Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Sample Petrography
4. Analytical Methods
5. Bulk Rock and Mineral Composition
5.1. Bulk-Rock Compositions
5.2. Mineral Compositions
5.2.1. Garnet
5.2.2. Omphacite
Sample | Al2O3 | SiO2 | CaO | K2O | TFe2O3 a | MgO | MnO | Na2O | P2O5 | TiO2 | LOI b | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
XRF analyses (wt.%) | ||||||||||||
G-10 | 13.3 | 45.9 | 10.2 | 0.01 | 17.2 | 5.80 | 0.21 | 3.36 | 0.25 | 2.84 | 1.22 | 100.4 |
G-11 | 15.5 | 47.7 | 10.5 | 0.06 | 13.6 | 6.83 | 0.20 | 3.39 | 0.33 | 1.59 | 0.74 | 100.5 |
Y-32 | 18.2 | 51.5 | 7.49 | 1.34 | 10.9 | 4.06 | 0.18 | 4.42 | 0.32 | 1.27 | 0.65 | 100.4 |
Normalized on the basis of mole per cent (mol%) | ||||||||||||
Sample | Figures | H2O | Al2O3 | SiO2 | CaO | K2O | FeO | MgO | Na2O | TiO2 | O | |
G-10 | Figure 7a, P-T | excess | 8.50 | 49.7 | 11.4 | 0.01 | 14.0 | 9.36 | 3.52 | 2.31 | 0.96 | |
Figure 7a, P-T (supra-solidus fields) | 5 | 8.50 | 49.7 | 11.4 | 0.01 | 14.0 | 9.36 | 3.52 | 2.31 | 0.96 | ||
Figure 7b, P-T c | 5 | 8.29 | 50.2 | 11.7 | 0.01 | 13.5 | 9.58 | 3.38 | 2.37 | 0.96 | ||
G-11 | Figure 8a, P-T | excess | 9.78 | 51.1 | 11.5 | 0.04 | 11.0 | 10.9 | 3.51 | 1.28 | 0.68 | |
Figure 8a, P-T (supra-solidus fields) | 5 | 9.78 | 51.1 | 11.5 | 0.04 | 11.0 | 10.9 | 3.51 | 1.28 | 0.68 | ||
Figure 8b, P-T c | 5 | 10.1 | 51.2 | 12.0 | 0.04 | 10.8 | 10.5 | 3.46 | 1.30 | 0.68 | ||
Figure S1a, P-X(CaO) | excess | 9.78 | 51.1 | 0.00 | 0.04 | 11.0 | 10.9 | 15.0 | 1.28 | 0.68 | ||
9.78 | 51.1 | 15.0 | 0.04 | 11.0 | 10.9 | 0.00 | 1.28 | 0.68 | ||||
Figure S1b, T-X(MgO) | excess | 9.78 | 51.1 | 11.5 | 0.04 | 21.9 | 0.00 | 3.51 | 1.28 | 0.68 | ||
9.78 | 51.1 | 11.5 | 0.04 | 0.00 | 21.9 | 3.51 | 1.28 | 0.68 | ||||
Y-32 | Figure 9a, P-T | excess | 11.8 | 56.5 | 8.30 | 0.94 | 9.00 | 6.63 | 4.70 | 1.04 | 0.95 | |
Figure 9a, P-T (supra-solidus fields) | 7 | 11.8 | 56.5 | 8.30 | 0.94 | 9.00 | 6.63 | 4.70 | 1.04 | 0.95 | ||
Figure 9b, P-T c | 7 | 11.3 | 58.8 | 8.01 | 0.96 | 8.94 | 6.38 | 4.51 | 1.07 | 0.95 | ||
Figure S2a, P-X(CaO) | excess | 11.8 | 56.5 | 0.00 | 0.94 | 9.00 | 6.63 | 13.0 | 1.04 | 0.95 | ||
11.8 | 56.5 | 13.0 | 0.94 | 9.00 | 6.63 | 0.00 | 1.04 | 0.95 | ||||
Figure S2b, T-X(MgO) | excess | 11.8 | 56.5 | 8.30 | 0.94 | 15.6 | 0.00 | 4.70 | 1.04 | 0.95 | ||
11.8 | 56.5 | 8.30 | 0.94 | 0.00 | 15.6 | 4.70 | 1.04 | 0.95 |
5.2.3. Phengite
5.2.4. Accessory Minerals
Mineral | Grt | Omp | Phg | Amp | Ep | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Rim | Rim | Mid | Core | Mid | Mid | Rim | Rim | Rim | Mid | Core | Mid | Rim | Rim | Mid | Core | Rim | Grain | Grain | Grain | Grain | |
SiO2 | 38.1 | 38.2 | 38.3 | 38.2 | 37.7 | 38.1 | 38.0 | 37.5 | 55.2 | 54.7 | 54.6 | 54.5 | 55.5 | 51.2 | 51.0 | 51.8 | 50.5 | 48.0 | 37.1 | 37.1 | 37.1 |
TiO2 | 0.12 | 0.00 | 0.07 | 0.07 | 0.06 | 0.12 | 0.06 | 0.10 | 0.13 | 0.11 | 0.17 | 0.07 | 0.08 | 0.53 | 0.44 | 0.52 | 0.42 | 0.22 | 0.11 | 0.13 | 0.16 |
Al2O3 | 20.7 | 20.9 | 20.8 | 20.8 | 20.8 | 20.7 | 20.8 | 20.2 | 8.18 | 8.09 | 7.91 | 7.50 | 7.88 | 24.0 | 23.2 | 22.9 | 24.2 | 6.8 | 20.8 | 21.6 | 22.1 |
Cr2O3 | 0.01 | 0.01 | 0.04 | 0.01 | 0.01 | 0.00 | 0.02 | 0.00 | 0.02 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.03 | 0.00 | 0.03 | 0.08 |
FeO | 0.12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 3.35 | 3.99 | 3.26 | 4.67 | 3.22 | 0.00 | 0.00 | 0.00 | 0.00 | 2.10 | 15.4 | 14.1 | 13.6 |
Fe2O3 | 26.4 | 26.5 | 26.8 | 26.4 | 26.7 | 26.3 | 26.9 | 26.1 | 5.49 | 5.01 | 5.67 | 4.82 | 5.60 | 1.90 | 1.90 | 1.65 | 1.74 | 14.3 | 0.14 | 0.13 | 0.12 |
MnO | 0.45 | 0.41 | 0.57 | 0.43 | 0.36 | 0.54 | 0.43 | 0.38 | 0.03 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.03 | 0.00 | 0.05 | 0.16 | 0.09 | 0.18 | 0.27 |
MgO | 4.13 | 4.15 | 4.23 | 4.24 | 4.16 | 4.11 | 4.18 | 4.02 | 7.16 | 7.38 | 7.30 | 7.39 | 7.29 | 4.19 | 4.34 | 4.86 | 4.20 | 11.5 | 0.05 | 0.04 | 0.05 |
