An Intensity Tensor and Electric Field Gradient Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using Single-Crystal Mössbauer Spectroscopy
Abstract
:1. Introduction
1.1. Review of an Intensity Tensor for Fe Ions at M Sites of Pyroxene
1.2. Compositional Dependence of the Intensity Tensor for Fe Ions at M Sites of Pyroxenes
1.3. Review of the Electric Field Gradient Tensor for Fe Ions at M Sites in C2/c Pyroxene
1.4. Review of Zimmermann’s Method to Determine Intensity and EFG Tensors, and Application to Fe Ions at M Sites in Aegirine–Augite
2. Materials and Methods
2.1. Chemical Analyses
2.2. X-ray Diffraction Measurements with Back Laue and Precession X-ray Cameras
2.3. Single-Crystal Mössbauer Measurements
3. Results and Discussion
3.1. Chemical Analyses
3.2. Mössbauer Spectroscopic Analyses of Aegirine–Augite Single Crystal
3.2.1. Mössbauer Spectra of Oriented Aegirine–Augite Thin Sections
3.2.2. Calculation of Intensity Tensor and EFG Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using the Zimmermann Method
3.2.3. Compositional Dependence of the Intensity Tensor for Fe3+ at M1 Sites between Aegirine and Augite Solid Solution
3.2.4. Principal Axes of the EFG Tensor for Fe3+ at M1 Sites of Aegirine–Augite
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCammon, C.A.; Chaskar, V.; Richard, G.G. A technique for spatially resolved Mössbauer spectroscopy applied to quenched metallurgical slags. Meas. Sci. Technol. 1991, 2, 657–662. [Google Scholar] [CrossRef]
- Yoshida, Y.; Suzuki, K.; Hayakawa, K.; Yukihira, K.; Soejima, H. Mössbauer spectroscopic microscope. Hyperfine Interact. 2009, 188, 121–126. [Google Scholar] [CrossRef]
- Mitsui, T.; Kobayashi, Y.; Seto, M. Development of scanning-type synchrotron radiation Mössbauer microscope using focused X-ray. Jpn. J. Appl. Phys. 2004, 43, 389–393. [Google Scholar] [CrossRef]
- Shinoda, K.; Kobayashi, Y. Mössbauer microspectrometer with a multicapillary X-ray lens. Jpn. Mag. Mineral. Petrol. Sci. 2018, 47, 163–167, (In Japanese with English Abstract and Figure Captions). [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. Introduction. In Rock Forming Minerals. Single Chain Silicates; 2A; Longman: London, UK, 1978; pp. 3–18. [Google Scholar]
- Dyar, M.D.; Klima, R.L.; Fleagle, A.; Peel, S.E. Fundamental Mössbauer parameters of synthetic Ca-Mg-Fe pyroxenes. Am. Min. 2013, 98, 1172–1186. [Google Scholar] [CrossRef]
- Tennant, W.C.; McCammon, C.A.; Miletich, R. Electric field gradient and mean-squared-displacement tensors in hedenbergite from single-crystal Mössbauer millprobe measurements. Phys. Chem. Miner. 2000, 27, 156–163. [Google Scholar] [CrossRef]
- Shinoda, K.; Kobayashi, Y. Determination of the electric field gradient tensor of Fe3+ in the M1 site of aegirine by single crystal Mössbauer spectroscopy. J. Mineral. Petro. Sci. 2019, 114, 130–141. [Google Scholar] [CrossRef]
- Fukuyama, D.; Shinoda, K.; Takagi, D.; Kobayashi, Y. Compositional dependence of intensity and electric field gradient tensors for Fe2+ at the M1 site in Ca-rich pyroxene by single crystal Mössbauer spectroscopy. J. Mineral. Petro. Sci. 2022, 117, 11. [Google Scholar] [CrossRef]
- Zimmermann, R. A method for evaluation of single crystal 57Fe Mössbauer spectra (FeCl2·4H2O). Nucl. Instrum. Methods. 1975, 128, 537–543. [Google Scholar] [CrossRef]
- Dowty, E.; Lindsley, D.H. Mössbauer spectra of synthetic hedenbergite-ferrosilite pyroxenes. Am. Min. 1973, 58, 850–868. [Google Scholar]
- Morimoto, N. Nomenclature of pyroxenes. Miner. J. 1989, 14, 198–221. [Google Scholar] [CrossRef]
- Zimmermann, R. The intensity tensor formulation for dipole transitions (e.g., 57Fe) and its application to the determination of EFG tensor. In Advances in Mössbauer Spectroscopy; Thosar, B.V., Ed.; Elsevier Scientific Publishing Co.: Amsterdam, The Netherlands, 1983; pp. 273–315. [Google Scholar]
- Cameron, M.; Papike, J.J. Crystal chemistry of silicate pyroxenes. In Pyroxenes; Prewitt, C.T., Ed.; Reviews in Mineralogy and Geochemistry 7; Mineralogical Society of America: Washington, DC, USA, 1980; pp. 5–92. [Google Scholar]
- Travis, J.C. The electric gradient tensor. In An Introduction to Mössbauer Spectroscopy; May, L., Ed.; Plenum Press: New York, NY, USA, 1971; pp. 75–103. [Google Scholar]
- Dufek, P.; Blaha, P.; Schwarz, K. Determination of the Nuclear Quadrupole Moment of 57Fe. Phys. Rev. Lett. 1995, 75, 3545–3548. [Google Scholar] [CrossRef] [PubMed]
- Laue Analysis Program. Norm Engineering Co. Available online: http://www.din.or.jp/~norm/sub2_e.htm (accessed on 4 August 2023).
