Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge
Abstract
:1. Introduction
2. Experimental Program
2.1. Experimental Equipment
2.2. Specimens and Electrodes
2.3. Experimental Scheme
3. Rock Fracture Mechanism under PHVD
4. Macro Crack Acquisition and Micro Analysis
4.1. The Cutting and Fluorescent Staining Method
4.2. The Reliability of the CFS Method
4.3. Microscopic Analysis
5. Results and Discussion
5.1. Theoretical Background
5.1.1. Stress and Strain Analysis Method around a Circular Hole under Uniaxial Static Pressure
5.1.2. Stress and Strain Distribution around the Discharge Channel
5.2. Analysis of Fracturing Effect
5.2.1. Failure Modes
5.2.2. Fractal Dimension
5.2.3. Crack Length
6. Conclusions
- (1)
- In the absence of static pressure, red sandstone, after breakdown, forms a discharge channel and the macroscopic cracks around the discharge channel are radially distributed. Microscopic analysis indicates that the grains around the discharge channel are shown to be in a burning state under the effect of high temperature, and radial crack zones demonstrate intergranular fracture, transgranular fracture, and destroy of cements under the action of the shock wave.
- (2)
- The direction of static pressure has a significant effect on the distribution of cracks in sandstone under the effect of PHVD. When the applied static pressure is normal to the discharge channel, the cracks concentrate on the tensile stress zone around the discharge channel and tend to propagate along the direction of the applied static pressure. Cracks are difficult to initiate and propagate in the zone of compressive stress concentration. When the applied static pressure is parallel to the discharge channel, it can induce uniformly distributed tensile strains, and the cracks present a radial distribution, which matches the case without an applied static pressure.
- (3)
- The degree of fracturing of sandstone under the effect of PHVD can be influenced by the level of static pressure. When a low static pressure (5 and 10 MPa) is applied normally to the discharge channel, the total length and fractal dimension of cracks are less than that in specimens under no static pressure, which is detrimental to the fracture of sandstone. However, a high static pressure (15 and 20 MPa) can increase the total length and fractal dimension of cracks and promote fracturing of the sandstone. When static pressure is applied parallel to the discharge channel, the crack length and fractal dimension increase with increasing static pressure.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmadi, M.; Erfan, M.R.; Erfan, M.R.; Torkamany, M.J.; Safian, G.A. The effect of interaction time and saturation of rock on specific energy in ND: YAG laser perforating. Opt. Laser Technol. 2011, 43, 226–231. [Google Scholar] [CrossRef]
- Li, Q.; Chen, G.; Luo, D.; Ma, H.; Liu, Y. An experimental study of a novel liquid carbon dioxide rock-breaking technology. Int. J. Rock Mech. Min. Sci. 2020, 128, 104244. [Google Scholar] [CrossRef]
- Hassani, F.; Shadi, A.; Rafezi, H.; Sasmito, A.P.; Ghoreishi-Madiseh, S.A. Energy analysis of the effectiveness of micro-wave-assisted fragmentation. Miner. Eng. 2020, 159, 106642. [Google Scholar] [CrossRef]
- Zhu, X.; Luo, Y.; Liu, W.; He, L.; Gao, R.; Jia, Y. On the mechanism of high-voltage pulsed fragmentation from electrical break-down process. Rock Mech. Rock Eng. 2021, 54, 4593–4616. [Google Scholar] [CrossRef]
- Fukushima, K.; Kabir, M.; Kanda, K.; Obara, N.; Fukuyama, M.; Otsuki, A. Equivalent circuit models: An effective tool to simulate electric/dielectric properties of ores—An example using granite. Materials 2022, 15, 4549. [Google Scholar] [CrossRef]
- Andres, U.; Timoshkin, I.; Jirestig, J.; Stallknecht, H. Liberation of valuable inclusions in ores and slags by electrical pulses. Powder Technol. 2001, 114, 40–50. [Google Scholar] [CrossRef]
- Rajmeny, P.K.; Singh, U.K.; Sinha, B.K.P. Predicting rock failure around boreholes and drives adjacent to stopes in Indian mines in high stress regions. Int. J. Rock Mech. Min. Sci. 2002, 39, 151–164. [Google Scholar] [CrossRef]