CaO | 8.65 | 7.77 | 7.68 | 8.00 | 7.45 | 7.64 | 8.08 | 8.75 | 12.2 | 11.9 | 12.2 | 12.5 | 12.2 | 0.10 | 0.08 | 0.02 | 0.07 | 10.6 | 22.4 | 21.6 | 22.0 |
Na2O | 0.07 | 0.06 | 0.04 | 0.05 | 0.06 | 0.05 | 0.02 | 0.01 | 6.95 | 6.91 | 6.65 | 6.74 | 6.90 | 0.33 | 0.48 | 0.16 | 0.43 | 1.87 | 0.01 | 0.01 | 0.00 |
K2O | 0.02 | 0.00 | 0.00 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.08 | 0.00 | 0.03 | 14.4 | 14.2 | 15.1 | 13.9 | 0.07 | 0.03 | 0.04 | 0.00 |
Totals | 98.9 | 98.0 | 98.5 | 98.2 | 97.2 | 97.6 | 98.4 | 97.2 | 98.3 | 97.8 | 97.6 | 97.8 | 98.4 | 96.6 | 95.6 | 97.1 | 95.5 | 95.4 | 96.1 | 95.0 | 95.5 |
Cations | |||||||||||||||||||||
Si | 3.03 | 3.05 | 3.04 | 3.04 | 3.03 | 3.05 | 3.03 | 3.03 | 2.02 | 2.01 | 2.02 | 2.01 | 2.03 | 3.46 | 3.48 | 3.49 | 3.44 | 7.21 | 3.03 | 3.05 | 3.04 |
Ti | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.01 | 0.01 | 0.01 |
Al | 1.94 | 1.97 | 1.95 | 1.95 | 1.97 | 1.96 | 1.95 | 1.92 | 0.35 | 0.35 | 0.34 | 0.33 | 0.34 | 1.91 | 1.87 | 1.82 | 1.95 | 1.20 | 2.01 | 2.10 | 2.13 |
Cr | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
Fe3+ | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.09 | 0.11 | 0.09 | 0.13 | 0.09 | 0.00 | 0.00 | 0.00 | 0.00 | 0.24 | 0.95 | 0.87 | 0.84 |
Fe2+ | 1.75 | 1.77 | 1.78 | 1.76 | 1.80 | 1.76 | 1.80 | 1.76 | 0.17 | 0.15 | 0.18 | 0.15 | 0.17 | 0.11 | 0.11 | 0.09 | 0.10 | 1.79 | 0.01 | 0.01 | 0.01 |
Mn | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.04 | 0.03 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.01 | 0.01 | 0.02 |
Mg | 0.49 | 0.49 | 0.50 | 0.50 | 0.50 | 0.49 | 0.50 | 0.48 | 0.39 | 0.40 | 0.40 | 0.41 | 0.40 | 0.42 | 0.44 | 0.49 | 0.43 | 2.58 | 0.01 | 0.01 | 0.01 |
Ca | 0.74 | 0.66 | 0.65 | 0.68 | 0.64 | 0.66 | 0.69 | 0.76 | 0.48 | 0.47 | 0.48 | 0.49 | 0.48 | 0.01 | 0.01 | 0.00 | 0.01 | 1.70 | 1.96 | 1.90 | 1.92 |
Na | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.49 | 0.49 | 0.48 | 0.48 | 0.49 | 0.04 | 0.06 | 0.02 | 0.06 | 0.55 | 0.00 | 0.00 | 0.00 |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 1.24 | 1.23 | 1.30 | 1.21 | 0.01 | 0.00 | 0.00 | 0.00 |
X (phase) | 0.16 | 0.17 | 0.17 | 0.17 | 0.17 | 0.17 | 0.16 | 0.16 | 0.30 | 0.28 | 0.30 | 0.27 | 0.30 | 0.80 | 0.80 | 0.84 | 0.81 | 0.59 | |||
Y (phase) | 0.24 | 0.22 | 0.22 | 0.23 | 0.22 | 0.22 | 0.23 | 0.25 | 0.51 | 0.51 | 0.50 | 0.49 | 0.50 | 0.32 | 0.29 | 0.28 |
6. Phase Equilibrium Modelling
6.1. Pseudosections for the Guanshan Eclogites
6.2. Pseudosections for the Yangkou Eclogites
7. Discussion
7.1. Discrimination of Tectonic Settings for the Protolith of Ecologites from Guanshan and Yangkou Areas
7.2. Metamorphic Evolution of the Guanshan and Yangkou Eclogites during Subduction and Exhumation
7.2.1. Intensity and Timing of Metamorphism in the Sulu UHP Terrane Based on Literature Data
7.2.2. Metamorphic Stages of Guanshan Eclogites and Their Evolution History
- (1)
- Prograde associated by quick subduction
- (2)
- Retrograde associated by quick exhumation
7.2.3. Metamorphic Stages of Yangkou Eclogites and Their Evolution History
- (1)
- Prograde associated by quick subduction
- (2)
- Retrograde associated by quick exhumation
7.3. Comparison of P-T Paths in the Sulu-Dabie UHP Metamorphic Belt
7.4. Tectonic Implications
8. Conclusions
- (1)
- The protoliths of eclogites from Guanshan and Yangkou are basalt and basaltic trachy andesite, respectively. From south to north, before the formation of the Talu fault, the tectonic settings of eclogites from the Dabie/Sulu orogenic belt were changing with a trend of IAT → ICA → IAB → CAB.
- (2)
- The Guanshan and Yangkou eclogites show two metamorphic stages: (I) prograde associated with quick subduction, and (II) retrograde associated with quick exhumation. Peak metamorphism and the middle and late stage of exhumation coincide with the regional metamorphic events, which occurred in 245, 227, and 195 Ma, respectively.
