Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Occurrences of Fe-Oxide Grains
3.2. Occurrences of Fe-Sulfide Grains
4. Discussion
4.1. The Occurrence of Fe-Oxide and Fe-Sulfide Minerals, and Clay
4.2. Rock Magnetic Implications
4.3. Moderately Siderophile Elements
4.4. Astrobiological Perspectives
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kring, D.A.; Tikoo, S.M.; Schmieder, M.; Riller, U.; Rebolledo-Vieyra, M.; Simpson, S.L.; Osinski, G.R.; Gattacceca, J.; Wittmann, A.; Verhagen, C.M.; et al. Probing the hydrothermal system of the Chicxulub crater. Sci. Adv. 2020, 6, eaaz3053. [Google Scholar] [CrossRef]
- Kring, D.A.; Boynton, W.V. The petrogenesis of an augite-bearing melt rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. Nature 1992, 358, 141–144. [Google Scholar] [CrossRef]
- McCarville, P.; Crossey, L.J. Post-impact hydrothermal alteration of the Manson impact structure. In The Manson Impact Structure, Iowa; Special Paper 302; Koeberl, C., Anderson, R., Eds.; Geological Society of America: Boulder, CO, USA, 1996; pp. 347–376. [Google Scholar]
- Boer, R.; Reimold, W.U.; Koeberl, C.; Kessler, S.E. Fluid inclusion studies on drill core samples from the Manson impact crater, Iowa: Evidence for post-impact hydrothermal activity. In The Manson Impact Structure, Iowa; Special Paper 302; Koeberl, C., Anderson, R., Eds.; Geological Society of America: Boulder, CO, USA, 1996; pp. 377–382. [Google Scholar]
- Naumov, M.V. Zeolite mineralization in impact craters. Zap. Vsesoyuznogo Mineral. Obs. 1993, 122, 1–2. (In Russian) [Google Scholar]
- Naumov, M.V. Basic regularities of the postimpact hydrothermal process. Sol. Syst. Res. 1996, 30, 21–27. [Google Scholar]
- Naumov, M.V. Hydrothermal-mesosomatic mineralization. In Deep Drilling in the Puchezh-Katunki Impact Structure; Masaitis, V., Pevzner, L., Eds.; VSEGEL: St. Petersburg, Russia, 1999; pp. 276–286. (In Russian) [Google Scholar]
- Jelen, B.I.; Giovannelli, D.; Falkowski, P.G. The role of microbial electron transfer in the coevolution of the biosphere and geosphere. Annu. Rev. Microbiol. 2016, 70, 45–62. [Google Scholar] [CrossRef] [PubMed]
- Bryce, C.; Blackwell, N.; Schmidt, C.; Otte, J.; Huang, Y.-M.; Kleindienst, S.; Tomaszewski, E.; Schad, M.; Warter, V.; Peng, C.; et al. Microbial anaerobic Fe(II) oxidation—Ecology, mechanisms and environmental implications. Environ. Microbiol. 2018, 20, 3462–3483. [Google Scholar] [CrossRef] [Green Version]
- Cockell, C.S.; Schaefer, B.; Wuchter, C.; Coolen, M.J.L.; Grice, K.; Schnieders, L.; Morgan, J.V.; Gulick, S.P.S.; Wittmann, A.; Lofi, J.; et al. Shaping of the present-day deep biosphere at Chicxulub by the impact catastrophe that ended the Cretaceous. Front. Microbiol. 2021, 12, 668240. [Google Scholar] [CrossRef]
- Cockell, C.S.; Lee, P. The biology of impact craters—A review. Biol. Rev. 2002, 77, 279–310. [Google Scholar] [CrossRef]
- Kring, D.A. Impact events and their affect on the origin, evolution, and distribution of life. GSA Today 2000, 10, 1–7. [Google Scholar]
- Osinski, G.R.; Tornabene, L.L.; Banerjee, N.R.; Cockell, C.S.; Flemming, R.; Izawa, M.R.M.; McCutcheon, J.; Parnell, J.; Preston, L.J.; Pickersgill, A.E.; et al. Impact-generated hydrothermal systems on Earth and Mars. Icarus 2013, 224, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Koeberl, C.; Reimold, W.U. Post-impact hydrothermal activity in meteorite impact craters and potential opportunitites for life. In Bioastronomy 2002: Life among the Stars; (IAU Symposium 213); Norris, R., Stootman, F., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; pp. 299–304. [Google Scholar]
