari, M.; Viscarra, G.; Miranda, V. Morphological and chemical evolution of gold grains during the formation of a polygenic fluviatile placer: The Mio- Pleistocene Tipuani placer example (Andes, Bolivia). Chron. Rech. Min. 1990, 500, 41–49. [Google Scholar]
- Loen, J.S. Use of placer gold characteristics to locate bedrock gold mineralization. Explor. Min. Geol. 1995, 4, 335–339. [Google Scholar]
- Cailleux, A.; Tricart, J. Introduction to the study of sand and pebbles. Cent. Doc. Univ. Paris 1959, 3, 194–202. [Google Scholar]
- Fontem, N.K.; Suh, C.E.; Ngatcha, R.B.; Shemang, E.M.; Vishiti, A.; Melchiorre, E.; Fon, A.N. Tourmaline occurrence and gold mineralization at a granitoid-metasediment contact in the Upper Lom Basin, east Cameroon. SN Appl. Sci. 2023, 5, 141. [Google Scholar] [CrossRef]
- Guo, M.; Liu, J.; Zhai, D.; de Fourestier, J.; Liu, M.; Zhu, R. Tourmaline as an indicator of ore-forming processes: Evidence from the Laodou gold deposit, Northwest China. Ore Geol. Rev. 2023, 154, 105304. [Google Scholar] [CrossRef]
- Faye, C.I.; Ndiaye, A.A.; Dia, I.; Gueye, M.; Moritz, R. Geological, geophysical and surface geochemical guides for gold exploration in the Falémé Volcanic Belt, West African Craton, Senegal. J. Geochem. Explor. 2023, 245, 107145. [Google Scholar] [CrossRef]
- Minter, W.E.L. Detrital gold, uranium, and pyrite concentrations related to sedimentology in the Precambrian Vaal Reef placer, Witwatersrand, South Africa. Econ. Geol. 1976, 71, 157–176. [Google Scholar] [CrossRef]
- Hallbauer, D.K. Geochemistry and Morphology of Mineral Components from the Fossil Gold and Uranium Placers of the Witwatersand; US Geological Survey Professional Paper 1161-A-BB; US Government Printing Office: Washington, DC, USA, 1981.
- Mann, A.W. Chemical Ore Genesis Models for the Precipitation of Carnotite in Calcrete; Commonwealth Scientific and Industrial Research Organisation Paper CSIRO-FP-7; Commonwealth Scientific and Industrial Research Organisation: Canberra, Australia, 1974.
- Mann, A.W.; Deutscher, R.L. Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Econ. Geol. 1978, 73, 1724–1737. [Google Scholar] [CrossRef]
- Borrok, D.M.; Nimick, D.A.; Wanty, R.B.; Ridley, W.I. Isotopic variations of dissolved copper and zinc in stream waters affected by historical mining. Geochim. Cosmochim. Acta 2008, 72, 329–344. [Google Scholar] [CrossRef]
- Ehrlich, S.; Butler, I.; Halicz, L.; Rickard, D.; Oldroyd, A.; Matthews, A. Experimental study of the copper isotope fractionation between aqueous Cu (II) and covellite, CuS. Chem. Geol. 2004, 209, 259–269. [Google Scholar] [CrossRef]
- Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L. Copper isotope fractionation in acid mine drainage. Geochim. Cosmochim. Acta 2009, 73, 1247–1263. [Google Scholar] [CrossRef]
