Rare Earth Elements in the Shok-Karagay Ore Fields (Syrymbet Ore District, Northern Kazakhstan) and Visualisation of the Deposits Using the Geography Information System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineralogy and Geochemistry
2.2. GIS Technology
3. Results
3.1. Rare Earth Elements in the Weathered Crust
3.2. Rare Earth Accessory Minerals
3.2.1. Mineral Composition of Primary Ores in the Deposit’s Bedrock Subsection
3.2.2. Mineral Composition of the Shok-Karagay Ores of the Weathering Crust
3.2.3. Isomorphic REE Additives in Gangue and Accessory Minerals
3.3. Wireframe Model of the Shok-Karagay Deposit’s Lithological Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goodenough, K.M.; Wall, F.; Merriman, D. The Rare Earth Elements: Demand, global resources, and challenges for resourcing future generations. Nat. Resour. Res. 2018, 27, 201–216. [Google Scholar] [CrossRef]
- Wall, F. Rare Earth Elements. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: London, UK, 2021; pp. 680–693. [Google Scholar]
- Wall, F. Rare earth elements. In Critical Metals Handbook, 2nd ed.; Gunn, G., Ed.; John Wiley & Sons: Chichester, UK, 2014; Volume 3, pp. 312–339. [Google Scholar] [CrossRef]
- Li, Y.H.M.; Zhao, W.W.; Zhou, M.-F. Nature of parent rocks, mineralization styles and ore genesis of regolith-hosted REE deposits in South China: An integrated genetic model. J. Asian Earth Sci. 2017, 148, 65–95. [Google Scholar] [CrossRef]
- Statista. Available online: https://www.statista.com/statistics/277268/rare-earth-reserves-by-country/ (accessed on 13 September 2023).
- Voncken, J.H.L. The Rare Earth Elements: An Introduction (Springer Briefs in Earth Sciences), 1st ed.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Hellman, P.; Duncan, R. Evaluating Rare Earth Element Deposits. ASEG Ext. Abstr. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Borst, A.M.; Smith, M.P.; Finch, A.A.; Estrade, G.; Villanova-de-Benavent, C.; Nason, P.; Marquis, E.; Horsburgh, N.J.; Goodenough, K.M.; Xu, C.; et al. Adsorption of rare earth elements in regolith hosted clay deposits. Nat. Commun. 2020, 11, 4386. [Google Scholar] [CrossRef]
- Omirserikov, M.S.; Duczmal-Czernikiewicz, A.; Isaeva, L.D.; Asubaeva, S.K.; Togizov, K.S. Resource prediction for rare metal deposits based on the analysis of ore-controlling factors (in Russia). Izv. RK NAS Geol. Tech. Sci. Ser. 2017, 3, 35–43. [Google Scholar]
- Broom-Fendley, S.; Heaton, T.; Wall, F.; Gun, G. Tracing the fluid source of heavy REE mineralization in carbonatites using a novel method oxygen isotope analysis in apatite: The example of Songwe Hill Malawi. Chem. Geol. 2016, 440, 275–287. [Google Scholar] [CrossRef]
