Discovery of “Meteoritic” Layered Disulphides ACrS2 (A = Na, Cu, Ag) in Terrestrial Rock
Abstract
:1. Introduction
2. Materials and Methods
3. Occurrence
4. Chromium Disulphides
5. Raman Investigation of Layered Chromium Disulphides
6. Genesis and Alteration of Chromium Disulphides in Pyrometamorphic Rock
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galuskin, E.V.; Kusz, J.; Galuskina, I.O.; Książek, M.; Vapnik, Y.; Zieliński, G. Discovery of terrestrial andreyivanovite, FeCrP, and the effect of Cr and V substitution in barringerite-allabogdanite low-pressure transition. Am. Mineral. 2023, 107. (in press). [Google Scholar] [CrossRef]
- Okada, A.; Keil, K. Caswellsilverite, NaCrS2: A new mineral in the Norton County enstatite achondrite. Am. Mineral. 1982, 67, 132–136. [Google Scholar]
- Grossman, J.N.; Rubin, A.E.; Rambaldi, E.F.; Rajan, R.S.; Wasson, J.T. Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochim. Cosmochim. Acta 1985, 49, 1781–1795. [Google Scholar] [CrossRef]
- Brearley, A.J.; Jones, R.H. Chondritic meteorites. In Planetary Materials; Papike, J.J., Ed.; Mineralogical Society of America: Washington, DC, USA, 1998; pp. 3–398. [Google Scholar] [CrossRef]
- Bunch, T.E.; Irving, A.J.; Wittke, J.H.; Kuehner, S.M. Zincian brezinaite and other rare minerals in two cumulate-textured aubrites from Northwest Africa. Meteorit. Planet. Sci. Suppl. 2008, 43, 5309. [Google Scholar]
- Fahey, A.; Huss, G.R.; Wasserburg, G.J.; Lodders, K. REE abundances and CR isotopic composition of oldhamite and associate minerals from the Pena Blanca Spring Aubrite. Abstr. Lunar Planet. Sci. Conf. 1995, 26, 385. [Google Scholar]
- El Goresy, A.; Yabuki, H.; Ehlers, K.; Woolum, D.; Pernicka, E. Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Proc. NIPR Symp. Antarct. Meteor. 1988, 1, 65–101. [Google Scholar]
- Sharygin, V. Phase CuCrS2 in iron meteorite Uakit (IIAB), Buryatia: Preliminary data. In Proceedings of the IX Russian Young Scientists Conference “Minerals: Structure, properties, investigation methods”, Ekaterinburg, Russia, 5–8 February 2018; p. 229. [Google Scholar]
- Sharygin, V.V.; Yakovlev, G.A.; Seryotkin, Y.V.; Karmanov, N.S.; Novoselov, K.A.; Karabanalov, M.S. Grokhovskyite, IMA 2019-065. CNMNC Newsletter No. 52. Mineral. Mag. 2019, 83, 890. [Google Scholar]
- Bevan, A.W.; Downes, P.J.; Henry, D.A.; Verrall, M.; Haines, P.W. The Gove relict iron meteorite from Arnhem Land, Northern Territory, Australia. Meteorit. Planet. Sci. 2019, 54, 1710–1719. [Google Scholar] [CrossRef]