- (3)
- The peak P-T conditions for eclogites from Guanshan are constrained at 33 kbar and 685 °C. The values of Pmax suggest that both the Guanshan and Yangkou eclogites have reached a depth of over 110 km.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.F.; Chen, R.X. Extreme metamorphism and metamorphic facies series at convergent plate boundaries: Implications for supercontinent dynamics. Geosphere 2021, 17, 1647–1685. [Google Scholar] [CrossRef]
- Liou, J.G.; Tsujimori, T.; Zhang, R.Y.; Katayama, I.; Maruyama, S. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int. Geol. Rev. 2004, 46, 1–27. [Google Scholar] [CrossRef]
- Brown, M.; Johnson, T. Secular change in metamorphism and the onset of global plate tectonics. Am. Mineral. 2018, 103, 181–196. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Wijbrans, J.R. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng. J. Earth Sci. 2018, 29, 1151–1166. [Google Scholar] [CrossRef]
- Xia, B.; Brown, M.; Wang, L.; Wang, S.J.; Piccoli, P. Phase equilibrium modeling of MT–UHP eclogite: A case study of coesite eclogite at Yangkou Bay, Sulu belt, Eastern China. J. Petrol. 2018, 59, 1253–1280. [Google Scholar] [CrossRef]
- Graham, C.M.; Powell, R. A garnet–hornblende geothermometer: Calibration, testing and application to the Pelona Schist, Southern California. J. Metamorph. Geol. 1984, 2, 13–31. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Zhang, J.F.; You, Z.D.; Shen, K. Ultrahigh-pressure metamorphic P-T-t path of the Sulu orogenic belt, eastern central China. Acta Petrol. Sin. 2005, 21, 257–270. [Google Scholar]
- Ravna, E.K.; Terry, M.P. Geothermobarometry of phengite–kyanite–quartz/coesite eclogites. In Proceedings of the Eleventh Annual VM Goldschmidt Conference, Hot Springs, VA, USA, 20–24 May 2001. [Google Scholar]
- Ye, K.; Cong, B.L.; Ye, D.N. The possible subduction of continental material to depths greater than 200 km. Nature 2000, 407, 734–736. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.Q.; Wang, J.; Hattori, K. Ultrahigh-Pressure Metamorphism and P-T Path of Xiaoxinzhuang Eclogites from the Southern Sulu Orogenic Belt, Eastern China, Based on Phase Equilibria Modelling. Minerals 2022, 12, 216. [Google Scholar] [CrossRef]
- Liu, F.L.; Gerdes, A.; Xue, A.M. Differential subduction and exhumation of crustal slices in the Sulu HP-UHP metamorphic terrane: Insights from mineral inclusions, trace elements, U-Pb and Lu-Hf isotope analyses of zircon in orthogneiss. J. Metamorph. Geol. 2009, 27, 805–825. [Google Scholar] [CrossRef]
- Stepanov, A.S.; Rubatto, D.; Hermann, J.; Korsakov, A.V. Contrasting P-T paths within the Barchi-Kol UHP terrain (Kokchetav Complex): Implications for subduction and exhumation of continental crust. Am. Mineral. 2016, 101, 788–807. [Google Scholar] [CrossRef]
- Yuan, H.Q.; Wang, J.; Hattori, K.; Yang, Y.C.; Liu, J.L.; Xie, Z.P. Ultrahigh-pressure metamorphism and P-T-t path of the Yangkou eclogites and granitic gneisses from the central Sulu orogenic belt, eastern China, based on phase equilibria modelling. Int. Geol. Rev. 2022, 1–18. [Google Scholar] [CrossRef]
- Powell, R. Constraining the P-T path of a MORB-type eclogite using pseudosections, garnet zoning and garnet-clinopyroxene thermometry: An example from the Bohemian Massif. J. Metamorph. Geol. 2005, 23, 725–743. [Google Scholar]
- Carson, C.J.; Powell, R.; Clarke, G.L. Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: Application to the Poue´bo Terrane, Pam Peninsula, New Caledonia. J. Metamorph. Geol. 1999, 17, 9–24. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B. Calculation of partial melting equilibria in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH). J. Metamorph. Geol. 2001, 19, 139–153. [Google Scholar] [CrossRef]