- De Kemp, E.A.; Monecke, T.; Sheshpari, M.; Girard, E.; Lauzière, K.; Grunsky, E.C.; Schetselaar, E.M.; Goutier, J.E.; Perron, G.; Bellefleur, G. 3D GIS as a support for mineral discovery. Geochem. Explor. Environ. Anal. 2011, 11, 117–128. [Google Scholar] [CrossRef]
- Schetselaar, E.; Pehrsson, S.; Devine, C.; Lafrance, B.; White, D.; Malinowski, M. 3-D Geologic Modeling in the FlinFlon Mining District, Trans-Hudson Orogen, Canada: Evidence for Polyphase Imbrication of the Flin Flon-777-Callinan Volcanogenic Massive Sulfide Ore System. Econ. Geol. 2016, 111, 877–901. [Google Scholar] [CrossRef]
- Joly, A. Mineral systems approach applied to GIS-based 2D-prospectivity modelling of geological regions: Insights from Western Australia. Ore Geol. Rev. 2015, 71, 673–702. [Google Scholar] [CrossRef]
- Mars, J.C. Mineral and Lithologic Mapping Capability of WorldView 3 Data at Mountain Pass, California, Using True- and False-Color Composite Images, Band Ratios, and Logical Operator Algorithms. Econ. Geol. 2018, 113, 1587–1601. [Google Scholar] [CrossRef]
- Perring, C.S. A 3-D Geological and Structural Synthesis of the Leinster Area of the Agnew-Wiluna Belt, Yilgarn Craton, Western Australia, with Special Reference to the Volcanological Setting of Komatiite-Associated Nickel Sulfide Deposits. Econ. Geol. 2015, 110, 469–503. [Google Scholar] [CrossRef]
- Kyne, R.; Torremans, K.; Güven, J.; Doyle, R.; Walsh, J. 3-D Modeling of the Lisheen and Silvermines Deposits, County Tipperary, Ireland: Insights into Structural Controls on the Formation of Irish Zn-Pb Deposits. Econ. Geol. 2019, 114, 93–116. [Google Scholar] [CrossRef]
- Weng, Z.H.; Jowitt, S.M.; Mudd, G.M.; Haque, N. Assessing rare earth element mineral deposit types and links to environmental impacts. Appl. Earth Sci. IMM Trans. Sect. B 2013, 122, 83–96. [Google Scholar] [CrossRef]
- Issayeva, L.D.; Asubaeva, S.K.; Togizov, K.S.; Kembayev, M.K. The formation of a geoinformation system and creation of a digital model of Syrymbet rare-metal deposit (North Kazakhstan). Int. Multidiscip. Sci. Geo Conf. Surv. Geol. Min. Ecol. Manag. SGEM Bulg. 2019, 19, 609–616. [Google Scholar] [CrossRef]
- Laumullin, T.M. Deposits of rare-metals and rare-earths of Kazakhstan. In Handbook (in Russia), 2nd ed.; The Republican State Enterprise on the right of economic management Information and Analytical Centre for Geology and Mineral Resources: Almaty, Kazakhstan, 2015; 270p. [Google Scholar]
- Issayeva, L.D.; Togizov, K.S.; Duczmal-Czernikiewicz, A.; Kurmangazhina, M.; Muratkhanov, D. Ore-controlling factors as the basis for singling out the prospective areas within the Syrymbet rare-metal deposit, Northern Kazakhstan. Min. Miner. Depos. 2022, 2, 14–21. [Google Scholar] [CrossRef]
- Rare Earth Element and Rare Metal Inventory of Central Asia. Available online: https://pubs.usgs.gov/fs/2017/3089/fs20173089.pdf (accessed on 6 March 2018).
