Application of Shewanella xiamenensis Placed on Zeolite in Treatment of Silver-Containing Effluents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effluents
2.2. Preparation of Biosorbent
2.3. Experiment Design
2.4. Applied Techniques
3. Results
3.1. Effect of pH on Metal Biosorption on Bio-Zeolite
3.2. Effect of Time on Metal Biosorption on Bio-Zeolite and Kinetic Studies
3.3. Effect of Silver Concentration on Its Biosorption on Bio-Zeolite and Equlibrium Studies
3.4. Effect of Temperature on Silver Biosorption on Bio-Zeolite and Thermodinamic Studies
3.5. FTIR Spectra
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- de Freitas, G.R.; Vieira, M.G.A.; da Silva, M.G.C. Characterization and biosorption of silver by biomass waste from the alginate industry. J. Clean. Prod. 2020, 271, 122588. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Xie, H.; Won, S.W.; Cui, L.; Wu, G. Adsorption of Ag (I) from aqueous solution by waste yeast: Kinetic, equilibrium and mechanism studies. Bioprocess Biosyst. Eng. 2014, 38, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Ratte, H.T. Bioaccumulation and toxicity of silver compounds: A review. Environ. Toxicol. Chem. 1999, 18, 89–108. [Google Scholar] [CrossRef]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [Green Version]
- Drake, P.L.; Hazelwood, K.J. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann. Occup. Hyg. 2005, 49, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wang, F.; Yalamarty, S.S.K.; Filipczak, N.; Jin, Y.; Li, X. Nano Silver-Induced Toxicity and Associated Mechanisms. Int. J. Nanomed. 2022, 17, 1851–1864. [Google Scholar] [CrossRef]
- De Matteis, V. Exposure to Inorganic Nanoparticles: Routes of Entry, Immune Response, Biodistribution and In Vitro/In Vivo Toxicity Evaluation. Toxics 2017, 5, 29. [Google Scholar] [CrossRef] [Green Version]
- Bakand, S.; Hayes, A. Toxicological Considerations, Toxicity Assessment, and Risk Management of Inhaled Nanoparticles. Int. J. Mol. Sci. 2016, 17, 929. [Google Scholar] [CrossRef]
- Gao, Y.; Zhou, Y.; Wang, H.; Lin, W.; Wang, Y.; Sun, D.; Hong, J.; Li, Q. Simultaneous Silver Recovery and Cyanide Removal from Electroplating Wastewater by Pulse Current Electrolysis Using Static Cylinder Electrodes. Ind. Eng. Chem. Res. 2013, 52, 5871–5879. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Al-Bogami, A.S.; Guibal, E. 2-Mercaptobenzimidazole derivative of chitosan for silver sorption—Contribution of magnetite incorporation and sonication effects on enhanced metal recovery. Chem. Eng. J. 2020, 403, 126265. [Google Scholar] [CrossRef]
- Yin, X.; Long, J.; Xi, Y.; Luo, X. Recovery of Silver from Wastewater Using a New Magnetic Photocatalytic Ion-Imprinted Polymer. ACS Sustain. Chem. Eng. 2017, 5, 2090–2097. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, F.; Peng, Z. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites. Sci. Rep. 2019, 9, 3663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demey, H.; Vincent, T.; Guibal, E. A novel algal-based sorbent for heavy metal removal. Chem. Eng. J. 2018, 332, 582–595. [Google Scholar] [CrossRef]