- Epstein, J.; Pittarello, L.; Crósta, A.P.; Koeberl, C. Impact-induced hydrothermal dissolution in pyroxene: Petrographic and geochemical characterization of basalt-dominated polymict impact breccias from the Vargeão Dome, Brazil. In Large Meteorite Impacts and Planetary Evolution IV; Special Paper 550; Reimold, W., Koeberl, C., Eds.; Geological Society of America: Boulder, CO, USA, 2021; pp. 537–549. [Google Scholar]
- Butler, R.F. Paleomagnetism: Magnetic Domains to Geologic Terranes; Blackwell: Oxford, UK, 1992. [Google Scholar]
- Urrutia-Fucugauchi, J.; Soler-Arechalde, A.M.; Rebolledo-Vieyra, M.; Vera-Sanchez, P. Paleomagnetic and rock magnetic study of the Yaxcopoil-1 impact breccia sequence, Chicxulub impact crater (Mexico). Meteorit. Planet. Sci. 2004, 39, 843–856. [Google Scholar] [CrossRef]
- Velasco-Villareal, M.; Urrutia-Fucugauchi, J.; Rebolledo-Vieyra, M.; Perez-Cruz, L. Paleomagnetism of impact breccias from the Chicxulub crater—Implications for ejecta emplacement and hydrothermal processes. Phys. Earth Planet. Inter. 2011, 186, 154–171. [Google Scholar] [CrossRef]
- Kuzina, D.M.; Gattacceca, J.; Bezaeva, N.S.; Badyukov, D.D.; Rochette, P.; Quesnel, Y.; Demory, F.; Borschneck, D. Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteorit. Planet. Sci. 2022, 57, 1846–1860. [Google Scholar] [CrossRef]
- Alvarez, L.W.; Alvarez, W.; Asaro, F.; Michel, H.V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 1980, 208, 1095–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinquier, A.; Birck, J.-L.; Allègre, C.J. The nature of the KT impactor. A 54Cr reappraisal. Earth Planet. Sci. Lett. 2006, 241, 780–788. [Google Scholar] [CrossRef]
- Keays, R.; Lightfoot, P. Formation of Ni-Cu platinum group element sulfide mineralization in the Sudbury impact melt sheet. Miner. Petrol. 2004, 82, 217–258. [Google Scholar] [CrossRef]
- Huber, M.S.; Kovaleva, E.; Wilke, F. First Observation of Ni-Cu-Au-PGE Mineralization within Impact Melt of the Vredefort Structure. ICF-CIRIR Abstract. 2022. Available online: https://cirir-edu.org/wp-content/uploads/2022/05/ICF-CIRIR-2022-S2T8-Huber-et-al.pdf, (accessed on 17 February 2023).
- Hildebrand, A.R.; Penfield, G.T.; Kring, D.A.; Pilkington, M.; Camargo, Z.; Jacobsen, A.; Stein, B.; Boynton, W.V. Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. Geology 1991, 19, 867–871. [Google Scholar] [CrossRef]
- Morgan, J.V.; Gulick, S.P.S.; Bralower, T.J.; Chenot, E.; Christeson, G.L.; Claeys, P.; Cockell, C.; Collins, G.S.; Coolen, M.J.L.; Ferrière, L.; et al. The formation of peak rings in large impact craters. Science 2016, 354, 878–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christeson, G.L.; Gulick, S.P.S.; Morgan, J.V.; Gebhardt, C.; Kring, D.A.; Le Ber, E.; Lofi, J.; Nixon, C.; Poelchau, M.; Rae, A.S.P.; et al. Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364. Earth Planet. Sci. Lett. 2018, 495, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Tagle, R.; Erzinger, J.; Hecht, L.; Schmitt, R.T.; Stöffler, D.; Claeys, P. Platinum group elements in the impactites of the IDCP Chicxulub drill core Yaxcopoil-1: Are there traces of the projectile? Meteorit. Planet. Sci. 2010, 39, 1009–1016. [Google Scholar] [CrossRef]