- Lin, Y.T.; Al Goresy, A.; Hatcheon, I.D. The first meteoritic silver mineral in Peña Blanca Springs enstatite achondrite: Assemblage, composition and silver isotopes. Abstr. Lunar Planet. Sci. Conf. 1989, 20, 572. [Google Scholar]
- Okada, A.; Keil, K.; Leonard, B.F.; Hutcheon, I.D. Schöllhornite, Na0.3(H2O)1[CrS2], a new mineral in the Norton County enstatite achondrite. Am. Mineral. 1985, 70, 638–643. [Google Scholar]
- Britvin, S.N.; Guo, X.Y.; Kolomensky, V.D.; Boldyreva, M.M.; Kretser, Y.L.; Yagovinka, M.A. Cronusite, Ca0.2(H2O)2CrS2, a new mineral from the Norton County enstatite achondrite. Proc. Russ. Mineral. Soc. 2001, 130, 29–36. [Google Scholar]
- Kimura, M.; Lin, Y.-T.; Ikeda, Y.; El Goresy, A.; Yanai, K.; Kojima, H. Mineralogy of Antarctic aubrities, Yamato-793592 and Allan Hills-78113: Comparison with non-Antarctic aubrites and E-chondrites. Proc. NIPR Symp. Antarct. Meteor. 1993, 6, 186–203. [Google Scholar]
- Wilson, J.A.; Yoffe, A.D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193–335. [Google Scholar] [CrossRef]
- Yano, R.; Sasagawa, T. Crystal growth and intrinsic properties of ACrX2 (A = Cu, Ag; X = S, Se) without a secondary phase. Cryst. Growth Des. 2016, 16, 5618–5623. [Google Scholar] [CrossRef]
- Naveen, N.; Park, W.B.; Singh, S.P.; Han, S.C.; Ahn, D.; Sohn, K.-S.; Pyo, M. KCrS2 cathode with considerable cyclability and high rate performance: The first K+ stoichiometric layered compound for potassium-ion batteries. Adv. Sci. News Nano Micro Small 2018, 14, e1803495. [Google Scholar] [CrossRef] [PubMed]
- Galuskin, E.; Galuskina, I.O.; Kamenetsky, V.; Vapnik, Y.; Kusz, J.; Zieliński, G. First in situ terrestrial osbornite (TiN) in the pyrometamorphic Hatrurim Complex, Israel. Lithosphere 2022, 1, 8127747. [Google Scholar] [CrossRef]
- Galuskina, I.O.; Galuskin, E.V.; Pakhomova, A.S.; Widmer, R.; Armbruster, T.; Krüger, B.; Grew, E.S.; Vapnik, Y.; Dzierażanowski, P.; Murashko, M. Khesinite, Ca4Mg2Fe3+10O4[(Fe3+10Si2)O36], a new rhönite-group (sapphirine supergroup) mineral from the Negev Desert, Israel—Natural analogue of the SFCA phase. Eur. J. Mineral. 2017, 29, 101–116. [Google Scholar] [CrossRef]
- Burg, A.; Kolodny, Y.; Lyakhovsky, V. Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Isr. J. Earth Sci. 1999, 48, 209–223. [Google Scholar]
- Vapnik, Y.; Sharygin, V.V.; Sokol, E.V.; Shagam, R. Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Rev. Eng. Geol. 2007, 18, 1–21. [Google Scholar] [CrossRef]