- Li, D.; Liu, S.-A. Copper Isotope Fractionation during Basalt Leaching at 25 °C and pH = 0.3, 2. J. Earth Sci. 2022, 33, 82–91. [Google Scholar] [CrossRef]
- Mathur, R.; Ruiz, J.; Titley, S.; Liermann, L.; Buss, H.; Brantley, S.L. Cu isotopic fractionation in the supergene environment with and without bacteria. Geochim. Cosmochim. Acta 2005, 69, 5233–5246. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, C.; Liu, S.-A.; Mathur, R.; Zhao, X.; Yang, Y.; Dai, J.; Man, R.; Liu, X. Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni–Cu mineralization system. Geochim. Cosmochim. Acta 2019, 249, 42–58. [Google Scholar] [CrossRef]
- Fujii, T.; Moynier, F.; Abe, M.; Nemoto, K.; Albarède, F. Copper isotope fractionation between aqueous compounds relevant to low temperature geochemistry and biology. Geochim. Cosmochim. Acta 2013, 110, 29–44. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, S.K.; Lee, I. Quantum chemical calculations of equilibrium copper (I) isotope fractionations in ore-forming fluids. Chem. Geol. 2007, 243, 225–237. [Google Scholar] [CrossRef]
- Duan, J.; Tang, J.; Li, Y.; Liu, S.-A.; Wang, Q.; Yang, C.; Wang, Y. Copper isotopic signature of the Tiegelongnan high-sulfidation copper deposit, Tibet: Implications for its origin and mineral exploration. Miner. Depos. 2016, 51, 591–602. [Google Scholar] [CrossRef]
- Saunders, N.J.; Barling, J.; Harvey, J.; Halliday, A.N. Heterogeneous nickel isotopic compositions in the terrestrial mantle—Part 1: Ultramafic lithologies. Geochim. Cosmochim. Acta 2020, 285, 129–149. [Google Scholar] [CrossRef]
- Sillitoe, R.H. Erosion and collapse of volcanoes: Causes of telescoping in intrusion-centered ore deposits. Geology 1994, 22, 945–948. [Google Scholar] [CrossRef]
- Salem, H.M. Geochemistry, Mineralogy, and Genesis of the Copperstone Gold Deposit. Ph.D. Thesis, The University of Arizona, La Paz County, AZ, USA, 1993; p. 211. [Google Scholar]
- Reynolds, S.J.; Welty, J.W.; Spencer, J.E. Volcanic history of Arizona: Fieldnotes. Ariz. Bur. Geol. Miner. Technol. 1986, 16, 1–5. [Google Scholar]
- Dufresne, M.B. Origin of Gold in the White Channel Sediments of the Klondike Region, Yukon Territory. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 1986; p. 181. [Google Scholar]
- Dufresne, M.B.; Morison, S.R.; Nesbitt, B.E. Evidence of hydrothermal alteration in White Channel sediments and bedrock of the Klondike area, west-central Yukon. Yuk. Geol. 1986, 1, 44–49. [Google Scholar]
- Tempelman-Kluit, D.J. White Channel Gravel of the Klondike. Yukon Exploration and Geology 1981, Exploration and Geological Services Division; Yukon Indian and Northern Affairs Canada: Whitehorse, YT, Canada, 1982; p. 79.