- Saharan, M.R.; Mitri, H. Destress blasting as a mines safety tool: Some fundamental challenges for successful applications. Procedia Eng. 2011, 26, 37–47. [Google Scholar] [CrossRef]
- Shou, Y.D.; Zhou, X.P.; Qian, Q.H. A critical condition of the zonal disintegration in deep rock masses: Strain energy density approach. Theor. Appl. Fract. Mech. 2018, 97, 322–332. [Google Scholar] [CrossRef]
- Yang, R.; Ding, C.; Li, Y.; Yang, L.; Zhao, Y. Crack propagation behavior in slit charge blasting under high static stress conditions. Int. J. Rock Mech. Min. Sci. 2019, 119, 117–123. [Google Scholar] [CrossRef]
- Li, X.; Gu, H.; Tao, M.; Peng, K.; Cao, W.; Li, Q. Failure characteristics and meso-deterioration mechanism of pre-stressed coal subjected to different dynamic loads. Theor. Appl. Fract. Mech. 2021, 115, 103061. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Wang, M.; Wan, D.; Zhou, L.; Liu, R. Numerical study on the behavior of blasting in deep rock masses. Tunn. Undergr. Space Technol. 2021, 113, 103968. [Google Scholar] [CrossRef]
- Yang, L.; Chen, S.; Yang, A.; Huang, C.; Xie, H. Numerical and experimental study of the presplit blasting failure characteristics under compressive stress. Soil Dyn. Earthq. Eng. 2021, 149, 106873. [Google Scholar] [CrossRef]
- Andres, U.; Jirestig, J.; Timoshkin, I. Liberation of minerals by high-voltage electrical pulses. Powder Technol. 1999, 104, 37–49. [Google Scholar] [CrossRef]
- Yan, F.; Lin, B.; Zhu, C.; Zhou, Y.; Liu, X.; Guo, C.; Zou, Q. Experimental investigation on anthracite coal fragmentation by high-voltage electrical pulses in the air condition: Effect of breakdown voltage. Fuel 2016, 183, 583–592. [Google Scholar] [CrossRef]
- Li, C.; Yang, W. Prediction model of high-voltage pulse boring rock-breaking process and intelligent identification of model parameters. J. Pet. Sci. Eng. 2022, 210, 110066. [Google Scholar] [CrossRef]
- Razavian, S.M.; Rezai, B.; Irannajad, M. Investigation on pre-weakening and crushing of phosphate ore using high voltage elec-tric pulses. Adv. Powder Technol. 2014, 25, 1672–1678. [Google Scholar] [CrossRef]
- Li, C.; Duan, L.; Tan, S.; Chikhotkin, V.; Fu, W. Damage model and numerical experiment of high-voltage electro pulse boring in granite. Energies 2019, 12, 727. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, M.; Adams, B.M.; Saar, M.O.; Vogler, D. Numerical modeling of the effects of pore characteristics on the electric breakdown of rock for plasma pulse geo drilling. Energies 2022, 15, 250. [Google Scholar] [CrossRef]
- Cho, S.H.; Cheong, S.S.; Yokota, M.; Kaneko, K. The dynamic fracture process in rocks under high-voltage pulse fragmentation. Rock Mech. Rock Eng. 2016, 49, 3841–3853. [Google Scholar] [CrossRef]
- Kencanawati, N.N.; Shigeishi, M. Acoustic emission sources of breakdown failure due to pulsed-electric discharge in concrete. Constr. Build. Mater. 2011, 25, 1691–1698. [Google Scholar] [CrossRef]
- Bao, X.; Guo, J.; Liu, Y.; Zhao, G.; Cao, J.; Ju, W.; Zhao, J. Damage characteristics and laws of micro-crack of underwater electric pulse fracturing coal-rock mass. Theor. Appl. Fract. Mech. 2021, 111, 102853. [Google Scholar] [CrossRef]
- Duan, L.; Xiao, Y.; Li, C.; Li, A.; Kang, J. Simulation and experimental study on the influence of bit structure on rock-breaking by high-voltage electro-pulse boring. J. Pet. Sci. Eng. 2022, 214, 110556. [Google Scholar] [CrossRef]
- Sun, Y.; Fu, R.; Fan, A.; Gao, Y.; Yan, P. Study of rock fracturing generated by pulsed discharging under confining pressure. In Proceedings of the 2015 IEEE Pulsed Power Conference (PPC), Austin, TX, USA, 31 May–4 June 2015; pp. 1–4. [Google Scholar]
- Li, C.; Duan, L.; Tan, S.; Chikhotkin, V.; Wang, X. An electro breakdown damage model for granite and simulation of deep drill-ing by high-voltage electropulse boring. Shock Vib. 2019, 2019, 7149680. [Google Scholar]