- Novikov, I.; Vapnik, Y.; Safonova, I. Mud volcano origin of the Mottled Zone, South Levant. Geosci. Front. 2013, 4, 597–619. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Vlasenko, N.S.; Krzhizhanovskaya, M.G.; Vereshchagin, O.S.; Bocharov, V.N.; Lozhkin, M.S. Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology 2020, 49, 382–386. [Google Scholar] [CrossRef]
- Sokol, E.; Novikov, I.; Zateeva, S.; Vapnik, Y.; Shagam, R.; Kozmenko, O. Combustion metamorphism in the Nabi Musa dome: New implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Res. 2010, 22, 414–438. [Google Scholar] [CrossRef]
- Unger, W.K.; Karecki, D.; Clayman, B.P.; Irwin, J.C. Raman and far-infrared spectra of NaCrS2. Solid State Commun. 1979, 29, 149–151. [Google Scholar] [CrossRef]
- Caxcer, R.L.; Bricker, C. The Raman spectra of crystalline Na2CrO, and Na2CrO4·4H2O. Spectrochim. Acta Part A Mol. Spectrosc. 1974, 30A, 1793–1800. [Google Scholar] [CrossRef]
- Hardcastle, F.D.; Israel, E.; Wachs, I.E. Raman spectroscopy of chromium oxide supported on Al2O3, TiO2 and SiO2: A comparative study. J. Mol. Catal. 1988, 46, 173–186. [Google Scholar] [CrossRef]
- Monico, L.; Janssens, K.; Hendriks, E.; Brunetti, B.G.; Miliani, C. Raman study of different crystalline forms of PbCrO4 and PbCr1_xSxO4 solid solutions for the noninvasive identification of chrome yellows in paintings: A focus on works by Vincent van Gogh. J. Raman Spectrosc. 2014, 45, 1034–1045. [Google Scholar] [CrossRef]
- Baonza, V.G.; Lobato, A.; Recio, J.M.; Taravillo, M. Charge analysis in (RE)CrO4 scheelites by combined Raman spectroscopy and computer simulations. J. Solid State Chem. 2022, 316, 123624. [Google Scholar] [CrossRef]
- Abramova, G.M.; Petrakovskiy, G.A.; Vtyurin, A.N.; Rasch, J.C.E.; Krylov, A.S.; Gerasimova, J.V.; Velikanov, D.A.; Boehmb, V.M.; Sokolov, V. Anomalous Raman phenomenon of CuCrS2. J. Raman Spectrosc. 2010, 41, 1485–1488. [Google Scholar] [CrossRef]
- Selivanova, A.V.; Sokolov, V.V.; Kolesov, B.A. Raman spectral study of CuCrS2 crystals in the temperature range of 5–300 K. J. Struct. Chem. 2015, 56, 874–879. [Google Scholar] [CrossRef]
- Gao, W.; Zou, Y.; Zhang, S.; Shi, S.; Xia, Z.; Ouyang, Z.; Liu, B.; Zhang, L.; Li, R.; Pi, L.; et al. Investigation of spin-phonon coupling in triangular-lattice antiferromagnet AgCrS2 by infrared transmission spectroscopy. J. Magn. Magn. Mater. 2016, 404, 175–178. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Lv, H.; Li, Y.; Lin, Y.; Su, Y.; Wu, J.; Liu, H.; Guo, Y.; Zhuo, Z.; et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 2021, 13, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Nims, C.; Cron, B.; Wetherington, M.; Macalady, J.; Cosmidis, J. Low frequency Raman Spectroscopy for micron-scale and in vivo characterization of elemental sulfur in microbial samples. Sci. Rep. 2019, 9, 7971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Ren, G.