- Tighadouini, S.; Radi, S.; Roby, O.; Hammoudan, I.; Saddik, R.; Garcia, Y.; Almarhoon, Z.M.; Mabkhot, Y.N. Kinetics, thermodynamics, equilibrium, surface modelling, and atomic absorption analysis of selective Cu(ii) removal from aqueous solutions and rivers water using silica-2-(pyridin-2-ylmethoxy)ethan-1-ol hybrid material. RSC Adv. 2021, 12, 611–625. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Vergel, K.; Nekhoroshkov, P.; Rodlovskaya, E. Treatment of Rhenium-Containing Effluents Using Environmentally Friendly Sorbent, Saccharomyces cerevisiae Biomass. Materials 2021, 14, 4763. [Google Scholar] [CrossRef] [PubMed]
- Zinicovscaia, I.; Yushin, N.; Abdusamadzoda, D.; Grozdov, D.; Shvetsova, M. Efficient Removal of Metals from Synthetic and Real Galvanic Zinc–Containing Effluents by Brewer’s Yeast Saccharomyces cerevisiae. Materials 2020, 13, 3624. [Google Scholar] [CrossRef]
- Fathollahi, A.; Khasteganan, N.; Coupe, S.J.; Newman, A.P. A meta-analysis of metal biosorption by suspended bacteria from three phyla. Chemosphere 2021, 268, 129290. [Google Scholar] [CrossRef]
- Pham, V.H.T.; Kim, J.; Chang, S.; Chung, W. Bacterial Biosorbents, an Efficient Heavy Metals Green Clean-Up Strategy: Prospects, Challenges, and Opportunities. Microorganisms 2022, 10, 610. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Moghaddam, S.A.E.; Harun, R.; Mokhtar, M.N.; Zakaria, R. Potential of Zeolite and Algae in Biomass Immobilization. BioMed Res. Int. 2018, 2018, 6563196. [Google Scholar] [CrossRef]
- Vijayaraghavan, K.; Yun, Y.-S. Bacterial biosorbents and biosorption. Biotechnol. Adv. 2008, 26, 266–291. [Google Scholar] [CrossRef]
- Yuna, Z. Review of the Natural, Modified, and Synthetic Zeolites for Heavy Metals Removal from Wastewater. Environ. Eng. Sci. 2016, 33, 443–454. [Google Scholar] [CrossRef]
- Elboughdiri, N. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Cogent Eng. 2020, 7, 1782623. [Google Scholar] [CrossRef]
- Erdem, E.; Karapinar, N.; Donat, R. The removal of heavy metal cations by natural zeolites. J. Colloid Interface Sci. 2004, 280, 309–314. [Google Scholar] [CrossRef]
- Senila, L.; Hoaghia, A.; Moldovan, A.; Török, I.A.; Kovacs, D.; Simedru, D.; Tomoiag, C.H.; Senila, M. The Potential Application of Natural Clinoptilolite-Rich Zeolite as Support for Bacterial Community Formation for Wastewater Treatment. Materials 2022, 15, 3685. [Google Scholar] [CrossRef] [PubMed]
- Popova, N.; Artemiev, G.; Zinicovscaia, I.; Yushin, N.; Demina, L.; Boldyrev, K.; Sobolev, D.; Safonov, A. Biogeochemical Permeable Barrier Based on Zeolite and Expanded Clay for Immobilization of Metals in Groundwater. Hydrology 2022, 10, 4. [Google Scholar] [CrossRef]
- Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Abdusamadzoda, D.; Safonov, A.; Rodlovskaya, E. Zinc-Containing Effluent Treatment Using Shewanella xiamenensis Biofilm Formed on Zeolite. Materials 2021, 14, 1760. [Google Scholar] [CrossRef]