- Wei, C.J.; Powell, R.; Zhang, L.F. Eclogites from the south Tianshan, NW China: Petrologic characteristic and calculated mineral equilibria in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O system. J. Metamorph. Geol. 2003, 21, 163–179. [Google Scholar] [CrossRef]
- Yang, J.J.; Powell, R. Calculated phase relations in the system Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with applications to UHP eclogites and whiteschists. J. Petrol. 2006, 47, 2047–2071. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.J.; Qian, J.H.; Tian, Z.L. Metamorphic evolution of medium-temperature ultra-high pressure (MT-UHP) eclogites from the South Dabie orogen, Central China: An insight from phase equilibria modelling. J. Metamorph. Geol. 2013, 31, 755–774. [Google Scholar] [CrossRef]
- Pan, R.; Macris, C.A.; Menold, C.A. Thermodynamic modeling of high-grade metabasites: A case study using the Tso Morari UHP eclogite. Contrib. Mineral. Petrol. 2020, 175, 78. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Hirajima, T.; Banno, S.; Cong, B.; Liou, J.G. Petrology of ultrahigh–pressure rocks from the southern Sulu region, eastern China. J. Metamorph. Geol. 1995, 13, 659–675. [Google Scholar] [CrossRef]
- Wu, Y.N.; Wang, Y.F. An FTIR study of kyanite in the Maobei kyanite-bearing eclogites from the Sulu orogenic belt, eastern China. J. Earth Sci. 2017, 29, 21–29. [Google Scholar] [CrossRef]
- Liu, F.L.; Xu, Z.Q.; Liou, J.G. Tracing the boundary between UHP and HP metamorphic belts in the southwestern Sulu terrane, eastern China: Evidence from mineral inclusions in zircons from metamorphic rocks. Int. Geol. Rev. 2004, 46, 409–425. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Zeng, L.S.; Liu, F.L.; Yang, J.S.; Zhang, Z.M.; McWilliams, M.; Liou, J.G. Polyphase subduction and exhumation of the Sulu high-pressure–ultrahigh-pressure metamorphic terrane. Geol. Soc. Am. Special Pap. 2006, 403, 93–113. [Google Scholar]
- Ni, J.; Liu, J.; Tang, X.; Yang, H.; Xia, Z.; Guo, Q. The Wulian metamorphic core complex: A newly discovered metamorphic core complex along the Sulu orogenic belt, eastern China. J. Earth Sci. 2013, 24, 297–313. [Google Scholar] [CrossRef]
- Ni, J.; Liu, J.; Tang, X.; Yang, H.; Xia, Z.; Zhang, T. Early Cretaceous exhumation of the Sulu orogenic belt as a consequence of the eastern Eurasian tectonic extension: Insights from the newly discovered Wulian metamorphic core complex, eastern China. J. Geol. Soc. 2016, 173, 531–549. [Google Scholar] [CrossRef]
- Wang, S.J.; Wang, L.; Brown, M.; Huang, Y. Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite–quartz veins in the Sulu belt, China. J. Metamorph. Geol. 2017, 35, 601–629. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Y.; Liou, J.G.; Shu, J.F. Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. Am. Mineral. 2002, 87, 445–453. [Google Scholar] [CrossRef]
- Liu, F.L.; Liou, J.G. Zircon as the best mineral for P–T–time history of UHP metamorphism: A review on mineral inclusions and U–Pb SHRIMP ages of zircons from the Dabie-Sulu UHP rocks. J. Asian Earth Sci. 2011, 40, 1–39. [Google Scholar] [CrossRef]
- Qiu, H.J.; Xu, Z.Q.; Zhang, Z.M.; Yang, J.S.; Yang, T.N.; Zhang, J.X.; Li, H.B. Discovery of aragonite inclusions in garnet in greenschist from high pressure metamorphic belt in northern Jiangsu. Geol. Bull. China 2002, 21, 617–624. [Google Scholar]
- Liu, Y.C.; Li, S.G. Detachment in subducted continental crust and multi plate differential exhumation of ultrahigh pressure rocks: A case study of the Dabie Sulu orogenic belt. Chinese Sci. Bull. 2008, 53, 2153–2165. [Google Scholar]
- Liu, L.S.; Liu, F.L.; Liu, P.H.; Liu, C.H. Geochemical characteristics and metamorphic evolution of metamafic rocks from Haiyangsuo area, Sulu ultrahigh-pressure metamorphic belt. Acta Petrol. Sin. 2015, 31, 2863–2888. [Google Scholar]
- Zhang, R.Y.; Liou, J.G.; Ernst, W. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Res. 2009, 16, 1–26. [Google Scholar] [CrossRef]