- Gelinas, A.; Kring, D.A.; Zurcher, L.; Urrutia-Fucugauchi, J.; Morton, O.; Walker, R.J. Osmium isotope constraints on the proportion of bolide component in Chicxulub impact melt rocks. Meteorit. Planet. Sci. 2004, 39, 1003–1008. [Google Scholar] [CrossRef]
- Morgan, J.; Gulick, S.; Mellett, C.L.; Green, S.L. Expedition 364 Scientists. Chicxulub: Drilling the K-Pg Impact Crater; International Ocean Discovery Program, 364; International Ocean Discovery Program: College Station, TX, USA, 2017. [Google Scholar]
- Simpson, S.L.; Osinski, G.R.; Longstaffe, F.J.; Schmieder, M.; Kring, D.A. Hydrothermal alteration associated with the Chicxulub impact crater upper peak-ring breccias. Earth Planet. Sci. Lett. 2020, 547, 116425. [Google Scholar] [CrossRef]
- Feignon, J.-G.; Schulz, T.; Ferrière, L.; Goderis, S.; de Graaff, S.J.; Kaskes, P.; Déhais, T.; Claeys, P.; Koeberl, C. Search for a meteoritic component within the impact melt rocks of the Chicxulub impact structure peak rink, Mexico. Geochim. Cosmochim. Acta 2022, 323, 74–101. [Google Scholar] [CrossRef]
- Gulick, S.; Morgan, J.; Mellett, C.L.; Green, S.L.; Bralower, T.; Chenot, E.; Christeson, G.; Claeys, P.; Cockell, C.; Coolen, M.J.L.; et al. Site M0077: Upper Peak Ring. In Chicxulub: Drilling the K-Pg Impact Crater; Morgan, J., Gulick, S., Mellett, C.L., Green, S.L., Scientists, E., Eds.; International Ocean Discovery Program: College Station, TX, USA, 2017; Volume 364, pp. 1–23. [Google Scholar]
- Kaskes, P.; de Graaff, S.J.; Feignon, J.-G.; Déhais, T.; Goderis, S.; Ferrière, L.; Koeberl, C.; Smit, J.; Wittmann, A.; Gulick, S.P.S.; et al. Formation of the crater suevite sequence from the Chicxulub peak ring: A petrographic, geochemical, and sedimentological characterization. Geol. Soc. Am. Bull. 2021, 134, 895–927. [Google Scholar] [CrossRef]
- Gulick, S.P.S.; Bralower, T.J.; Ormo, J.; Hall, B.; Grice, K.; Schaefer, B.; Lyons, S.; Freeman, K.H.; Morgan, J.V.; Artemieva, N.; et al. The first day of the Cenozoic. Proc. Natl. Acad. Sci. USA 2019, 116, 19342–19351. [Google Scholar] [CrossRef] [Green Version]
- Osinski, G.R.; Grieve, R.A.F.; Hill, P.J.A.; Simpson, S.L.; Cockell, C.; Christeson, G.L.; Ebert, M.; Gulick, S.; Melosh, H.J.; Riller, U.; et al. Explosive interaction of impact melt and seawater following the Chicxulub impact event. Geology 2020, 48, 108–112. [Google Scholar] [CrossRef]
- Kring, D.A. The dimensions of the Chicxulub impact crater and impact melt sheet. J. Geophys. Res. 1995, 100, 16979–16986. [Google Scholar] [CrossRef]
- Schulte, F.M.; Wittmann, A.; Jung, S.; Morgan, J.V.; Gulick, S.P.S.; Kring, D.A.; Grieve, R.A.F.; Osinski, G.R.; Riller, U. IODP-ICDP Expedition 364 Science Party. Ocean resurge-induced impact melt dynamics on the peak-ring of the Chicxulub impact structure, Mexico. Int. J. Earth Sci. 2021, 110, 2619–2636. [Google Scholar] [CrossRef]
- Kring, D.A.; Bach, W. Hydrogen production from alteration of Chicxulub Crater impact breccias: Potential energy source for a subsurface microbial ecosystem. Astrobiology 2021, 21, 1547–1564. [Google Scholar] [CrossRef]
- Heinrich, K.F.J. Strategies of electron microprobe data reduction. In Electron Probe Quantification; Heinrich, K.F.J., Newbury, D.E., Eds.; Springer Science: New York, NY, USA, 1997; pp. 9–18. [Google Scholar]
