Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
2.3.1. UCS Test
2.3.2. X-ray CT Scanning Test
2.3.3. SEM-EDS Measurement
3. Results and Discussion
3.1. Fiber Impact on FRCTWRF’s Strength/Peak Strain Behavior
3.2. Fiber Effect on FRCTWRF’s Stress–Strain/Toughness Behavior
3.3. Microstructures Analysis Based on 3D Reconstruction
3.4. SEM Characteristics and Element Distribution
4. Conclusions
- (1)
- Fiber incorporation can lead to changes in compressive strength of FRCTWRF. The changes in FRCTWRF’s strength were +4.49% and −24.72%. A rise in the content of fiber led to an increase and then a drop in FRCTWRF’s strength. The reinforcement effect of 6 mm long polypropylene fibers on FRCTWRF’s strength was better than 12 mm long fibers. FRCTWRF’s strength was maximum at 0.93 MPa for 6 mm long fiber and 0.6 wt.% fiber content.
- (2)
- FRCTWRF’s peak strains were all greater than those of CTWRF. The peak strains increased with rising fiber length. At 6 mm long fiber, a rise in the content of fiber led to a decrease and then an increase in peak strain. Peak strain decreases with growing fiber content for 6 mm long fiber. The maximum peak strain of FRCTWRF was 2.88% for 12 mm long fiber and 0.3 wt.% fiber content.
- (3)
- Fibers governs the post-peak step of the FRCTWRF’s stress–strain plot, and the post-peak ductility of FRCTWRF increases with increasing fiber length. 12 mm long fiber tends to agglomerate, and the fiber agglomeration affects the spatial distribution of waste stones. Waste rocks in PP6-0.6 are distributed in FRCTWRF’s middle and lower parts. Waste rocks are uniformly distributed along the radial direction. Waste rocks in PP12-0.6 are not uniformly distributed along the axial and radial directions.
- (4)
- Fibers have a bridging influence on cracks observed in FRCTWRF. The joint action of fibers and waste stones affects the damage mode of FRCTWRF, which is tensile damage in PP6-0.6 and shear damage in PP12-0.6. Increasing fiber long led to a drop of fracture body. FRCTWRF with 12 mm fibers is more resistant to cracking. Fibers and the FRCTWRF matrix were connected by hydration materials, which were typically CSH gel and needle-like Ca alumina. The key elements within the hydration products for filling specimens are O and C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Na, Q.; Zhang, L.F. Monitoring of in-situ properties for cemented tailings backfill that under drainage condition. Constr. Build. Mater. 2022, 356, 129254. [Google Scholar] [CrossRef]
- Du, X.J.; Feng, G.R.; Zhang, M.; Wang, Z.H.; Liu, W.H. Influence of backfilling rate on the stability of the “backfilling body-immediate roof” cooperative bearing structure. Int. J. Min. Sci. Technol. 2022, 32, 1197–1206. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Hou, Z.; Yi, X.; Wei, X. In vivo X-ray computed tomography investigations of crack damage evolution of cemented waste rock backfills (CWRB) under uniaxial deformation. Minerals 2018, 8, 539. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Gu, X.; Wang, Z.; Xu, S.; Jiang, H.; Yilmaz, E. Admixture effects on rheological/mechanical behavior and microstructure evolution of alkali-activated slag backfills. Minerals 2023, 13, 30. [Google Scholar] [CrossRef]
- Lv, H.Y.; Chen, Y.L.; Xie, Q.; Wu, P.; Chen, Y.; Gu, J.; Wu, H.S. Performance optimization and characterization of loess-slag-based geopolymer composite: A new sustainable green material for backfill. Constr. Build. Mater. 2022, 354, 129103. [Google Scholar] [CrossRef]
- Yin, S.H.; Hou, Y.Q.; Yang, S.X.; Chen, X. Study on static and dynamic flocculation settlement characteristics of fine tailings slurry and influence of flocculant on strength of fine tailings backfill. Case Stud. Constr. Mater. 2022, 17, e01525. [Google Scholar] [CrossRef]