-X.; Shadike, Z.; Yue, J.-L.; Cao, M.-H.; Zhang, J.-N.; Chen, M.-V.; Yang, X.-Q.; Bak, S.-M.; Northrup, P.; et al. Anionic redox reaction in layered NaCr2/3Ti1/3S2 through electron holes formation and dimerization of S–S. Nat. Commun. 2019, 10, 4458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baran, E.J.; Ferrer, E.G.; Bueno, I.; Parada, C. Vibrational spectra of some double chromates the type LnK(CrO4)2. J. Raman Spectrosc. 1990, 21, 27–30. [Google Scholar] [CrossRef]
- Frost, R.L. Raman microscopy of selected chromate minerals. J. Raman Spectrosc. 2004, 35, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Himcinschi, C.; Drechsler, F.; Walch, D.S.; Bhatnagar, A.; Belik, A.A.; Kortus, J. Unexpected phonon behavior in BiFexCr1-xO3, a material system different from its BiFeO3 and BiCrO3 parents. Nanomaterials 2022, 12, 1607. [Google Scholar] [CrossRef]
- Britvin, S.N.; Murashko, M.N.; Vapnik, Y.; Polekhovsky, Y.S.; Krivovichev, S.V. Earth’s phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Sci. Rep. 2015, 5, 8355. [Google Scholar] [CrossRef] [Green Version]
- Galuskin, E.V.; Krüger, B.; Galuskina, I.O.; Krüger, H.; Vapnik, Y.; Wojdyla, J.A.; Murashko, M. New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim Complex: Ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev Desert, Israel. Minerals 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Griffin, W.L.; Gain, S.E.M.; Saunders, M.; Alard, O.; Shaw, J.; Toledo, V.; O’Reilly, S.Y. Nitrogen under super-reducing conditions: Ti oxynitride melts in xenolithic corundum aggregates from Mt Carmel (N. Israel). Minerals 2021, 11, 780. [Google Scholar] [CrossRef]
- Anzures, B.A.; Parman, S.W.; Milliken, R.E.; Namur, O.; Cartier, C.; Wang, S. Effect of sulfur speciation on chemical and physical properties of very reduced mercurian melts. Geochim. Cosmochim. Acta 2020, 286, 780. [Google Scholar] [CrossRef]
- Scheel, H.J. Crystallization of sulfides from alkali polysulfide fluxes. J. Cryst. Growth 1974, 24–25, 669–673. [Google Scholar] [CrossRef]
- Engelsman, F.M.R.; Wiegers, G.A.; Jellinek, F.; Van Laar, B. Crystal structures and magnetic structures of some metal(I) chromium(III) sulfides and selenides. J. Solid State Chem. 1973, 6, 574–582. [Google Scholar] [CrossRef]
- Tewari, G.C.; Tripathi, T.S.; Rastogi, A.K. Effect of chromium disorder on the thermoelectric properties of layered-antiferromagnet CuCrS2. Z. Für Krist. 2010, 225, 471–474. [Google Scholar] [CrossRef]