- Khosravi, A.; Javdan, M.; Yazdanpanah, G.; Malakootian, M. Removal of heavy metals by Escherichia coli (E. coli) biofilm placed on zeolite from aqueous solutions (case study: The wastewater of Kerman Bahonar Copper Complex). Appl. Water Sci. 2020, 10, 167. [Google Scholar] [CrossRef]
- Silva, B.; Pimentel, C.Z.; Machado, B.; Costa, F.; Tavares, T. Performance of a Combined Bacteria/Zeolite Permeable Barrier on the Rehabilitation of Wastewater Containing Atrazine and Heavy Metals. Processes 2023, 11, 246. [Google Scholar] [CrossRef]
- Monge-Amaya, O.; Valenzuela-García, J.L.; Félix, E.A.; Certucha-Barragan, M.T.; Leal-Cruz, A.L.; Almendariz-Tapia, F.J. Biosorptive Behavior of Aerobic Biomass Biofilm Supported on Clinoptilolite Zeolite for the Removal of Copper. Miner. Process. Extr. Met. Rev. 2013, 34, 422–428. [Google Scholar] [CrossRef]
- Quintelas, C.; Rocha, Z.; Silva, B.; Fonseca, B.; Figueiredo, H.; Tavares, T. Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr(VI), Cd(II), Fe(III) and Ni(II). Chem. Eng. J. 2009, 152, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.-N.; Liang, J.; Chen, C.; Li, K.; Zhou, W.; Jia, J.; Sun, T. Treatment of real deplating wastewater through an environmental friendly precipitation-electrodeposition-oxidation process: Recovery of silver and copper and reuse of wastewater. Sep. Purif. Technol. 2020, 248, 117082. [Google Scholar] [CrossRef]
- Grouzdev, D.S.; Safonov, A.V.; Babich, T.L.; Tourova, T.P.; Krutkina, M.S.; Nazina, T.N. Draft Genome Sequence of a Dissimilatory U(VI)-Reducing Bacterium, Shewanella xiamenensis Strain DCB2-1, Isolated from Nitrate- and Radionuclide-Contaminated Groundwater in Russia. Genome Announc. 2018, 6, e00555-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Yuan, F.; Zeng, G.; Li, X.; Gu, Y.; Shi, L.; Liu, W.; Shi, Y. Influence of pH on heavy metal speciation and removal from wastewater using micellar-enhanced ultrafiltration. Chemosphere 2017, 173, 199–206. [Google Scholar] [CrossRef]
- Wei, W.; Wang, Q.; Li, A.; Yang, J.; Ma, F.; Pi, S.; Wu, D. Biosorption of Pb (II) from aqueous solution by extracellular polymeric substances extracted from Klebsiella sp. J1: Adsorption behavior and mechanism assessment. Sci. Rep. 2016, 6, 31575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Mishra, R.; Kushwaha, P.; Saha, P. Removal of safranin from aqueous solutions by NaOH-treated rice husk: Thermodynamics, kinetics and isosteric heat of adsorption. Asia-Pac. J. Chem. Eng. 2010, 7, 236–249. [Google Scholar] [CrossRef]
- Omri, A.; Benzina, M. Adsorption characteristics of silver ions onto activated carbon prepared from almond shell. Desalination Water Treat. 2013, 51, 2317–2326. [Google Scholar] [CrossRef]
- Merroun, M.L.; Ben Omar, N.; Alonso, E.; Arias, J.M.; González-Muñoz, M.T. Silver sorption to Myxococcus xanthus biomass. Geomicrobiol. J. 2001, 18, 183–192. [Google Scholar] [CrossRef]
- Wajima, T. Removal of Ag(I) from Aqueous Solution by Japanese Natural Clinoptilolite. Adv. Chem. Eng. Sci. 2016, 6, 470–487. [Google Scholar] [CrossRef] [Green Version]