- Carmichael, I.S.E. The iron-titanium oxides of salic volcanic rocks and their associated ferromagnesian silicates. Contr. Mineral. and Petrol. 1967, 14, 36–64. [Google Scholar] [CrossRef]
- Nadoll, P.; Angerer, T.; Mauk, J.L.; French, D.; Walshe, J. The chemistry of hydrothermal magnetite: A review. Ore Geol. Rev. 2014, 61, 1–32. [Google Scholar] [CrossRef]
- Mathieu, L. Quantifying hydrothermal alteration: A review of methods. Geosciences 2018, 8, 245. [Google Scholar] [CrossRef] [Green Version]
- Petersen, M.D. The use of the “immobile” elements Zr and Ti in lithogeochemical exploration for massive sulphide deposits in the Precambrian Pecos Greenstone Belt of northern New Mexico. J. Geochem. Explor. 1983, 19, 615–617. [Google Scholar] [CrossRef]
- Fucugauchi, J.U.; Perez-Cruz, L.L.; Rebolledo-Vieyra, M.; Tikoo, S.; Zylberman, W.; Lofi, J. Rock magnetic study of IODP/ICDP Expedition 364 Site M0077A drill cores: Post-impact sediments, impact breccias, melt, granitic basement and dikes. In Proceedings of the American Geophysical Union, Fall Meeting 2017, abstract #P33D-2903, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Kring, D.A.; Whitehouse, M.J.; Schmieder, M. Microbial sulfur isotope fractionation in the Chicxulub hydrothermal system. Astrobiology 2021, 21, 103–114. [Google Scholar] [CrossRef]
- Hovington, P.; Drouin, D.; Gauvin, R. CASINO: A new monte carlo code in C language for electron beam interaction-part 1: Description of the program. Scanning 1997, 19, 1–14. [Google Scholar] [CrossRef]
- Drouin, D.; Couture, A.R.; Joly, D.; Tastet, X.; Aimez, V. CASINO V2.42—A fast and east-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 2007, 29, 92–101. [Google Scholar] [CrossRef]
- Simpson, S.L.; Longstaffe, F.J.; Osinski, G.R.; Caudill, C.M.; Kring, D.A. A low-temperature, meteoric water-dominated origin for smectitic clay minerals in the Chicxulub impact crater upper peak ring, as inferred from their oxygen and hydrogen isotope compositions. Chem. Geol. 2022, 588, 120639. [Google Scholar] [CrossRef]
- Weil, A.B.; Van der Voo, R. Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: A scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. J. Geophys. Res. 2002, 107, EPM-1. [Google Scholar] [CrossRef] [Green Version]
- Suk, D.; Van der Voo, R.; Peacor, D.R. Origin of magnetite responsible for remagnetization of early Paleozoic limestones of New York state. J. Geophys. Res. 1993, 98, 419–434. [Google Scholar] [CrossRef]
- Stroncik, N.A.; Schmincke, H.-U. Palagonite—A review. Int. J. Earth Sci. 2002, 91, 680–697. [Google Scholar] [CrossRef]
- Pilkington, P.; Ames, D.E.; Hildebrand, A.R. Magnetic mineralogy of the Yaxcopoil-1 core, Chicxulub. Meteorit. Planet. Sci. 2004, 39, 831–841. [Google Scholar] [CrossRef]
- Butler, R.F.; Banerjee, S.K. Theoretical single-domain grain size range in magnetite and titanomagnetite. J. Geophys. Res. 1975, 80, 4049–4058. [Google Scholar] [CrossRef]
- Dunlop, D.J.; Özdemir, O. Rock Magnetism: Fundamentals and Frontiers; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Nowaczyk, N.R. Dissolution of titanomagnetite and sulphidization in sediments from Lake Kinneret, Israel. Geophys. J. Int. 2011, 187, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Fabian, K. Thermochemical remanence acquisition in single-domain particle ensembles: A case for possible overestimation of the geomagnetic paleointensity. Geochem. Geophys. Geosyst. 2009, 10, 1–10. [Google Scholar] [CrossRef]