- Jian, S.W.; Cheng, C.; Lv, Y.; Wang, C.F.; Tan, H.B.; Li, B.D. Preparation and evaluation of high-fluid backfill materials from construction spoil. Constr. Build. Mater. 2022, 345, 128370. [Google Scholar] [CrossRef]
- Chiloane, N.M.; Mulenga, F.K. Revisiting factors contributing to the strength of cemented backfill support system: A review. J. Rock Mech. Geotech. Eng. 2022. [CrossRef]
- Tao, J.; Yang, X.G.; Ding, P.P.; Li, X.L.; Zhou, J.W.; Lu, G.D. A fully coupled thermo-hydro-mechanical-chemical model for cemented backfill application in geothermal conditions. Eng. Geol. 2022, 302, 106643. [Google Scholar] [CrossRef]
- Gao, Y.; Sui, H.; Yu, Z.X.; Wu, J.Y.; Chen, W.Q.; Jing, H.W.; Ding, M.J.; Liu, Y.M. Industrial graphene oxide-fly ash hybrid for high-performance cemented waste rock backfill. Constr. Build. Mater. 2022, 359, 129484. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Yu, Z.Q.; Wang, H.W. Experimental investigation on some performance of rubber fiber modified cemented paste backfill. Constr. Build. Mater. 2021, 271, 121586. [Google Scholar]
- Yin, S.H.; Hou, Y.Q.; Chen, X.; Zhang, M.Z.; Du, H.H.; Gao, C. Mechanical behavior, failure pattern and damage evolution of fiber-reinforced cemented sulfur tailings backfill under uniaxial loading. Constr. Build. Mater. 2022, 332, 127248. [Google Scholar] [CrossRef]
- Chen, S.M.; Yilmaz, E.; Wang, W.; Wang, Y.M. Curing stress effect on stability, microstructure, matric suction and electrical conductivity of cementitious tailings backfills. Constr. Build. Mater. 2022, 360, 129601. [Google Scholar]
- Gao, T.; Sun, W.; Li, Z.; Fan, K.; Jiang, M.; Cheng, H. Study on shear characteristics and failure mechanism of inclined layered backfill in mining solid waste utilization. Minerals 2022, 12, 1540. [Google Scholar]
- Koohestani, B.; Mokhtari, P.; Yilmaz, E.; Mahdipour, F.; Darban, A.K. Geopolymerization mechanism of binder-free mine tailings by sodium silicate. Constr. Build. Mater. 2021, 268, 121217. [Google Scholar] [CrossRef]
- Béket Dalcé, J.; Li, L.; Yang, P. Experimental study of uniaxial compressive strength (UCS) distribution of hydraulic backfill associated with segregation. Minerals 2019, 9, 147. [Google Scholar]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. One-dimensional consolidation parameters of cemented paste backfills. Gospod. Surowcami Miner./Miner. Resour. Manag. 2012, 28, 29–45. [Google Scholar]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.M.; Wang, W.; Yan, R.; Wu, A.; Wang, Y.; Yilmaz, E. A joint experiment and discussion for strength characteristics of cemented paste backfill considering curing conditions. Minerals 2022, 12, 211. [Google Scholar] [CrossRef]
- Sadrossadat, E.; Basarir, H.; Luo, G.; Karrech, A.; Durham, R.; Fourie, A.; Elchalakani, M. Multi-objective mixture design of cemented paste backfill using particle swarm optimisation algorithm. Miner. Eng. 2020, 153, 106385. [Google Scholar]
- Qiu, J.P.; Guo, Z.B.; Yang, L.; Jiang, H.Q.; Zhao, Y.L. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill. Constr. Build. Mater. 2020, 263, 120645. [Google Scholar] [CrossRef]
- Yan, R.; Yin, S.; Zhang, H.; Wang, L.; Chen, D. Effect of superplasticizer on the setting behaviors and mechanical properties of tailings-waste rock cemented paste backfills. Case Stud. Constr. Mater. 2023, 18, e01714. [Google Scholar] [CrossRef]
- Zhao, Z.; Cao, S.; Yilmaz, E. Effect of layer thickness on flexural property and microstructure of 3D printed rhomboid polymer reinforced cemented tailings composites. Int. J. Miner. Metall. Mater. 2023, 30, 236–249. [Google Scholar] [CrossRef]
- Xu, X.; Fall, M.; Alainachi, I.; Fang, K. Characterisation of fibre-reinforced backfill/rock interface through direct shear tests. Geotech. Res. 2019, 7, 11–25. [Google Scholar] [CrossRef]