- Zinicovscaia, I.; Cepoi, L.; Chiriac, T.; Mitina, T.; Grozdov, D.; Yushin, N.; Culicov, O. Application of Arthrospira (Spirulina) platensis biomass for silver removal from aqueous solutions. Int. J. Phytoremediat. 2017, 19, 1053–1058. [Google Scholar] [CrossRef]
- Patel, H. Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder. Sci. Rep. 2020, 10, 16895. [Google Scholar] [CrossRef] [PubMed]
- Cruz, C.C.; da Costa, A.C.A.; Henriques, C.A.; Luna, A.S. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp. biomass. Bioresour. Technol. 2003, 91, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Lameiras, S.; Quintelas, C.; Tavares, T. Biosorption of Cr (VI) using a bacterial biofilm supported on granular activated carbon and on zeolite. Bioresour. Technol. 2008, 99, 801–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-L.; Wang, C.-T.; Chang, W.-C.; Chang, S.-Y. Adsorption treatment of oxide chemical mechanical polishing wastewater from a semiconductor manufacturing plant by electrocoagulation. J. Hazard. Mater. 2010, 180, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-G.; Ma, X.-L.; Sun, J.; Huang, M.-R. Powerful Reactive Sorption of Silver(I) and Mercury(II) onto Poly(o-phenylenediamine) Microparticles. Langmuir 2009, 25, 1675–1684. [Google Scholar] [CrossRef]
- Gupta, H.; Gogate, P.R. Intensified removal of copper from waste water using activated watermelon based biosorbent in the presence of ultrasound. Ultrason. Sonochem. 2016, 30, 113–122. [Google Scholar] [CrossRef]
- Kaur, M.; Sharma, P.; Kumari, S. Equilibrium studies for copper removal from aqueous solution using nanoadsorbent synthesized from rice husk. SN Appl. Sci. 2019, 1, 988. [Google Scholar] [CrossRef] [Green Version]
- Treto-Suárez, M.A.; Prieto-García, J.O.; Mollineda-Trujillo, Á.; Lamazares, E.; Hidalgo-Rosa, Y.; Mena-Ulecia, K. Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Sci. Rep. 2020, 10, 10836. [Google Scholar] [CrossRef]
- Baldermann, A.; Grießbacher, A.C.; Baldermann, C.; Purgstaller, B.; Letofsky-Papst, I.; Kaufhold, S.; Dietzel, M. Removal of Barium, Cobalt, Strontium, and Zinc from Solution by Natural and Synthetic Allophane Adsorbents. Geosciences 2018, 8, 309. [Google Scholar] [CrossRef]
Concentration, mg/L | ||||
---|---|---|---|---|
System | Ag | Cu | Ni | Zn |
Ag | 10 ± 0.4 | - | - | - |
Ag-Cu | 10 ± 0.3 | 5 ± 0.06 | - | - |
Ag-Cu-Ni-Zn | 10 ± 0.3 | 5 ± 0.06 | 2 ± 0.01 | 2 ± 0.02 |
Ag | Ag-Cu | Ag-Cu-Ni-Zn | ||||||
---|---|---|---|---|---|---|---|---|
Metal | Ag | Ag | Cu | Ag | Cu | Ni | Zn | |
PFO | qexp, mg/g | 0.72 ± 0.02 | 0.50 ± 0.003 | 0.25 ± 0.03 | 0.52 ± 0.01 | 0.28 ± 0.003 | 0.20 ± 0.004 | 0.19 ± 0.003 |
qe, mg/g | 0.71 ± 0.01 | 0.50 ± 0.006 | 0.25 ± 0.01 | 0.50 ± 0.01 | 0.28 ± 0.003 | 0.19 ± 0.005 | 0.18 ± 0.004 | |
k1, min−1 | 0.04 ± 0.004 | 0.08 ± 0.007 | 0.13 ± 0.07 | 0.07 ± 0.008 | 0.17 ± 0.03 | 0.05 ± 0.006 | 0.07 ± 0.007 | |
R2 | 0.98 | 0.99 | 0.99 | 0.98 | 0.99 | 0.97 | 0.97 | |