- Shcherbakov, V.P.; Sycheva, N.K.; Gribov, S.K. Experimental and numerical simulation of the acquistion of chemical remanent magnetization and the Thellier procedure. Izv. Phys. Solid Earth 2017, 53, 645–657. [Google Scholar] [CrossRef]
- Gribov, S.K.; Shcherbakov, V.P.; Aphinogenova, N.A. Magnetic properties of artificial CRM created on titanomagnetite-bearing ocean basalts. In Recent Advances in Rock Magnetism, Environmental Magnetism and Paleomagnetism; Springer: Berlin/Heidelberg, Germany, 2019; pp. 173–194. [Google Scholar] [CrossRef]
- Lightfoot, P.; Keays, R.R.; Doherty, W. Chemical evolution and the origin of nickel sulfide mineralization in the Sudbury Igneous Complex, Ontario, Canada. Econ. Geol. 2001, 96, 1855–1975. [Google Scholar] [CrossRef]
- Robb, L. Introduction to Ore-Forming Processes; John Wiley & Sons: Hoboken, NJ, USA, 2020; 496p. [Google Scholar]
- Timms, N.E.; Erickson, T.M.; Zanetti, M.R.; Pearce, M.A.; Cayron, C.; Cavosie, A.J.; Reddy, S.M.; Wittmann, A.; Carpenter, P.K. Cubic zirconia in >2370 °C impact melt records Earth’s hottest crust. Earth Planet. Sci. Lett. 2017, 477, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Onorato, P.I.K.; Uhlmann, D.R.; Simonds, C.H. The thermal history of the Manicouagan Impact Melt Sheet, Quebec. J. Geophys. Res. Solid Earth 1978, 83, 2789–2798. [Google Scholar] [CrossRef]
- Abramov, O.; Kring, D.A. Numerical modeling of impact-induced hydrothermal activity at the Chicxulub crater. Meteorit. Planet. Sci. 2007, 42, 93–112. [Google Scholar] [CrossRef]
- Warren, P.H.; Claeys, P.; Cedillo-Pardo, E. Mega-impact melt petrology (Chicxulub, Sudbury, and the Moon): Effects of scale and other factors on potential for fractional crystallization and development of cumulates. Geol. Soc. Am. Spec. Pap. 1996, 307, 105–124. [Google Scholar]
- Hildebrand, A.R.; Pilkington, M. Crater-floor exhalative (CRAFEX) sulfide deposits at the Chicxulub crater, Yucatán, México. In Proceedings of the 33rd Lunar and Planetary Science Conference, abstract #2031, Clear Lake, TX, USA, 11–15 March 2002. [Google Scholar]
- Wittmann, A.; Expedition 364 Scientists. The mineralogy of the K-Pg transition on the peak ring of the Chicxulub impact crater in drill cores of IODP-ICDP Expedition 364. Microsc. Microanal. 2017, 23, 2148–2149. [Google Scholar] [CrossRef] [Green Version]
- Goderis, S.; Sato, H.; Ferrière, L.; Schmitz, B.; Burney, D.; Kaskes, P.; Vellekoop, J.; Wittmann, A.; Schulz, T.; Chernonozhkin, S.M.; et al. Globally distributed iridium layer preserved within the Chicxulub impact structure. Sci. Adv. 2021, 7, abe3647. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Aguilar, C.D.; Cuéllar-Cruz, M. The formation of crystalline minerals and their role in the origin of life on Earth. Prog. Cryst. Growth Charact. Mater. 2022, 68, 100558. [Google Scholar] [CrossRef]
- Ertem, G. The role of minerals in events that led to the origin of life. Astrobiology 2021, 21, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Brack, A. Clay minerals and the origin of life. Dev. Clay Sci. 2013, 5, 507–521. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Hartman, H. Clays and the origin of life: The experiments. Life 2022, 12, 259. [Google Scholar] [CrossRef]
- Bernal, J.D. The physical basis of life. Proc. Phys. Soc. B 1949, 62, 597–618. [Google Scholar] [CrossRef]