- Shadike, Z.; Zhou, Y.-N.; Chen, L.-L.; Wu, Q.; Yue, J.-L.; Zhang, N.; Yang, X.-Q.; Gu, L.; Liu, X.-S.; Shi, S.-Q.; et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 2017, 8, 566. [Google Scholar] [CrossRef] [Green Version]
- Korotaev, E.V.; Syrokvashin, M.M.; Filatova, I.Y.; Sotnikov, A.V. Effect of the order-disorder transition on the electronic structure and physical properties of layered CuCrS2. Materials 2021, 14, 2729. [Google Scholar] [CrossRef]
- Xu, X.; Zhong, T.; Zuo, N.; Li, Z.; Li, D.; Pi, L.; Chen, P.; Wu, M.; Zhai, T.; Zhou, X. High-TC two-dimensional ferroelectric CuCrS2 grown via chemical vapor deposition. Am. Chem. Soc. Nano 2022, 16, 8141–8149. [Google Scholar] [CrossRef]
- Schöllhorn, R.; Ardnt, R.; Kubny, A. Formation and reactions of hydrated layered chromium sulfides Ax(H2O)y[CrS2]. J. Solid State Chem. 1979, 29, 259–265. [Google Scholar] [CrossRef]
nm | Pyh_II | Pyh_pr | Slh_II | Slh_pr | Cws_II | Cws_pr | Ag_II | Ag_pr | MinX_II | MinX_pr | Ghy_II | Ghy_X | Chy_pr |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
400 | 29.5 | 27.0 | 19.0 | 23.8 | 21.8 | 28.9 | 23.5 | 25.2 | 26.6 | 29.1 | 27.2 | 27.2 | 27.8 |
420 | 30.5 | 28.0 | 20.2 | 24.9 | 22.3 | 30.0 | 24.9 | 26.5 | 26.2 | 30.0 | 28.2 | 28.2 | 29.0 |
440 | 31.6 | 29.0 | 22.0 | 25.8 | 23.0 | 31.0 | 26.0 | 28.0 | 26.0 | 30.6 | 29.2 | 29.8 | 30.7 |
460 | 33.0 | 30.0 | 23.8 | 26.9 | 23.6 | 32.0 | 27.2 | 29.5 | 25.0 | 31.0 | 30.0 | 30.9 | 32.0 |
470 (COM) | 34.0 | 30.3 | 24.8 | 27.3 | 24.0 | 32.4 | 28.0 | 30.2 | 25.5 | 31.1 | 30.2 | 31.1 | 32.8 |
480 | 35.0 | 31.1 | 25.5 | 27.5 | 24.3 | 32.4 | 28.1 | 30.4 | 25.9 | 31.1 | 30.5 | 31.5 | 32.8 |
500 | 35.1 | 31.4 | 24.8 | 27.6 | 24.0 | 32.1 | 27.4 | 30.4 | 26.0 | 31.6 | 30.5 | 32.0 | 32.9 |
520 | 35.9 | 31.9 | 24.5 | 27.5 | 23.9 | 32.0 | 27.0 | 30.0 | 26.0 | 32.1 | 30.1 | 32.3 | 33.0 |
540 | 37.1 | 32.9 | 24.4 | 27.5 | 23.9 | 32.3 | 27.0 | 30.0 | 26.0 | 32.1 | 30.1 | 32.6 | 33.1 |
546 (COM) | 37.5 | 33.1 | 24.3 | 27.5 | 23.9 | 32.2 | 26.9 | 30.0 | 26.0 | 32.1 | 30.3 | 32.8 | 33.1 |
560 | 38.1 | 33.8 | 24.1 | 27.3 | 24.0 | 32.1 | 26.8 | 30.0 | 25.9 | 32.3 | 30.7 | 32.9 | 33.1 |
580 | 39.0 | 34.2 | 24.0 | 27.1 | 23.5 | 32.0 | 26.3 | 30.0 | 25.7 | 32.5 | 31.0 | 33.0 | 33.8 |
589 (COM) | 39.0 | 34.6 | 23.9 | 27.0 | 23.4 | 32.0 | 26.1 | 30.0 | 25.5 | 32.6 | 31.1 | 33.0 | 33.8 |
600 | 39.0 | 34.8 | 23.8 | 26.9 | 23.2 | 32.0 | 26.0 | 29.8 | 25.3 | 32.6 | 31.3 | 32.9 | 33.7 |
620 | 39.4 | 35.3 | 23.5 | 26.6 | 23.0 | 32.3 | 25.6 | 29.0 | 25.0 | 32.0 | 31.3 | 32.8 | 33.3 |