- Zheng, Y.F. Fluid regime in continental subduction zones: Petrological insights from ultrahighpressure metamorphic rocks. J. Geol. Soc. 2009, 166, 763–782. [Google Scholar] [CrossRef]
- Liu, L.S.; Liu, F.L.; Wang, W. The polygenetic meta-mafic rocks from the northeast of Sulu ultrahigh-pressure metamorphic belt: Insight from petrology, isotope geochronology and geochemistry. Acta Petrol. Sin. 2017, 33, 2899–2924. [Google Scholar]
- Song, C.M.; Jin, Z.M.; Wang, L.M.; Zhang, X.D.; Li, Y.Y. New discovery of the contact between eclogite and country rock in Guanshan, eastern Shandong, and the implications for chronology. Acta Geol. Sin. 2003, 77, 238–243. [Google Scholar]
- Liou, J.G.; Zhang, R.Y. Occurrences of intergranular coesite in ultrahigh-P rocks from the Sulu region, eastern China: Implications for lack of fluid during exhumation. Am. Mineral. 1996, 81, 1217–1221. [Google Scholar] [CrossRef]
- Wang, L.; Wang, S.J.; Brown, M. On the survival of intergranular coesite in UHP eclogite. J. Metamorph. Geol. 2017, 36, 173–194. [Google Scholar] [CrossRef]
- Middlemost, E.A.K. Naming materials in the magma/igneous rock system. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 68–81. [Google Scholar] [CrossRef]
- Groppo, C.; Rolfo, F.; Liu, Y.C.; Deng, L.P.; Wang, A.D. P-T evolution of elusive UHP eclogites from the Luotian dome (North Dabie Zone, China): How far can the thermodynamic modeling lead us. Lithos 2015, 226, 183–200. [Google Scholar] [CrossRef]
- Guo, S.; Chen, Y.; Ye, K.; Su, B.; Yang, Y.H.; Zhang, L.M.; Liu, J.B.; Mao, Q. Formation of multiple high-pressure veins in ultrahigh-pressure eclogite (Hualiangting, Dabie terrane, China): Fluid source, element transfer, and closed-system metamorphic veining. Chem. Geol. 2015, 417, 238–260. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Streckeisen, A.; Zanettin, B. A chemical classificatron of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar]
- Wei, C.J.; Clarke, G.L. Calculated phase equilibria for MORB compositions: A reappraisal of the metamorphic evolution of lawsonite eclogite. J. Metamorph. Geol. 2011, 29, 939–952. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.; Worley, B. Calculating phase diagram involving solid solutions via non-linear equations, with examples using THERMOCALC. J. Metamorph. Geol. 1998, 16, 577–586. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Green, E.C.R.; White, R.W.; Diener, J.F.A.; Powell, R.; Holland, T.J.B.; Palin, R.M. Activity–composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 2016, 34, 845–869. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Johnson, T.E.; Green, E.C.R. New mineral activity- composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 2014, 32, 261–286. [Google Scholar] [CrossRef]
- Diener, J.F.A.; Powell, R.; White, R.W.; Holland, T.J.B. A new thermodynamic model for clino- and orthoamphiboles in the system Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–O. J. Metamorph. Geol. 2007, 25, 631–656. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- Cao, Y.; Song, S.G.; Niu, Y.L.; Jung, H.; Jin, Z.M. Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China. J. Metamorph. Geol. 2011, 29, 699–720. [Google Scholar] [CrossRef]
- Korhonen, F.J.; Powell, R.; Stout, J.H. Stability of sapphirine plus quartz in the oxidized rocks of the Wilson Lake terrane, Labrador: Calculated equilibria in NCKFMASHTO. J. Metamorph. Geol. 2012, 30, 21–36. [Google Scholar] [CrossRef]
- Liu, T.; Wei, C.J. Metamorphic evolution of Archean ultrahigh-temperature mafic granulites from the western margin of Qian’an gneiss dome, eastern Hebei Province, North China Craton: Insights into the Archean tectonic regime. Precambr. Res. 2018, 318, 170–187. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.J.B. On thermobarometry. J Metamorph Geol. 2008, 26, 155–179. [Google Scholar] [CrossRef]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Wood, D.A. The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province. Earth Planet. Sci. Lett. 1980, 50, 11–30. [Google Scholar] [CrossRef]