- Cairns-Smith, A.G. The origin of life and the nature of the primitive gene. J. Theor. Biol. 1966, 10, 53–88. [Google Scholar] [CrossRef]
- Ponnamperuma, C.; Shimoyama, A.; Friebele, E. Clay and the origin of life. Orig. Life 1982, 12, 9–40. [Google Scholar] [CrossRef]
- Meunier, A.; Petit, A.; Cockell, C.S.; Albani, A.E.; Beaufort, D. The Fe-rich clay microsystems in basalt-komatiite lavas: Importance of Fe-smectites for pre-biotic molecule catalysis during the Hadean Eon. Orig. Life Evol. Biosph. 2010, 40, 253–272. [Google Scholar] [CrossRef]
- Bottke, W.F.; Norman, M.D. The Late Heavy Bombardment. Ann. Rev. Earth Planet. Sci. 2017, 45, 619–647. [Google Scholar] [CrossRef] [Green Version]
- Pearson, V.K.; Sephton, M.A.; Kearsley, A.T.; Bland, P.A.; Franchi, I.A.; Gilmour, I. Clay mineral-organic matter relationships in the early solar system. Meteorit. Planet. Sci. 2002, 37, 1829–1833. [Google Scholar] [CrossRef]
- Wächtershäuser, G. Pyrite formation, the first energy source for life: A hypothesis. Syst. Appl. Microbiol. 1988, 10, 207–210. [Google Scholar] [CrossRef]
- Vaughan, D.J.; Lennie, A.R. The iron sulphide minerals: Their chemistry and role in nature. Sci. Prog. 1991, 75, 371–388. [Google Scholar]
- Liu, K.; Huang, F.; Gao, S.; Zhang, Z.; Ren, Y.; An, B. Morphology of framboidal pyrite and its textural evolution: Evidence from the Logatchev area, Mid-Atlantic Ridge. Ore Geol. Rev. 2022, 141, 104630. [Google Scholar] [CrossRef]
Sample | Mag | Mag | Mag | Mag | G | G | G | G | P | P | P | P | P | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 4 Part | a(1) | a(2) | a(3) | b(1) | c(1) | c(2) | c(3) | d(1) | d(2) | d(3) | ||||
SiO2 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
TiO2 | 0.0 | 0.2 | 0.0 | 0.1 | 10.3 | 11.5 | 12.4 | 7.2 | 1.5 | 1.3 | 1.6 | 1.0 | 2.0 | 1.7 |
Al2O3 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 2.0 | 1.5 | 1.7 | 2.4 | 2.7 | 1.8 |
* Fe2O3 wt.% | 68.3 | 67.4 | 68.9 | 67.2 | 50.5 | 47.0 | 45.2 | 53.8 | 61.3 | 63.2 | 63.2 | 65.6 | 64.2 | 66.5 |
* FeO wt.% | 30.8 | 30.5 | 31.0 | 30.1 | 41.3 | 42.0 | 42.8 | 37.0 | 28.8 | 29.5 | 29.8 | 26.3 | 25.0 | 21.9 |
MnO | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
MgO | 0.0 | 0.1 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.2 | 1.6 | 1.3 | 1.5 | 3.7 | 5.2 | 6.9 |
CaO | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Cr2O3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
ZnO | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
V2O3 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
NiO | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
* Total: | 99.1 | 98.4 | 100.0 | 97.6 | 102.2 | 100.7 | 100.6 | 98.4 | 95.2 | 96.8 | 97.8 | 99.1 | 99.0 | 98.6 |
* Fe3+/∑Fe | 0.69 | 0.69 | 0.69 | 0.69 | 0.55 | 0.53 | 0.51 | 0.59 | 0.68 | 0.68 | 0.68 | 0.71 | 0.72 | 0.75 |
Sample | A | A | F | F | F | F | F | F | F | F | F | G |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 0.0 | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 |
TiO2 | 0.1 | 0.1 | 0.2 | 1.0 | 0.9 | 1.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
Al2O3 | 0.2 | 0.2 | 0.1 | 1.0 | 0.7 | 0.7 | 0.1 | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 |
* Fe2O3 wt.% | 66.9 | 67.3 | 68.6 | 66.5 | 66.9 | 66.8 | 68.4 | 68.6 | 66.8 | 68.5 | 67.4 | 67.1 |
* FeO wt.% | 29.0 | 29.3 | 28.5 | 27.6 | 27.4 | 27.5 | 30.5 | 30.6 | 29.4 | 30.4 | 29.8 | 27.8 |