Sample Number | X (cm) | Y (cm) | Z (cm) | T/W | W/L | FI † | Distance (km) ‡ | Au (wt%) | Ag (wt%) | Cu (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Crystals | ||||||||||
2019 R1 | 0.42 | 0.36 | 0.32 | 0.89 | 0.86 | 1.22 | 1.05 | 99.95 | 0.05 | 76 |
2019 R2 | 0.40 | 0.38 | 0.24 | 0.63 | 0.95 | 1.63 | 1.18 | 99.78 | 0.22 | 58 |
2019 R3 * | 0.29 | 0.27 | 0.18 | 0.67 | 0.93 | 1.56 | 1.15 | 99.01 | 0.98 | 95 |
2019 R4 | 0.31 | 0.28 | 0.23 | 0.82 | 0.90 | 1.28 | 1.07 | 98.59 | 1.40 | 18 |
2018 R1 | 0.38 | 0.35 | 0.27 | 0.77 | 0.92 | 1.35 | 1.08 | 97.89 | 2.10 | 86 |
2018 R2 | 0.51 | 0.39 | 0.31 | 0.79 | 0.76 | 1.45 | 1.11 | 98.15 | 1.84 | 73 |
2018 R3 | 0.69 | 0.61 | 0.42 | 0.69 | 0.88 | 1.55 | 1.15 | 97.43 | 2.56 | 89 |
2017 R1 | 0.25 | 0.22 | 0.19 | 0.86 | 0.88 | 1.24 | 1.06 | 99.73 | 0.26 | 79 |
2017 R2 | 0.32 | 0.30 | 0.29 | 0.97 | 0.94 | 1.07 | 1.03 | 99.02 | 0.97 | 111 |
2016 R1 | 0.41 | 0.40 | 0.39 | 0.98 | 0.98 | 1.04 | 1.03 | 99.31 | 0.68 | 88 |
2016 R2 | 0.60 | 0.51 | 0.42 | 0.82 | 0.85 | 1.32 | 1.08 | 99.36 | 0.63 | 79 |
2016 R3 * | 0.55 | 0.46 | 0.39 | 0.85 | 0.84 | 1.29 | 1.07 | 96.04 | 3.94 | 191 |
2016 R4 | 0.38 | 0.34 | 0.32 | 0.94 | 0.89 | 1.13 | 1.04 | 98.89 | 1.11 | 36 |
2016 R5 | 0.48 | 0.42 | 0.35 | 0.83 | 0.88 | 1.29 | 1.07 | 99.07 | 0.92 | 116 |
2016 R6 | 0.31 | 0.29 | 0.27 | 0.93 | 0.94 | 1.11 | 1.03 | 99.88 | 0.11 | 93 |
2016 R7 | 0.27 | 0.26 | 0.19 | 0.73 | 0.96 | 1.39 | 1.10 | 95.92 | 4.07 | 61 |
2016 R8 | 0.42 | 0.40 | 0.38 | 0.95 | 0.95 | 1.08 | 1.03 | 98.85 | 1.14 | 93 |
2015 R1 | 0.41 | 0.32 | 0.31 | 0.97 | 0.78 | 1.18 | 1.04 | 98.67 | 1.32 | 117 |
2015 R2 | 0.25 | 0.20 | 0.20 | 1.00 | 0.80 | 1.13 | 1.04 | 98.71 | 1.28 | 125 |
2015 R3 | 0.26 | 0.23 | 0.18 | 0.78 | 0.88 | 1.36 | 1.09 | 99.23 | 0.76 | 151 |
2015 R4 * | 0.25 | 0.23 | 0.17 | 0.74 | 0.92 | 1.41 | 1.10 | 99.30 | 0.68 | 134 |
2015 R5 | 0.31 | 0.28 | 0.19 | 0.68 | 0.90 | 1.55 | 1.15 | 97.10 | 2.88 | 157 |
2015 R6 | 0.27 | 0.21 | 0.18 | 0.86 | 0.78 | 1.33 | 1.08 | 98.90 | 1.09 | 141 |
2015 R7 | 0.23 | 0.20 | 0.17 | 0.85 | 0.87 | 1.26 | 1.06 | 99.26 | 0.72 | 126 |
2014 R1 | 0.39 | 0.35 | 0.28 | 0.80 | 0.90 | 1.32 | 1.08 | 99.14 | 0.85 | 116 |
2014 R2 | 0.22 | 0.21 | 0.19 | 0.90 | 0.95 | 1.13 | 1.04 | 98.68 | 1.31 | 142 |
2014 R3 | 0.21 | 0.17 | 0.16 | 0.94 | 0.81 | 1.19 | 1.05 | 99.10 | 0.89 | 93 |
2014 R4 | 0.19 | 0.16 | 0.15 | 0.94 | 0.84 | 1.17 | 1.04 | 99.75 | 0.24 | 38 |
2014 R5 | 0.24 | 0.20 | 0.17 | 0.85 | 0.83 | 1.29 | 1.07 | 98.90 | 1.10 | 71 |
2013 R1 | 0.21 | 0.19 | 0.17 | 0.89 | 0.90 | 1.18 | 1.04 | 98.62 | 1.37 | 127 |
2013 R2 | 0.19 | 0.16 | 0.15 | 0.94 | 0.84 | 1.17 | 1.04 | 99.85 | 0.14 | 146 |