- Mullen, E.D. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis. Earth Planet. Sci. Lett. 1983, 62, 53–62. [Google Scholar] [CrossRef]
- Cabanis, B.; Lecolle, M. Le diagramme La/10–Y/15–Nb/8: Un outil pour la discrimination des series volcaniques et la mise en evidence des procesus de mélange et/ou de contamination crutale. Comptes Rendus De L’ Acad. Des Sci. Ser. 1989, 309, 2023–2029. [Google Scholar]
- Pearce, J.A. Role of the sub-continental lithosphere in the magma genesis at active continental margins. Cont. Basalts Mantle Xenoliths 1983, 20, 230–249. [Google Scholar]
- Katsube, A.; Hayasaka, Y.; Santosh, M. SHRIMP zircon U–Pb ages of eclogite and orthogneiss from Sulu ultrahigh-pressure zone in Yangkou area, eastern China. Gondwana Res. 2009, 15, 168–177. [Google Scholar] [CrossRef]
- Li, S.G.; Sun, W.D.; Zhang, Z.Q.; Li, Q.L. Nd isotopic disequilibrium between minerals and Rb-Sr age of the secondary phengite in eclogite from the Yangkou area, Qingdao, eastern China. Chinese Sci. Bull. 2001, 46, 252–255. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Wu, Y.B.; Chen, F.K.; Gong, B.; Li, L.; Zhao, Z.F. Zircon U–Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim. Cosmochim. Ac. 2004, 68, 4145–4165. [Google Scholar] [CrossRef]
- Zhou, K.; Chen, Y.X.; Ma, H.Z.; Zheng, Y.F.; Xia, X.P. Geochemistry of high-pressure to ultrahigh-pressure granitic melts produced by decompressional melting of deeply subducted continental crust in the Sulu orogen, east-central China. Geochim. Cosmochim. Ac. 2020, 288, 214–247. [Google Scholar] [CrossRef]
- Newton, R.C.; Perkins, D. Thermodynamic calibration of geobarometers based on the assemblages garnet–orthopyroxene (clinopyroxene)–plagioclase–quartz. Am. Mineral. 1982, 67, 203–222. [Google Scholar]
- Nimis, P.; Taylor, W.R. Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib. Mineral. Petrol. 2000, 139, 541–554. [Google Scholar] [CrossRef]
- Wang, L.; Kusky, T.M.; Polat, A.; Wang, S.J.; Jiang, X.F. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nat. Commun. 2014, 56, 5604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, S.; Tang, P.; Su, B.; Chen, Y.; Ye, K.; Zhang, L.M.; Gao, Y.J.; Liu, J.B.; Yang, Y.H. Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane): A mineralogical record of fluid-induced oxidation processes in exhumed UHP slabs. Am. Mineral. 2017, 102, 2268–2283. [Google Scholar] [CrossRef]
- Yang, T.N. Retrograded textures and associated mass transfer: Evidence for aqueous fluid action during exhumation of the Qinglongshan eclogite, Southern Sulu ultrahigh pressure metamorphic terrane, eastern China. J. Metamorph. Geol. 2004, 22, 653–669. [Google Scholar] [CrossRef]
- Clarke, G.L.; Powell, R.; Fitsherbert, J.A. The lawsonite paradox: A comparison of field evidence and mineral equilibria modelling. J. Metamorph. Geol. 2006, 24, 716–726. [Google Scholar] [CrossRef]
- Pan, R.; Macris, C.A.; Menold, C.A. Fluid evolution during burial and exhumation of the Tso Morari UHP complex, NW India: Constraints from mineralogy, geochemistry, and thermodynamic modeling. Contrib. Mineral. Petrol. 2023, 178, 3. [Google Scholar] [CrossRef]
- Faryad, S.W.; Cuthbert, S.J. High-temperature overprint in (U)HPM rocks exhumed from subduction zones; A product of isothermal decompression or a consequence of slab break-off (slab rollback)? Earth-Sci. Rev. 2020, 202, 103108. [Google Scholar] [CrossRef]
- Waters, D.J.; Martin, H.N.; The Garnet-Cpx-Phengite Barometer. Recommended Calibration and Calculation Method. 1996. Available online: http://www.earth.ox.ac.uk/Bdavewa/research/eclogites/ecbarcal.html (accessed on 1 January 2021).