- Fan, H.-R.; Yang, K.-F.; Hu, F.-F.; Liu, S.; Wang, K.-Y. The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis. Geosci. Front. 2016, 7, 335–344. [Google Scholar] [CrossRef]
- Estrade, G.; Smith, M.P.; Goodenough, K.M.; Nason, P. REE concentration processes in ion adsorption deposits: Evidence from the Ambohimirahavavy alkaline complex in Madagascar. Ore Geol. Rev. 2019, 112, 1–21. [Google Scholar] [CrossRef]
- Zhan, Y.-X.; Li, X.-C.; Wu, B.; Yang, K.-F.; Fan, H.-R.; Li, X.-H. The occurrence and genesis of HREE-rich minerals from the giant Bayan Obo deposit, China. Ore Geol. Rev. 2023, 157, 105438. [Google Scholar] [CrossRef]
- Mohammad, A.M. Rare earth elements geochemistry of recent clastic sediments from different environments from part of the eastern coast of India. J. Sediment. Environ. 2021, 6, 431–445. [Google Scholar] [CrossRef]
- Simandl, G.J. Geology and market dependent significance of rare earth element resources. Miner. Depos. 2014, 49, 889–904. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, Y.; Wang, Y.; Xu, Y.; Lin, Z.; Liang, X.; Cheng, H. Review of rare earth element (REE) adsorption on and desorption from clay minerals: Application to formation and mining of ion-adsorption REE deposits. Ore Geol. Rev. 2023, 157, 105446. [Google Scholar] [CrossRef]
- Bao, Z.W.; Zhao, Z.H. Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol. Rev. 2008, 33, 519–535. [Google Scholar] [CrossRef]
- Ichimura, K.; Sanematsu, K.; Kon, Y.; Takagi, T.; Murakami, T. REE redistributions during granite weathering: Implications for Ce anomaly as a proxy for paleoredox states. Am. Miner. 2020, 105, 848–859. [Google Scholar] [CrossRef]
- Dushyantha, N.; Batapola, N.; Ilankoon, I.M.S.K.; Rohitha, S.; Premasiri, R.; Abeysinghe, B.; Ratnayake, N.; Dissanayake, K. The story of rare earth elements (REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol. Rev. 2020, 122, 103521. [Google Scholar] [CrossRef]
∑REE | Elements of Cerium Series (LREEs) | Elements of Yttrium Series (HREEs) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | Ce | Pr | Nd | Sm | Eu | Y | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |
Semiquantitative spectral analysis | |||||||||||||||
3940 | 250 | 200 | 1000 | 1000 | 300 | 30 | 200 | 100 | 200 | 300 | 20 | 300 | 2.5 | 25 | 10 |
Chemical analysis (enrichment factor: 200) | |||||||||||||||
49.8 | 10 | 15 | 5 | 5 | 1.5 | 0.2 | 5 | 1 | 1 | 2 | ND | 2 | 0.5 | 1.5 | 0.1 |
Semiquantitative spectral analysis | |||||||||||||||
3740 | 200 | 200 | 1000 | 1000 | 300 | 30 | 70 | 100 | 200 | 300 | 20 | 300 | 0.7 | 7 | 10 |
Chemical analysis (enrichment factor: 500) | |||||||||||||||
281 | 50 | 70 | 7 | 50 | 6 | 1 | 60 | 7 | 6 | 10 | ND | 6 | 0.5 | 6 | 1 |
Semiquantitative spectral analysis | |||||||||||||||
3450 | 50 | 20 | 1000 | 1000 | 300 | 30 | 100 | 100 | 200 | 300 | 20 | 300 | 1 | 15 | 10 |
Chemical analysis (enrichment factor: 200) | |||||||||||||||
134 | 20 | 10 | 2 | 20 | 3 | 0.5 | 50 | 10 | 1 | 7 | ND | 4 | 0.5 | 5 | 1 |
Semiquantitative spectral analysis | |||||||||||||||
3460 | 70 | 70 | 1000 | 1000 | 300 | 30 | 50 | 100 | 200 | 300 | 20 | 300 | 0.5 | 5 | 10 |
Chemical analysis (enrichment factor: 500) | |||||||||||||||