640 | 40.0 | 36.7 | 23.0 | 26.1 | 22.8 | 31.9 | 25.3 | 28.9 | 24.6 | 31.5 | 32.0 | 32.7 | 33.4 |
650 (COM) | 40.3 | 37.0 | 22.9 | 25.8 | 22.7 | 31.6 | 25.1 | 28.9 | 24.2 | 31.5 | 32.1 | 32.5 | 33.3 |
660 | 40.8 | 37.6 | 22.8 | 25.3 | 22.4 | 31.2 | 25.0 | 28.8 | 24.2 | 31.5 | 32.4 | 32.3 | 33.1 |
680 | 41.8 | 38.3 | 22.5 | 25.7 | 22.2 | 30.8 | 24.9 | 28.3 | 24.1 | 31.7 | 32.9 | 32.2 | 33.3 |
700 | 42.2 | 39.2 | 22.2 | 26.0 | 22.0 | 31.0 | 24.7 | 27.9 | 24.0 | 31.4 | 33.0 | 32.0 | 33.8 |
1 | 2 | 1 | 2 | ||||
---|---|---|---|---|---|---|---|
n = 9 | s.d. | range | n = 1 | apfu | apfu | ||
Si | n.d. | 0.64 | S | 2.00 | 2.00 | ||
S | 46.37 | 0.24 | 45.81–46.69 | 37.58 | Si | 0.04 | |
Ca | 0.31 | 0.08 | 0.24–0.46 | 2.34 | Ca | 0.01 | 0.10 |
Zn | n.d. | 0.29 | Zn | 0.01 | |||
Fe | 0.37 | 0.06 | 0.28–0.50 | 7.94 | Fe3+ | 0.01 | 0.24 |
Cr | 36.65 | 0.36 | 35.89–37.13 | 30.18 | Cr3+ | 0.79 | 0.99 |
V | 0.33 | 0.02 | 0.30–0.35 | 0.49 | Cr4+ | 0.18 | |
Ti | 0.13 | 0.07 | 0.08–0.30 | n.d. | V3+ | 0.01 | 0.02 |
Al | n.d. | 0.14 | Al | 0.01 | |||
Na | 12.70 | 0.52 | 11.82–13.75 | 0.60 | Na | 0.77 | 0.05 |
Sr | 1.82 | 0.03 | 1.78–1.88 | 1.66 | Sr | 0.03 | 0.03 |
Ba | n.d. | 9.83 | Ba | 0.12 | |||
H2O | 1.32 | 0–0.23 | 7.80 | ||||
Total | 100.00 | 100.00 | H2O | 0.10 | 0.74 |
Figure 5b | Figure 5d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||||||||
wt.% | mean 7 | s.d. | range | mean 3 | mean 7 | s.d. | range | mean 8 | s.d. | range | mean 7 | s.d. | range |
Si | n.d. | n.d. | n.d. | 0.19 | 0.04 | 0.14–0.28 | n.d. | ||||||
Al | n.d. | n.d. | n.d. | 0.07 | 0.01 | 0.06–0.09 | n.d. | ||||||
S | 34.70 | 0.79 | 33.33–35.69 | 37.32 | 38.57 | 0.29 | 37.99–38.90 | 40.25 | 1.01 | 37.68–41.03 | 38.34 | 0.47 | 37.78–39.13 |
K | n.d. | 0.41 | n.d. | 0.29 | 0.05 | 0.23–0.38 | n.d. | ||||||
Ca | 1.13 | 0.39 | 0.70–1.90 | 1.93 | 0.29 | 0.06 | 0.21–0.36 | 1.32 | 0.45 | 0.97–2.42 | n.d. | ||
Zn | n.d. | 0.12 | n.d. | 0.59 | 0.43 | 0.12–1.47 | n.d. | ||||||
Cu | 28.91 | 0.95 | 27.49–30.02 | 1.97 | n.d. | 0.38 | 0.33 | 0.04–0.94 | n.d. | ||||
Fe | 4.41 | 2.38 | 2.52–9.96 | 17.03 | 57.35 | 0.31 | 56.67–57.56 | 11.62 | 1.06 | 9.99–12.96 | 57.38 | 0.58 | 56.34–58.10 |
Mn | n.d. | 0.15 | 0.14 | 0.09 | 0.05–0.32 | 0.78 | 0.30 | 0.40–1.21 | 0.33 | 0.11 | 0.18–0.48 | ||
Cr | 26.51 | 0.53 | 25.61–27.09 | 25.97 | 1.51 | 0.25 | 1.23–2.02 | 30.88 | 0.71 | 29.15–31.75 | 2.15 | 0.25 | 1.74–2.42 |
V | 0.20 | 0.01 | 0.18–0.23 | 0.33 | 1.00 | 0.17 | 0.80–1.30 | 0.22 | 0.05 | 0.15–0.32 | 1.07 | 0.11 | 0.98–1.29 |
Na | 0.07 | 0.02 | 0.04–0.09 | 0.11 | n.d. | 0.17 | 0.06 | 0.10–0.29 | n.d. | ||||
Sr | 0.27 | 0.05 | 0.21–0.38 | 2.03 | n.d. | 1.24 | 0.14 | 1.06–1.54 | n.d. | ||||