- Green, T.H.; Hellman, P.L. Fe-Mg partitioning between coexisting garnet and phengite at high pressure, and comments on a garnet-phengite geothermometer. Lithos 1982, 15, 253–266. [Google Scholar] [CrossRef]
- Ravna, E.K. The garnet-clinopyroxene geothermometer: An updated calibration. J. Metamorph. Geol. 2000, 18, 211–219. [Google Scholar] [CrossRef] [Green Version]
- Eckert, J.O.; Newton, R.C.; Kleppa, O.J. The ∆H of reaction and recalibration of garnet—pyroxene—plagioclase—quartz geobarometers in the CMAS system by solution calorimetry. Am. Mineral. 1991, 76, 148–160. [Google Scholar]
P (kbar) | T (°C) | Xpy | Xgr | Si (Phg) | Grt | Omp | Amp | Phg | Qtz/Coe | LL | Rt | Pl | Ilm | Lws | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample G-10 in Figure 7a | |||||||||||||||
A1 | 23 | 600 | 0.165 | 0.27 | 3.49 | 0.42 | 0.45 | 0.08 | 0.00 | 0.02 | 0.02 | ||||
B1 | 22 | 605 | 0.165 | 0.27 | 3.44 | 0.42 | 0.44 | 0.09 | 0.00 | 0.02 | 0.02 | ||||
C1 | 22 | 610 | 0.17 | 0.27 | 3.44 | 0.43 | 0.45 | 0.08 | 0.00 | 0.02 | 0.03 | ||||
D1 | 23 | 600 | 0.17 | 0.26 | 3.49 | 0.43 | 0.46 | 0.07 | 0.00 | 0.02 | 0.03 | ||||
Sample G-10 in Figure 7b | |||||||||||||||
E1 | 12 | 785 | 0.16 | 0.25 | 0.18 | 0.24 | 0.33 | 0.01 | 0.10 | 0.01 | 0.10 | 0.02 | |||
F1 | 12 | 790 | 0.165 | 0.25 | 0.19 | 0.24 | 0.32 | 0.01 | 0.11 | <0.01 | 0.11 | 0.02 | |||
G1 | 12 | 790 | 0.165 | 0.24 | 0.20 | 0.25 | 0.31 | <0.01 | 0.11 | 0.01 | 0.10 | 0.01 | |||
H1 | 12 | 780 | 0.16 | 0.24 | 0.20 | 0.25 | 0.33 | <0.01 | 0.10 | 0.01 | 0.09 | 0.01 | |||
Measured | 0.16–0.17 | 0.22–0.25 | 3.44–3.49 | 0.40 | 0.49 | 0.03 | 0.01 | 0.04 | 0.03 | ||||||
Sample G-11 in Figure 8a | |||||||||||||||
A2 | 26 | 605 | 0.22 | 0.27 | 3.49 | 0.36 | 0.35 | 0.14 | 0.01 | 0.02 | 0.01 | 0.10 | |||
B2 | 25 | 605 | 0.22 | 0.28 | 3.45 | 0.37 | 0.35 | 0.14 | 0.01 | 0.03 | 0.01 | 0.10 | |||
C2 | 25 | 615 | 0.24 | 0.28 | 3.40 | 0.39 | 0.38 | 0.11 | 0.01 | 0.03 | 0.01 | 0.07 | |||
D2 | 26 | 615 | 0.24 | 0.27 | 3.45 | 0.38 | 0.38 | 0.10 | 0.01 | 0.03 | 0.01 | 0.08 | |||
R’ | 33 | 685 | 0.29 | 0.27 | 3.51 | 0.46 | 0.46 | 0.01 | 0.05 | 0.01 | 0.02 | ||||
Sample G-11 in Figure 8b | |||||||||||||||
E2 | 15 | 805 | 0.23 | 0.28 | 0.30 | 0.24 | 0.23 | 0.02 | 0.12 | 0.01 | 0.08 | ||||
F2 | 14 | 820 | 0.23 | 0.27 | 0.27 | 0.22 | 0.25 | 0.01 | 0.12 | 0.01 | 0.11 | ||||
G2 | 14 | 820 | 0.24 | 0.27 | 0.27 | 0.22 | 0.25 | 0.01 | 0.12 | 0.01 | 0.11 | ||||
H2 | 15 | 805 | 0.24 | 0.28 | 0.30 | 0.24 | 0.23 | 0.02 | 0.12 | 0.01 | 0.08 | ||||