- Qin, S.W.; Cao, S.; Yilmaz, E. Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills. Constr. Build. Mater. 2022, 320, 126296. [Google Scholar] [CrossRef]
- Gorakhki, M.H.; Bareither, C.A. Sustainable reuse of mine tailings and waste rock as water-balance covers. Minerals 2017, 7, 128. [Google Scholar] [CrossRef]
- Yan, B.X.; Zhu, W.; Hou, C.; Yilmaz, E.; Saadat, M. Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave. Constr. Build. Mater. 2020, 249, 118733. [Google Scholar] [CrossRef]
- Zhou, Y.B.; Fall, M.; Haruna, S. Flow ability of cemented paste backfill with chloride-free antifreeze additives in sub-zero environments. Cem. Concr. Compos. 2022, 126, 104359. [Google Scholar] [CrossRef]
- Huang, Z.; Yilmaz, E.; Cao, S. Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, K.; Yu, X.; Yan, Y.J.; He, Z.W.; Lai, Y.; Zhou, Y. Crack classification of fiber-reinforced backfill based on Gaussian mixed moving average filtering method. Cem. Concr. Compos. 2022, 134, 104740. [Google Scholar] [CrossRef]
- Wang, S.; Song, X.P.; Chen, Q.S.; Wang, X.J.; Wei, M.L.; Ke, Y.X.; Luo, Z.H. Mechanical properties of cemented tailings backfill containing alkalized rice straw of various lengths. J. Environ. Manag. 2020, 276, 111124. [Google Scholar] [CrossRef]
- Xu, X.; Wu, W.; Xu, W. Sulfate-dependent shear behavior of cementing fiber-reinforced tailings and rock. Minerals 2020, 10, 1032. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhou, X.; Yi, X.; Xiao, Y.; Wei, X. In situ X-ray CT investigations of meso-damage evolution of cemented waste rock-tailings backfill (CWRTB) during triaxial deformation. Minerals 2019, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.L.; Wu, P.Q.; Qiu, J.P.; Guo, Z.B.; Tian, Y.S.; Sun, X.G.; Gu, X.W. Recycling hazardous steel slag after thermal treatment to produce a binder for cemented paste backfill. Powder Technol. 2022, 395, 652–662. [Google Scholar] [CrossRef]
- Qi, C.C.; Chen, Q.S.; Kim, S.S. Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization. Miner. Eng. 2020, 155, 106422. [Google Scholar] [CrossRef]
- Hane, I.; Belem, T.; Benzaazoua, M.; Maqsoud, A. Laboratory characterization of cemented tailings paste containing crushed waste rocks for improved compressive strength development. Geotech. Geolog. Eng. 2017, 35, 645–662. [Google Scholar] [CrossRef]
- Solismaa, S.; Torppa, A.; Kuva, J.; Heikkilä, P.; Hyvönen, S.; Juntunen, P.; Benzaazoua, M.; Kauppila, T. Substitution of cement with granulated blast furnace slag in cemented paste backfill: Evaluation of technical and chemical properties. Minerals 2021, 11, 1068. [Google Scholar] [CrossRef]
- Li, J.J.; Yilmaz, E.; Cao, S. Influence of solid content, cement/tailings ratio and curing time on rheology and strength of cemented tailings backfill. Minerals 2020, 10, 922. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E. Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag. Minerals 2022, 12, 6. [Google Scholar] [CrossRef]
- Ouyang, S.Y.; Huang, Y.L.; Zhou, N. Experiment on hydration exothermic characteristics and hydration mechanism of sand-based cemented paste backfill materials. Constr. Build. Mater. 2022, 318, 125870. [Google Scholar] [CrossRef]
- Kasap, T.; Yilmaz, E.; Sari, M. Effects of mineral additives and age on microstructure evolution and durability properties of sand-reinforced cementitious mine backfills. Constr. Build. Mater. 2022, 352, 129079. [Google Scholar] [CrossRef]
- Chakilam, S.; Cui, L. Effect of polypropylene fiber content and fiber length on the saturated hydraulic conductivity of hydrating cemented paste backfill. Constr. Build. Mater. 2020, 262, 120854. [Google Scholar] [CrossRef]
- Cao, S.; Xue, G.L.; Yilmaz, E. Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending. IEEE Access 2019, 7, 139317–139328. [Google Scholar] [CrossRef]