2013 R3 | 0.20 | 0.18 | 0.17 | 0.94 | 0.90 | 1.12 | 1.04 | 99.57 | 0.42 | 98 |
2013 R4 | 0.19 | 0.17 | 0.16 | 0.94 | 0.89 | 1.13 | 1.04 | 98.83 | 1.15 | 150 |
2013 R5 | 0.20 | 0.18 | 0.17 | 0.94 | 0.90 | 1.12 | 1.04 | 99.28 | 0.70 | 131 |
Angular | ||||||||||
2019 A1 | 0.59 | 0.37 | 0.21 | 0.57 | 0.63 | 2.29 | 1.62 | 94.02 | 5.95 | 221 |
2019 A2 | 0.67 | 0.43 | 0.25 | 0.58 | 0.64 | 2.20 | 1.55 | 95.79 | 4.19 | 185 |
2019 A3 | 0.52 | 0.37 | 0.20 | 0.54 | 0.71 | 2.23 | 1.57 | 95.13 | 4.85 | 197 |
2019 A4 | 0.87 | 0.41 | 0.29 | 0.71 | 0.47 | 2.21 | 1.56 | 95.89 | 4.09 | 210 |
2019 A5 | 0.75 | 0.36 | 0.25 | 0.69 | 0.48 | 2.22 | 1.57 | 94.77 | 5.20 | 216 |
2018 A1 | 0.42 | 0.28 | 0.14 | 0.50 | 0.67 | 2.50 | 1.82 | 96.07 | 3.84 | 822 |
2018 A2 | 0.71 | 0.41 | 0.22 | 0.54 | 0.58 | 2.55 | 1.87 | 94.90 | 4.99 | 1109 |
2018 A3 | 0.62 | 0.39 | 0.17 | 0.44 | 0.63 | 2.97 | 2.37 | 95.68 | 4.23 | 835 |
2018 A4 | 0.72 | 0.48 | 0.22 | 0.46 | 0.67 | 2.73 | 2.07 | 95.30 | 4.63 | 710 |
2018 A5 | 0.68 | 0.52 | 0.23 | 0.44 | 0.76 | 2.61 | 1.94 | 95.27 | 4.64 | 892 |
2017 A1 * | 0.42 | 0.34 | 0.18 | 0.53 | 0.81 | 2.11 | 1.48 | 96.50 | 3.48 | 209 |
2017 A2 | 0.57 | 0.32 | 0.15 | 0.47 | 0.56 | 2.97 | 2.36 | 98.19 | 1.77 | 388 |
2017 A3 * | 0.46 | 0.34 | 0.12 | 0.35 | 0.74 | 3.33 | 2.89 | 99.10 | 0.86 | 425 |
2016 A1 * | 0.61 | 0.39 | 0.27 | 0.69 | 0.64 | 1.85 | 1.30 | 93.96 | 5.94 | 1038 |
2016 A2 | 0.74 | 0.43 | 0.32 | 0.74 | 0.58 | 1.83 | 1.29 | 95.75 | 4.19 | 640 |
2015 A1 | 0.52 | 0.23 | 0.21 | 0.91 | 0.44 | 1.79 | 1.27 | 94.20 | 5.75 | 487 |
2015 A2 | 0.60 | 0.35 | 0.25 | 0.71 | 0.58 | 1.90 | 1.33 | 94.93 | 5.03 | 437 |
2015 A3 * | 0.58 | 0.22 | 0.20 | 0.91 | 0.38 | 2.00 | 1.40 | 95.81 | 4.13 | 612 |
2015 A4 | 0.60 | 0.25 | 0.21 | 0.84 | 0.42 | 2.02 | 1.42 | 92.12 | 7.82 | 541 |
2015 A5 | 0.76 | 0.28 | 0.23 | 0.82 | 0.37 | 2.26 | 1.60 | 95.89 | 4.04 | 662 |
2015 A6 | 0.65 | 0.35 | 0.29 | 0.83 | 0.54 | 1.72 | 1.23 | 92.07 | 7.86 | 765 |
2015 A7 | 0.68 | 0.38 | 0.29 | 0.76 | 0.56 | 1.83 | 1.29 | 93.07 | 6.89 | 371 |
2014 A1 * | 0.52 | 0.39 | 0.14 | 0.36 | 0.75 | 3.25 | 2.76 | 97.59 | 2.39 | 199 |
2014 A2 * | 0.53 | 0.39 | 0.15 | 0.38 | 0.74 | 3.07 | 2.50 | 96.31 | 3.67 | 149 |
2014 A3 | 0.52 | 0.41 | 0.15 | 0.37 | 0.79 | 3.10 | 2.54 | 97.03 | 2.95 | 192 |
2014 A4 | 0.61 | 0.50 | 0.13 | 0.26 | 0.82 | 4.27 | 4.60 | 98.14 | 1.84 | 171 |
2014 A5 | 0.65 | 0.52 | 0.14 | 0.27 | 0.80 | 4.18 | 4.41 | 98.98 | 1.01 | 128 |
2013 A1 | 0.45 | 0.32 | 0.13 | 0.41 | 0.71 | 2.96 | 2.36 | 98.10 | 1.86 | 427 |
2013 A2 * | 0.39 | 0.30 | 0.12 | 0.40 | 0.77 | 2.88 | 2.25 | 99.26 | 0.70 | 470 |
2013 A3 | 0.54 | 0.39 | 0.15 | 0.38 | 0.72 | 3.10 | 2.54 | 99.02 | 0.94 | 395 |
2013 A4 | 0.51 | 0.36 | 0.13 | 0.36 | 0.71 | 3.35 | 2.91 | 96.02 | 3.94 | 400 |