MnO | 0.1 | 0.1 | 0.1 | 0.3 | 0.3 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 |
MgO | 0.9 | 0.7 | 1.5 | 2.7 | 2.6 | 2.7 | 0.3 | 0.3 | 0.5 | 0.4 | 0.5 | 1.5 |
CaO | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.2 |
Cr2O3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
V2O3 | 0.3 | 0.2 | 0.1 | 0.0 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 |
NiO | 0.0 | 0.0 | 0.0 | 0.1 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
* Total: | 97.4 | 97.8 | 99.1 | 99.2 | 99.2 | 99.3 | 99.8 | 100.0 | 97.3 | 99.7 | 98.2 | 97.3 |
* Fe3+/∑Fe | 0.67 | 0.67 | 0.68 | 0.68 | 0.69 | 0.69 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 0.68 |
Sample | P | P | P | P | F | F | P | P | P | P | P | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Figure 7 Part | a(1) | a(2) | b(1) | b(2) | c(1) | c(2) | e(1) | f(1) | f(2) | g(1) | g(2) | g(3) |
Mg | 0.03 | 0.07 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.02 |
Al | 0.05 | 0.07 | 0.03 | 0.05 | 0.01 | 0.00 | 0.01 | 0.02 | 0.01 | 0.01 | 0.05 | 0.03 |
S | 53.48 | 53.51 | 34.54 | 34.10 | 53.19 | 52.86 | 49.92 | 53.62 | 53.20 | 52.30 | 52.01 | 52.85 |
Cl | 0.04 | 0.07 | 0.00 | 0.05 | 0.01 | 0.03 | n.a. | 0.04 | 0.05 | 0.04 | 0.06 | 0.06 |
Ca | 0.21 | 0.16 | 0.17 | 0.14 | 0.68 | 0.50 | 0.38 | 0.21 | 0.26 | 0.36 | 0.24 | 0.15 |
Ti | 0.02 | 0.05 | 0.00 | 0.00 | 0.00 | 0.00 | 0.28 | 0.42 | 0.36 | 0.32 | 0.34 | 0.30 |
Cr | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 |
Mn | 0.00 | 0.01 | 0.03 | 0.01 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Fe | 46.23 | 45.98 | 30.31 | 30.23 | 46.28 | 46.16 | 36.98 | 35.99 | 36.48 | 31.59 | 36.53 | 37.28 |
Co | 0.01 | 0.02 | 0.01 | 0.02 | 0.00 | 0.00 | 2.95 | 3.22 | 3.40 | 5.73 | 4.69 | 3.93 |
Ni | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.17 | 3.67 | 3.95 | 4.46 | 3.61 | 4.46 | 4.34 |
Cu | 0.06 | 0.05 | 33.38 | 33.72 | 0.06 | 0.08 | 2.56 | 2.20 | 1.94 | 5.48 | 0.60 | 0.71 |
Ba | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.19 | n.a. | n.a. | n.a. | n.a. | n.a. |
Si | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | 0.01 | n.a. | n.a. | n.a. | n.a. | n.a. |
Total: | 100.13 | 99.99 | 98.48 | 98.33 | 100.28 | 99.82 | 97.00 | 99.66 | 100.17 | 99.46 | 99.02 | 99.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verhagen, C.M.; Jung, J.-I.; Tikoo, S.M.; Wittmann, A.; Kring, D.A.; Brachfeld, S.; Wu, L.; Burns, D.H.; Gulick, S.P.S. Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure. Minerals 2023, 13, 353. https://doi.org/10.3390/min13030353
Verhagen CM, Jung J-I, Tikoo SM, Wittmann A, Kring DA, Brachfeld S, Wu L, Burns DH, Gulick SPS. Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure. Minerals. 2023; 13(3):353. https://doi.org/10.3390/min13030353
Chicago/Turabian StyleVerhagen, Christina M., Ji-In Jung, Sonia M. Tikoo, Axel Wittmann, David A. Kring, Stefanie Brachfeld, Laying Wu, Dale H. Burns, and Sean P. S. Gulick. 2023. "Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure" Minerals 13, no. 3: 353. https://doi.org/10.3390/min13030353
APA StyleVerhagen, C. M., Jung, J. -I., Tikoo, S. M., Wittmann, A., Kring, D. A., Brachfeld, S., Wu, L., Burns, D. H., & Gulick, S. P. S. (2023). Significance of Secondary Fe-Oxide and Fe-Sulfide Minerals in Upper Peak Ring Suevite from the Chicxulub Impact Structure. Minerals, 13(3), 353. https://doi.org/10.3390/min13030353