- Zhao, K.; He, Z.; Yang, J.; Yan, Y.; Yu, X.; Zhou, Y.; Zhang, X.; Wang, J. Investigation of failure mechanism of cement-fiber-tailings matrix composites using digital image correlation and acoustic emission. Constr. Build. Mater. 2022, 335, 127513. [Google Scholar] [CrossRef]
- Feng, Y.; Li, F.; Qi, W.; Ren, Q.; Qi, W.; Duan, G.; Zheng, K.; Han, Y.; Pang, H. Mechanical properties and microstructure of iron tailings cemented paste backfills using carbide slag-activated ground granulated blast furnace slag as alternative binder. Minerals 2022, 12, 1549. [Google Scholar] [CrossRef]
- Tan, Y.-y.; Zhang, K.; Yu, X.; Song, W.-d.; Wang, J.; Hai, C.-l. The mechanical and microstructural properties of composite structures made of a cement-tailing backfill and rock core. Minerals 2020, 10, 159. [Google Scholar] [CrossRef]
- Yi, X.; Ma, G.; Fourie, A. Compressive behaviour of fibre-reinforced cemented paste backfill. Geotext. Geomembr. 2015, 43, 207–215. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.-Z.; Chen, X.; Zhou, J.; Qi, C.C.; Chen, Q.-S.; Rao, D.-J. Artificial intelligence model for studying unconfined compressive performance of fiber-reinforced cemented paste backfill. Trans. Nonferrous Met. Soc. China 2021, 31, 1087–1102. [Google Scholar] [CrossRef]
- He, W.; Liu, L.; Fang, Z.; Gao, Y.; Sun, W. Effect of polypropylene fiber on properties of modified magnesium coal-based solid waste backfill materials. Constr. Build. Mater. 2023, 362, 129695. [Google Scholar] [CrossRef]
- Chen, X.; Shi, X.Z.; Zhou, J.; Chen, Q.S.; Li, E.; Du, X.H. Compressive behavior and microstructural properties of tailings polypropylene fibre-reinforced cemented paste backfill. Constr. Build. Mater. 2018, 190, 211–221. [Google Scholar] [CrossRef]
- Xu, W.; Li, Q.; Zhang, Y. Influence of temperature on compressive strength, microstructure properties and failure pattern of fiber-reinforced cemented tailings backfill. Constr. Build. Mater. 2019, 222, 776–785. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Feng, G.; Cao, S. Analysis of tensile mechanical characteristics of fiber reinforced backfill through splitting tensile and three-point bending tests. Int. J. Min. Reclam. Environ. 2022, 36, 218–234. [Google Scholar] [CrossRef]
- Wu, J.Y.; Jing, H.; Yin, Q.; Meng, B.; Han, G. Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure, dosage and particle size effects. Constr. Build. Mater. 2020, 242, 118132. [Google Scholar] [CrossRef]
- Zhou, N.; Du, E.; Zhang, J.X.; Zhu, C.L.; Zhou, H. Mechanical properties improvement of sand-based cemented backfill body by adding glass fibers of different lengths and ratios. Constr. Build. Mater. 2021, 280, 122408. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.H.; Niu, D.T.; Fu, Q. Quantitative evaluation of the characteristics of air voids and their relationship with the permeability and salt freeze-thaw resistance of hybrid steel-polypropylene fiber-reinforced concrete composites. Cem. Concr. Compos. 2022, 125, 104292. [Google Scholar] [CrossRef]
- Cao, S.; Xue, G.L.; Yilmaz, E.; Yin, Z.Y. Assessment of rheological and sedimentation characteristics of cemented tailings backfill slurry. Int. J. Min. Reclam. Environ. 2021, 35, 319–335. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Feng, G.R.; Cao, S. Bending behavior and failure mode of cemented tailings backfill composites incorporating different fibers for sustainable construction. Constr. Build. Mater. 2021, 289, 123163. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E. Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites. Int. J. Miner. Metall. Mater. 2022, 29, 345–355. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Zhao, Q.; Wang, J.; Liu, T.; Zhang, Q. Gradation design of phosphorus tailing-graded waste rock subgrade filling using discrete element method. Minerals 2022, 12, 573. [Google Scholar] [CrossRef]