Measured | 0.22–0.24 | 0.27–0.27 | 3.510 | 0.48 | 0.45 | 0.02 | 0.01 | 0.04 | 0.01 | ||||||
Sample Y-32 in Figure 9a | |||||||||||||||
A3 | 25 | 595 | 0.18 | 0.23 | 3.40 | 0.19 | 0.33 | 0.11 | 0.13 | 0.06 | 0.01 | 0.17 | |||
B3 | 24 | 595 | 0.18 | 0.24 | 3.36 | 0.20 | 0.33 | 0.11 | 0.13 | 0.06 | 0.01 | 0.16 | |||
C3 | 25 | 600 | 0.19 | 0.24 | 3.36 | 0.21 | 0.35 | 0.09 | 0.13 | 0.06 | 0.01 | 0.15 | |||
D3 | 26 | 600 | 0.19 | 0.23 | 3.40 | 0.20 | 0.35 | 0.09 | 0.13 | 0.06 | 0.01 | 0.16 | |||
Sample Y-32 in Figure 9b | |||||||||||||||
E3 | 14 | 770 | 0.17 | 0.34 | 0.17 | 0.04 | 0.28 | 0.02 | 0.17 | 0.01 | 0.31 | ||||
F3 | 13 | 770 | 0.17 | 0.34 | 0.17 | 0.04 | 0.28 | 0.02 | 0.17 | 0.01 | 0.31 | ||||
G3 | 14 | 790 | 0.19 | 0.32 | 0.19 | 0.05 | 0.24 | 0.01 | 0.19 | 0.01 | 0.31 | ||||
H3 | 14 | 786 | 0.19 | 0.32 | 0.20 | 0.05 | 0.24 | 0.01 | 0.19 | 0.01 | 0.30 | ||||
Measured | 0.17–0.19 | 0.31–0.36 | 3.36–3.40 | 0.25 | 0.45 | 0.05 | 0.15 | 0.05 | 0.05 |
Stage | Sample | Lithology | Locality | Age (Ma) | Method | References |
---|---|---|---|---|---|---|
UHP eclogite facies | YKK1 | Eclogite | Yangkou | 240 ± 56 | SHRIMP U–Pb | Katsube et al. [63] |
245 ± 38 | ||||||
00LS09 | Eclogite | Lanshantou | 258 ± 25 | SHRIMP U–Pb | Zheng et al. [65] | |
241 ± 5 | ||||||
247 ± 5 | ||||||
HP/HT eclogite facies | 00LS09 | Eclogite | Lanshantou | 215 ± 6 | SHRIMP U–Pb | Zheng et al. [65] |
217 ± 3 | ||||||
219 ± 8 | ||||||
15Q07 | Eclogite | Yangkou | 220 ± 3 | SHRIMP U–Pb | Zhou et al. [66] | |
227 ± 3 | ||||||
00QL02 | Eclogite | Qinglongshan | 231 ± 7 | SHRIMP U–Pb | Zheng et al. [65] | |
226 ± 7 | ||||||
229 ± 7 | ||||||
Amphibolite facies | Y-12 | Eclogite | Yangkou | 195.1 ± 3.8 | Rb-Sr | Li et al. [64] |
195.6 ± 3.8 | ||||||
193.2 ± 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Wang, J.; Xie, Z.; Liu, J.; Liu, J. Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China. Minerals 2023, 13, 362. https://doi.org/10.3390/min13030362
Yuan H, Wang J, Xie Z, Liu J, Liu J. Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China. Minerals. 2023; 13(3):362. https://doi.org/10.3390/min13030362
Chicago/Turabian StyleYuan, Haiqi, Jian Wang, Zhipeng Xie, Jianguo Liu, and Jinlin Liu. 2023. "Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China" Minerals 13, no. 3: 362. https://doi.org/10.3390/min13030362
APA StyleYuan, H., Wang, J., Xie, Z., Liu, J., & Liu, J. (2023). Ultrahigh-Pressure Metamorphism and P-T-t Paths for the Eclogites from the Central Areas of Sulu Orogen, Eastern China. Minerals, 13(3), 362. https://doi.org/10.3390/min13030362