- MossWinn—Mossbauer Spectrum Analysis and Database Software. Available online: http://www.mosswinn.com/ (accessed on 4 August 2023).
- Amthauer, G.; Rossman, G.R. Mixed valence of iron om minerals with cation clusters. Phys. Chem. Miner. 1984, 11, 37–51. [Google Scholar] [CrossRef]
- De Grave, E.; Van Alboom, A. Evaluation of ferrous and ferric Mössbauer fractions. Phys. Chem. Miner. 1991, 18, 337–342. [Google Scholar] [CrossRef]
- Kretz, R. Symbols for rock-forming minerals. Am. Min. 1983, 68, 277–279. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
Oxides | wt% |
---|---|
SiO2 | 54.86 (21) |
Al2O3 | 1.65 (5) |
FeO (FeO) | 24.83 (22) (1.29 (1)) |
(Fe2O3) | (26.15 (23)) |
MgO | 2.38 (12) |
CaO | 4.08 (23) |
NaO | 12.10 (16) |
total | 102.65 |
Formulae (O = 6) | molar ratio |
Si | 2.01 |
Al Fe2+ | 0.07 0.04 |
Fe3+ | 0.72 |
Mg | 0.13 |
Ca | 0.16 |
Na | 0.86 |
Oriented Thin Section | #1 ⊥ a (d = 443 μm) | #2 ⊥ b (d = 357 μm) | #3 ⊥ c (d = 380 μm) | ||||||
---|---|---|---|---|---|---|---|---|---|
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
γ-ray direction and effective thickness (t) | |||||||||
θ (°) | 90 | 60 | 120 | 180 | 150 | 150 | 90 | 60 | 120 |
ϕ (°) | 90 | 90 | 90 | 0 | 73 | 253 | 343 | 343 | 343 |
γ-ray | //Y(a) | //Z(b) | //c | ||||||
effective thickness (t) | 12.5 | 14.4 | 10.0 | 11.6 | 10.7 | 12.3 | |||
Calculated I for Fe2+ at M1 from Equation (34) in [9] | |||||||||
Fe2+ at M1 | 0.467 | 0.516 | 0.516 | 0.663 | 0.615 | 0.615 | 0.368 | 0.442 | 0.442 |
Doublet area ratio (%) | |||||||||
Fe2+ at M1 | 1.8 | 2.4 | 2.5 | 2.7 | 2.3 | 2.1 | 2.0 | 2.4 | 2.8 |
Fe“2+” at M1 | 4.0 | 4.4 | 2.9 | 4.3 | 3.8 | 3.6 | 1.8 | 0.7 | 0.4 |
Fe3+ at M1 | 94.2 | 93.3 | 94.6 | 93.0 | 93.9 | 94.3 | 96.2 | 96.9 | 96.7 |
I for Fe3+ at M1 site | |||||||||
I = Ih/(Il + Ih) | 0.366 | 0.391 | 0.360 | 0.509 | 0.413 | 0.404 | 0.690 | 0.623 | 0.678 |
57Fe Mössbauer parameters | |||||||||
δ (mm/s) | 0.39 | 0.39 | 0.40 | 0.40 | 0.40 | 0.40 | 0.39 | 0.39 | 0.38 |
Δ (mm/s) | 0.35 | 0.35 | 0.35 | 0.34 | 0.34 | 0.35 | 0.34 | 0.34 | 0.34 |
Г (mm/s) | 0.11 | 0.11 | 0.10 | 0.13 | 0.11 | 0.12 | 0.11 | 0.10 | 0.11 |
Normalized χ2 | 1.001 | 1.024 | 1.018 | 1.289 | 1.008 | 1.033 | 0.987 | 1.072 | 1.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinoda, K.; Kobayashi, Y. An Intensity Tensor and Electric Field Gradient Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using Single-Crystal Mössbauer Spectroscopy. Minerals 2023, 13, 1452. https://doi.org/10.3390/min13111452
Shinoda K, Kobayashi Y. An Intensity Tensor and Electric Field Gradient Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using Single-Crystal Mössbauer Spectroscopy. Minerals. 2023; 13(11):1452. https://doi.org/10.3390/min13111452
Chicago/Turabian StyleShinoda, Keiji, and Yasuhiro Kobayashi. 2023. "An Intensity Tensor and Electric Field Gradient Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using Single-Crystal Mössbauer Spectroscopy" Minerals 13, no. 11: 1452. https://doi.org/10.3390/min13111452
APA StyleShinoda, K., & Kobayashi, Y. (2023). An Intensity Tensor and Electric Field Gradient Tensor for Fe3+ at M1 Sites of Aegirine–Augite Using Single-Crystal Mössbauer Spectroscopy. Minerals, 13(11), 1452. https://doi.org/10.3390/min13111452