- Ezzat, M.; Börner, J.; Vogler, D.; Wittig, V.; Kammermann, B.; Biela, J.; Saar, M.O. Lithostatic pressure effects on the plasma-pulse geo-drilling (PPGD). In Proceedings of the 48th European Conference on Plasma Physics, Online, 27 June–1 July 2022. [Google Scholar]
- Bluhm, H.; Frey, W.; Giese, H.; Hoppe, P.; Schultheiss, C.; Strassner, R. Application of pulsed HV discharges to material fragmen-tation and recycling. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 625–636. [Google Scholar] [CrossRef]
- Hamdi, E.; Romdhane, N.B.; Le Cléac’h, J.M. A tensile damage model for rocks: Application to blast induced damage assessment. Comput. Geotech. 2011, 38, 133–141. [Google Scholar] [CrossRef]
- Dehghan Banadaki, M.M.; Mohanty, B. Numerical simulation of stress wave induced fractures in rock. Int. J. Impact Eng. 2012, 40–41, 16–25. [Google Scholar] [CrossRef]
- Zaafarani, N.; Raabe, D.; Singh, R.N.; Roters, F.; Zaefferer, S. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Mater. 2006, 54, 1863–1876. [Google Scholar] [CrossRef]
- Pereira Gonçalves, P.; Otsuki, A. Determination of liberation degree of mechanically processed waste printed circuit boards by using the digital microscope and SEM-EDS analysis. Electronics 2019, 8, 1202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Sun, Q.; Jia, H.; Dong, Z.; Luo, T. Effects of high-temperature thermal treatment on the porosity of red sandstone: An NMR analysis. Acta Geophys. 2021, 69, 113–124. [Google Scholar] [CrossRef]
- Yang, S.Q.; Hu, B. Creep and long-term permeability of a red sandstone subjected to cyclic loading after thermal treatments. Rock Mech. Rock Eng. 2018, 51, 2981–3004. [Google Scholar] [CrossRef]
- Xiao, W.; Yu, G.; Li, H.; Zhan, W.; Zhang, D. Experimental study on the failure process of sandstone subjected to cyclic loading and unloading after high temperature treatment. Eng. Geol. 2021, 293, 106305. [Google Scholar] [CrossRef]
- Zhang, Q.B.; Zhao, J. Quasi-static and dynamic fracture behaviour of rock materials: Phenomena and mechanisms. Int. J. Fract. 2014, 189, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Walsh, S.D.; Vogler, D. Simulating electropulse fracture of granitic rock. Int. J. Rock Mech. Min. Sci. 2020, 128, 104238. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, K.; Kabir, M.; Kanda, K.; Obara, N.; Fukuyama, M.; Otsuki, A. Simulation of electrical and thermal properties of granite under the application of electrical pulses using equivalent circuit models. Materials 2022, 15, 1039. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, C. Die theorie der elastizitat und die bedurfnisse der festigkeitslehre. Z. Ver. Dtsch. Ing. 1898, 42, 797–807. [Google Scholar]
- Husain, A.; Nanda, M.N.; Chowdary, M.S.; Sajid, M. Fractals: An Eclectic Survey, Part-I. Fractal Fract. 2022, 6, 89. [Google Scholar] [CrossRef]
- Husain, A.; Nanda, M.N.; Chowdary, M.S.; Sajid, M. Fractals: An Eclectic Survey, Part II. Fractal Fract. 2022, 6, 379. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, B.; Wei, Z.; Jiao, Z.; Song, Z.; Zhang, H. Dynamic mechanical responses and crack evolution of burst-prone coal with a single prefabricated fissure. Theor. Appl. Fract. Mech. 2022, 121, 103494. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, J.; Xu, H.; Zhang, F.; Wang, H.; Li, J. Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge. Minerals 2023, 13, 337. https://doi.org/10.3390/min13030337
Peng J, Xu H, Zhang F, Wang H, Li J. Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge. Minerals. 2023; 13(3):337. https://doi.org/10.3390/min13030337
Chicago/Turabian StylePeng, Jianyu, Hongpeng Xu, Fengpeng Zhang, Haonan Wang, and Jiaqiang Li. 2023. "Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge" Minerals 13, no. 3: 337. https://doi.org/10.3390/min13030337
APA StylePeng, J., Xu, H., Zhang, F., Wang, H., & Li, J. (2023). Effects of Static Pressure on Failure Modes and Degree of Fracturing of Sandstone Subjected to Inter-Hole Pulsed High-Voltage Discharge. Minerals, 13(3), 337. https://doi.org/10.3390/min13030337