2013 A5 | 0.51 | 0.35 | 0.15 | 0.43 | 0.69 | 2.87 | 2.24 | 98.37 | 1.59 | 479 |
Inclusions | ||||||||||
2019 I1 | 0.55 | 0.37 | 0.20 | 0.54 | 0.67 | 2.30 | 1.63 | 94.23 | 5.63 | 1397 |
2019 I2 | 0.52 | 0.34 | 0.19 | 0.56 | 0.65 | 2.26 | 1.60 | 95.69 | 4.21 | 1072 |
2019 I3 | 0.63 | 0.39 | 0.17 | 0.44 | 0.62 | 3.00 | 2.41 | 94.87 | 5.04 | 934 |
2019 I4 | 0.41 | 0.38 | 0.18 | 0.47 | 0.93 | 2.19 | 1.55 | 95.32 | 4.62 | 630 |
2019 I5 | 0.51 | 0.36 | 0.16 | 0.44 | 0.71 | 2.72 | 2.06 | 95.34 | 4.58 | 837 |
2017 I1 * | 0.39 | 0.35 | 0.14 | 0.40 | 0.90 | 2.64 | 1.97 | 98.38 | 1.05 | 5722 |
2015 I1 | 0.41 | 0.29 | 0.18 | 0.62 | 0.71 | 1.94 | 1.36 | 98.13 | 1.79 | 808 |
2015 I2 | 0.43 | 0.31 | 0.20 | 0.65 | 0.72 | 1.85 | 1.30 | 97.39 | 2.54 | 698 |
2015 I3 | 0.57 | 0.35 | 0.19 | 0.54 | 0.61 | 2.42 | 1.75 | 97.69 | 2.24 | 723 |
2015 I4 | 0.58 | 0.33 | 0.18 | 0.55 | 0.57 | 2.53 | 1.85 | 99.09 | 0.84 | 752 |
2014 I1 | 0.51 | 0.22 | 0.12 | 0.55 | 0.43 | 3.04 | 2.46 | 99.04 | 0.91 | 561 |
2014 I2 | 0.95 | 0.54 | 0.21 | 0.39 | 0.57 | 3.55 | 3.23 | 99.50 | 0.44 | 623 |
2013 I1 * | 0.52 | 0.38 | 0.22 | 0.58 | 0.73 | 2.05 | 1.43 | 96.95 | 2.94 | 1101 |
2013 I2 | 0.57 | 0.45 | 0.23 | 0.51 | 0.79 | 2.22 | 1.56 | 95.81 | 4.13 | 593 |
2013 I3 | 0.60 | 0.38 | 0.21 | 0.55 | 0.63 | 2.33 | 1.66 | 96.35 | 3.60 | 512 |
2013 I4 | 0.73 | 0.61 | 0.31 | 0.51 | 0.84 | 2.16 | 1.52 | 96.52 | 3.45 | 355 |
Elem. | 2013 A2 | 2015 R4 | 2016 R3 | 2019 R3 | 2014 A1 | 2014 A2 | 2015 A3 | 2016 A1 | 2017 A1 | 2017 A3 | 2013 I1 | 2017 I1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
V | 0.078 | 0.150 | 0.050 | 0.148 | 0.015 | 0.273 | 0.110 | 0.107 | 0.057 | 0.073 | 0.186 | 0.062 |
Cr | 0.063 | 0.032 | 0.025 | 0.063 | 0.030 | 0.104 | 0.058 | 0.077 | 0.037 | 0.104 | 0.052 | 0.035 |
Mn | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Fe | <0.2 | 7.49 | <0.2 | <0.2 | 4.90 | 0.66 | 0.40 | <0.2 | <0.2 | 0.67 | <0.2 | 1.98 |
Ni | <0.007 | <0.007 | <0.007 | <0.007 | <0.007 | <0.007 | 0.018 | <0.007 | <0.007 | <0.007 | <0.007 | <0.007 |
Cu | 487 | 528 | 101 | 102 | 206 | 162 | 630 | 1122 | 234 | 436 | 1049 | 5788 |
Zn | 0.207 | <0.02 | 0.024 | <0.02 | 0.816 | <0.02 | 0.036 | 0.381 | <0.02 | 0.468 | 0.090 | 0.488 |
Sr | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 | <0.01 |
Ba | <0.025 | 0.349 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 | <0.025 |
La | 0.001 | 0.004 | 0.001 | <0.0001 | 0.003 | 0.003 | 0.002 | <0.0001 | 0.001 | <0.0001 | 0.002 | 0.001 |
Ce | 0.001 | 0.002 | 0.002 | 0.001 | 0.006 | 0.002 | 0.003 | <0.0001 | 0.003 | 0.001 | 0.003 | 0.001 |
Pr | <0.0001 | 0.001 | 0.001 | <0.0001 | 0.001 | 0.001 | 0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Nd | <0.0008 | 0.003 | 0.001 | 0.001 | 0.004 | <0.0008 | 0.003 | <0.0008 | <0.0008 | <0.0008 | <0.0008 | <0.0008 |