Radj2 | 0.99 | 0.99 | 0.98 | 0.96 | 0.97 | 0.95 | 0.96 | |
SSE, % | 0.09 | 0.08 | 0.39 | 0.08 | 0.02 | 0.90 | 0.2 | |
PSO | qe, mg/g | 0.82 ± 0.02 | 0.53 ± 0.01 | 0.25 ± 0.01 | 0.54 ± 0.008 | 0.28 ± 0.005 | 0.21 ± 0.004 | 0.20 ± 0.003 |
k2, g/mg·min | 0.06 ± 0.001 | 0.03 ± 0.009 | 1.48 ± 0.009 | 0.3 ± 0.002 | 2.7 ± 0.01 | 0.3 ± 0.03 | 0.05 ± 0.05 | |
R2 | 0.99 | 0.98 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | |
Radj2 | 0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.99 | |
SSE | 0.16 | 0.18 | 0.51 | 0.10 | 0.01 | 1.0 | 0.2 |
Ag | Ag-Cu | Ag-Cu-Ni-Zn | ||
---|---|---|---|---|
Langmuir | qm, mg/g | 14.8 ± 0.08 | 32.5 ± 0.5 | 12.8 ± 0.05 |
b, L/mg | 0.38 ± 0.003 | 0.22 ± 0.003 | 0.50 ± 0.002 | |
RL | 0.02 | 0.04 | 0.02 | |
R2 | 0.92 | 0.91 | 0.96 | |
Radj2 | 0.90 | 0.90 | 0.95 | |
Freundlich | KF, mg/g | 0.01 ± 0.007 | 0.008 ± 0.0006 | 0.03 ± 0.001 |
1/n | 1.39 ± 0.08 | 1.49 ± 0.06 | 1.2 ± 0.01 | |
R2 | 0.97 | 0.98 | 0.97 | |
Radj2 | 0.96 | 0.97 | 0.96 |
Sorbent | qmax, mg/g | Concentrations Range, mg/L | pH | Reference |
---|---|---|---|---|
Bio-zeolite | 12.8–32.5 | 10–100 | 6.0 | Present study |
Fe3O4@SiO2@TiO2 -IIP | 30.55 | 10–300 | 6.0 | [11] |
Fe3O4@SiO2@TiO2 -NIP | 17.21 | 10–300 | 6.0 | [11] |
Acidified biosorbent | 2.92 mmol/ g | 10–200 | 5.0 | [1] |
Waste yeast | 18.9–41.8 | 0–750 | 3.0 | [2] |
Arthrospira platensis | 31.6 | 5–30 | 3.0 | [40] |
Poly(o-phenylenediamine) Microparticles | 533 | 1–10 mM | 5.0 | [46] |
Japanese Natural Clinoptilolite | 0.64 mmol/g | 50 | 4.0 | [39] |
System | Metal | ∆G°, kJ/mol | ∆H°, kJ/mol | ∆S°, J/mol·K | R2 | |||
---|---|---|---|---|---|---|---|---|
293 K | 303 K | 313 K | 323 K | |||||
Ag | Ag | −9.3 | −9.6 | −10.0 | −10.3 | 0.4 | 33 | 0.79 |
Ag-Cu | Ag | −8.8 | −9.1 | −9.5 | −9.8 | 1.2 | 34 | 0.88 |
Cu | −10.5 | −10.7 | −11.0 | −11.3 | −2.4 | 27.4 | ||
Ag-Cu-Ni-Zn | Ag | −9.3 | −9.6 | −9.8 | −10.1 | −1.8 | 24.4 | 0.98 |
Cu | −10.6 | −11.0 | −11.5 | −11.9 | 2.3 | 44.0 | 0.99 | |
Ni | −9.2 | −9.6 | −10.0 | −10.4 | 2.2 | 30.0 | 0.99 | |
Zn | −11.8 | −12.1 | −12.5 | −12.9 | −0.5 | 38.2 | 0.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinicovscaia, I.; Yushin, N.; Grozdov, D.; Safonov, A. Application of Shewanella xiamenensis Placed on Zeolite in Treatment of Silver-Containing Effluents. Minerals 2023, 13, 179. https://doi.org/10.3390/min13020179
Zinicovscaia I, Yushin N, Grozdov D, Safonov A. Application of Shewanella xiamenensis Placed on Zeolite in Treatment of Silver-Containing Effluents. Minerals. 2023; 13(2):179. https://doi.org/10.3390/min13020179
Chicago/Turabian StyleZinicovscaia, Inga, Nikita Yushin, Dmitrii Grozdov, and Alexey Safonov. 2023. "Application of Shewanella xiamenensis Placed on Zeolite in Treatment of Silver-Containing Effluents" Minerals 13, no. 2: 179. https://doi.org/10.3390/min13020179
APA StyleZinicovscaia, I., Yushin, N., Grozdov, D., & Safonov, A. (2023). Application of Shewanella xiamenensis Placed on Zeolite in Treatment of Silver-Containing Effluents. Minerals, 13(2), 179. https://doi.org/10.3390/min13020179