- Xin, L.W. Meso-scale modeling of the influence of waste rock content on mechanical behavior of cemented tailings backfill. Constr. Build. Mater. 2021, 307, 124473. [Google Scholar] [CrossRef]
- Yin, S.H.; Hou, Y.Q.; Chen, X.; Zhang, M.Z. Mechanical, flowing and microstructural properties of cemented sulfur tailings backfill: Effects of fiber lengths and dosage. Constr. Build. Mater. 2021, 309, 125058. [Google Scholar] [CrossRef]
- Libos, I.L.S.; Cui, L.; Liu, X.R. Effect of curing temperature on time-dependent shear behavior and properties of polypropylene fiber-reinforced cemented paste backfill. Constr. Build. Mater. 2021, 311, 125302. [Google Scholar] [CrossRef]
- Wang, A.A.; Cao, S.; Yilmaz, E. Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading. Constr. Build. Mater. 2022, 322, 126448. [Google Scholar] [CrossRef]
- Xu, X.Q.; An, N.; Fang, K. Experimental investigation into the temperature effect on the shear behavior of the fiber-reinforced interface between rock and cemented paste backfill. Constr. Build. Mater. 2022, 356, 129280. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Feng, G.R.; Cao, S.; Sun, L.J. Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading. Constr. Build. Mater. 2021, 279, 122417. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, K.; Yu, X.; Yan, Y.J.; He, Z.W.; Zhou, Y.; Lai, Y.M. Fracture evolution of fiber-reinforced backfill based on acoustic emission fractal dimension and b-value. Cem. Concr. Compos. 2022, 134, 104739. [Google Scholar] [CrossRef]
- Mashifana, T.; Sithole, T. Clean production of sustainable backfill material from waste gold tailings and slag. J. Clean. Prod. 2021, 308, 127357. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E. Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads. Constr. Build. Mater. 2022, 338, 127667. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H.J.; Hou, K.P. Control of waste rock-tailings paste backfill for active mining subsidence areas. J. Clean. Prod. 2018, 171, 567–579. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, S.; Yilmaz, E. Carbon nanotube reinforced cementitious tailings composites: Links to mechanical and microstructural characteristics. Constr. Build. Mater. 2023, 365, 130123. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Cao, S.; Yilmaz, E. Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill. Constr. Build. Mater. 2021, 300, 124005. [Google Scholar] [CrossRef]
Length (mm) | Density (g/cm3) | Tensile Strength (MPa) | Elongation Rate (%) | Elastic Modulus (GPa) |
---|---|---|---|---|
6.0/12.0 | 5.9 | 386.0 | 3.8 | 27.2 |
Sample ID | Fiber Length (mm) | Fiber Content (wt.%) | Tailings Content (wt.%) | Waste Rock Content (wt.%) |
---|---|---|---|---|
PP6-0.3 | 6 | 0.3 | 60 | 40 |
PP6-0.6 | 6 | 0.6 | 60 | 40 |
PP6-0.9 | 6 | 0.9 | 60 | 40 |
PP12-0.3 | 12 | 0.3 | 60 | 40 |
PP12-0.6 | 12 | 0.6 | 60 | 40 |
PP12-0.9 | 12 | 0.9 | 60 | 40 |
N-PP | 60 | 40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Cao, S.; Yilmaz, E. Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill. Minerals 2023, 13, 142. https://doi.org/10.3390/min13020142
Gao B, Cao S, Yilmaz E. Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill. Minerals. 2023; 13(2):142. https://doi.org/10.3390/min13020142
Chicago/Turabian StyleGao, Bo, Shuai Cao, and Erol Yilmaz. 2023. "Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill" Minerals 13, no. 2: 142. https://doi.org/10.3390/min13020142
APA StyleGao, B., Cao, S., & Yilmaz, E. (2023). Effect of Content and Length of Polypropylene Fibers on Strength and Microstructure of Cementitious Tailings-Waste Rock Fill. Minerals, 13(2), 142. https://doi.org/10.3390/min13020142