Sm | <0.0007 | <0.007 | <0.0007 | <0.007 | <0.0007 | <0.007 | <0.0007 | 0.001 | <0.0007 | <0.007 | <0.0007 | <0.007 |
Eu | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 | <0.0012 |
Gd | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 | <0.0043 |
Tb | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Dy | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | 0.002 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 |
Ho | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Er | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 | <0.0003 |
Tm | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Yb | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 | <0.0004 |
Lu | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Pb | 0.071 | 0.227 | 0.088 | 0.025 | 1.882 | 71.231 | 0.121 | 0.042 | 0.011 | 0.380 | 0.038 | 0.458 |
Th | 0.016 | 0.010 | 0.008 | 0.020 | 0.007 | 0.036 | 0.020 | 0.015 | 0.011 | 0.014 | 0.012 | 0.010 |
U | <0.0001 | <0.0001 | 0.002 | <0.0001 | <0.0001 | <0.0001 | 0.004 | <0.0001 | <0.0001 | 0.001 | <0.0001 | <0.0001 |
Sample | δ65Cu |
---|---|
2013 Crystal | 1.17 |
2015 Crystal | 1.14 |
2016 Crystal | 1.79 |
2015 R4 (Crystal) | 4.94 |
2014 Angular | 0.23 |
2015 Angular | 0.62 |
2017 Angular | 0.53 |
2019 Angular | 0.77 |
2014 A1 | 0.41 |
2017 A3 | 0.14 |
2014 A2 | 0.26 |
2016 A1 | 0.54 |
2017 I1 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melchiorre, E.B.; Mathur, R.; Kamenov, G.; Paredes, J. Geochemical Overprinting and Secondary Placer Crystal Formation in the La Cholla District, Quartzsite, Arizona, USA: Evidence from Copper Isotopes, Morphology, and Trace Elements. Minerals 2023, 13, 1444. https://doi.org/10.3390/min13111444
Melchiorre EB, Mathur R, Kamenov G, Paredes J. Geochemical Overprinting and Secondary Placer Crystal Formation in the La Cholla District, Quartzsite, Arizona, USA: Evidence from Copper Isotopes, Morphology, and Trace Elements. Minerals. 2023; 13(11):1444. https://doi.org/10.3390/min13111444
Chicago/Turabian StyleMelchiorre, Erik B., Ryan Mathur, George Kamenov, and Jorge Paredes. 2023. "Geochemical Overprinting and Secondary Placer Crystal Formation in the La Cholla District, Quartzsite, Arizona, USA: Evidence from Copper Isotopes, Morphology, and Trace Elements" Minerals 13, no. 11: 1444. https://doi.org/10.3390/min13111444
APA StyleMelchiorre, E. B., Mathur, R., Kamenov, G., & Paredes, J. (2023). Geochemical Overprinting and Secondary Placer Crystal Formation in the La Cholla District, Quartzsite, Arizona, USA: Evidence from Copper Isotopes, Morphology, and Trace Elements. Minerals, 13(11), 1444. https://doi.org/10.3390/min13111444