167 | 30 | 20 | 7 | 40 | 5 | 1 | 40 | 10 | 4 | 4 | ND | 4 | 0.4 | 5 | 1 |
Average content of REEs throughout the Shok-Karagay site (g/t) | |||||||||||||||
3640 | 142 | 123 | 1000 | 1000 | 300 | 30 | 105 | 100 | 200 | 300 | 20 | 300 | 1.2 | 13 | 10 |
158 | 28 | 29 | 5 | 29 | 3.9 | 0.68 | 39 | 7 | 3 | 0.8 | ND | 4 | 0.48 | 4.4 | 0.8 |
Rare-metal-bearing Minerals | |
Tantalite–Columbite | +++ |
Cassiterite–Wolframite | +++ |
Ilmenorutile | ++ |
Rare-earth-element-bearing Minerals | |
Monazite | +++ |
Parisite | ++ |
Rhabdophane | ++ |
Thorite | + |
Orangite | + |
Gangue Minerals | |
Quartz | +++ |
Chlorite | +++ |
Micas | +++ |
K-feldspar | +++ |
Tourmaline | ++ |
Garnet | ++ |
Amphibole | ++ |
Epidote–zoisite | ++ |
Sphene | + |
Apatite | + |
Fluorite | + |
Spinel | + |
Cyanite | + |
Sillimanite | + |
Ilmenite | + |
Magnetite | + |
Titanomagnetite | + |
Zircon | + |
Hematite | + |
Pyrite | + |
Chalcopyrite | + |
Arsenopyrite | + |
Rutile | + |
Galena | + |
Major Compounds (in wt.%) | ||||
---|---|---|---|---|
Monazite | Silicorhabdophane | Parisite | ||
F | 1.56 | ND | ND | 7.47 |
Al2O3 | ND | ND | ND | 0.96 |
SiO2 | ND | 11.4 | 11.7 | 2.84 |
P2O5 | 28.8 | 30 | 31.8 | ND |
CaO | 3.28 | 2.48 | 2.78 | 2.39 |
TiO2 | ND | ND | ND | 0.53 |
Fe2O3 | ND | 0.84 | ND | 4.78 |
Y2O3 | ND | ND | ND | 7.04 |
Rare earth elements (in wt.%) | ||||
La2O3 | 10.7 | 13.6 | 13.7 | 13.9 |
Ce2O3 | 27.6 | 29.7 | 29.1 | 18.4 |
Pr2O3 | 2.22 | 2.09 | ND | 2.44 |
Nd2O3 | 8.86 | 7.58 | 8.2 | 10.8 |
Sm2O3 | 1.56 | ND | ND | 2.73 |
Eu2O3 | 0.34 | ND | ND | 0.76 |
Gd2O3 | 2.14 | ND | ND | 2.63 |
Tb2O3 | ND | ND | ND | 1.07 |
Dy2O3 | 0.83 | ND | ND | 1.88 |
ThO2 | 0.7 | 3.97 | 6.92 | 1.9 |
UO3 | 1.64 | ND | ND | ND |
SUM | 90.23 | 101.66 | 104.2 | 82.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Togizov, K.; Issayeva, L.; Muratkhanov, D.; Kurmangazhina, M.; Swęd, M.; Duczmal-Czernikiewicz, A. Rare Earth Elements in the Shok-Karagay Ore Fields (Syrymbet Ore District, Northern Kazakhstan) and Visualisation of the Deposits Using the Geography Information System. Minerals 2023, 13, 1458. https://doi.org/10.3390/min13111458
Togizov K, Issayeva L, Muratkhanov D, Kurmangazhina M, Swęd M, Duczmal-Czernikiewicz A. Rare Earth Elements in the Shok-Karagay Ore Fields (Syrymbet Ore District, Northern Kazakhstan) and Visualisation of the Deposits Using the Geography Information System. Minerals. 2023; 13(11):1458. https://doi.org/10.3390/min13111458
Chicago/Turabian StyleTogizov, Kuanysh, Lyudmila Issayeva, Daulet Muratkhanov, Madina Kurmangazhina, Maciej Swęd, and Agata Duczmal-Czernikiewicz. 2023. "Rare Earth Elements in the Shok-Karagay Ore Fields (Syrymbet Ore District, Northern Kazakhstan) and Visualisation of the Deposits Using the Geography Information System" Minerals 13, no. 11: 1458. https://doi.org/10.3390/min13111458
APA StyleTogizov, K., Issayeva, L., Muratkhanov, D., Kurmangazhina, M., Swęd, M., & Duczmal-Czernikiewicz, A. (2023). Rare Earth Elements in the Shok-Karagay Ore Fields (Syrymbet Ore District, Northern Kazakhstan) and Visualisation of the Deposits Using the Geography Information System. Minerals, 13(11), 1458. https://doi.org/10.3390/min13111458