Ba | 0.45 | 0.12 | 0.20–0.62 | 4.07 | n.d. | 6.53 | 0.68 | 5.79–7.70 | n.d. | ||||
H2O | 3.36 | 8.23 | n.d. | 5.45 | n.d. | ||||||||
Total | 100.00 | 100.00 | 98.87 | 100.00 | 99.28 | ||||||||
apfu | |||||||||||||
Si | 0.01 | 0.01 | |||||||||||
Al | 0.01 | ||||||||||||
S | 2.00 | 2.00 | 1.00 | 2.00 | 1.00 | ||||||||
K | 0.02 | 0.01 | |||||||||||
Ca | 0.05 | 0.08 | 0.01 | 0.05 | |||||||||
Zn | 0.01 | ||||||||||||
Cu | 0.84 | 0.05 | 0.01 | ||||||||||
Fe | 0.15 | 0.52 | 0.85 | 0.33 | 0.86 | ||||||||
Mn | 0.02 | ||||||||||||
Cr | 0.94 | 0.86 | 0.02 | 0.95 | 0.03 | ||||||||
V | 0.01 | 0.01 | 0.02 | 0.01 | 0.02 | ||||||||
Na | 0.01 | 0.01 | 0.01 | ||||||||||
Sr | 0.01 | 0.04 | 0.02 | ||||||||||
Ba | 0.01 | 0.05 | 0.08 | ||||||||||
H2O | 0.35 | 0.79 | 0.48 |
wt.% | n = 14 | s.d. | Range | apfu |
---|---|---|---|---|
S | 29.10 | 1.65 | 25.27–31.82 | 2.00 |
V | 0.25 | 0.15 | 0–0.50 | 0.01 |
Cr | 23.07 | 1.26 | 20.89–24.59 | 0.98 |
Fe | 0.72 | 0.83 | 0–3.10 | 0.03 |
Ni | 0.31 | 0.35 | 0–1.00 | 0.01 |
Cu | 2.06 | 0.99 | 0–3.60 | 0.07 |
Ag | 43.60 | 2.91 | 39.91–49.85 | 0.89 |
Total | 99.11 |
Figure 9a | Figure 9b | Figure 9c | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||||||
wt.% | n = 2 | n = 6 | s.d. | range | n = 5 | s.d. | range | n = 3 | n =1 | n = 6 | s.d. | range |
Si | 0.07 | 0.28 | 0.07 | 0.18–0.37 | 0.13 | 0.06 | 0.06–0.22 | 0.13 | 0.42 | 0.25 | 0.08 | 0.09–0.32 |
Al | n.d. | 0.10 | 0.03 | 0.07–0.13 | n.d. | n.d. | n.d. | 0.06 | 0.01 | 0.05–0.08 | ||
S | 48.95 | 37.62 | 0.65 | 36.69–38.69 | 49.61 | 1.61 | 47.34–51.33 | 40.24 | 46.99 | 38.32 | 0.49 | 37.54–39.04 |
K | n.d. | 0.15 | 0.14 | 0.03–0.44 | 0.73 | 0.21 | 0.39–0.96 | 0.25 | 0.14 | 0.20 | 0.20 | 0.04–0.63 |
Ca | 0.36 | 1.80 | 0.30 | 1.37–2.24 | 0.96 | 0.68 | 0.38–2.30 | 1.07 | 0.80 | 1.48 | 0.28 | 0.92–1.81 |
Fe | 0.24 | 10.27 | 0.70 | 8.84–11.06 | 0.30 | 0.04 | 0.24–0.33 | 8.40 | 0.74 | 10.82 | 0.44 | 10.11–11.46 |
Mn | n.d. | 1.00 | 0.44 | 0.59–1.93 | n.d. | 1.07 | 0.48 | 0.42 | 0.14 | 0.26–0.66 | ||
Cr | 39.05 | 30.16 | 0.54 | 29.28–30.99 | 38.78 | 1.03 | 37.20–39.76 | 31.02 | 37.45 | 30.32 | 0.30 | 29.87–30.75 |
V | 0.31 | 0.35 | 0.09 | 0.26–0.50 | 0.79 | 0.15 | 0.59–0.97 | 1.16 | 0.62 | 0.65 | 0.19 | 0.42–1.01 |
Na | 1.57 | 0.06 | 0.01 | 0.05–0.08 | 2.92 | 1.98 | 1.25–6.75 | 0.42 | 4.61 | 0.08 | 0.05 | 0.04–0.19 |
Sr | 1.88 | 1.68 | 0.02 | 1.64–1.71 | 2.13 | 0.41 | 1.86–2.93 | 1.78 | 2.03 | 1.69 | 0.04 | 1.64–1.77 |
Ba | n.d. | 11.22 | 0.63 | 10.34–12.05 | 0.58 | 0.84 | 0.03–2.24 | 11.21 | 1.35 | 11.35 | 0.96 | 9.44–12.54 |
H2O | 7.58 | 5.32 | 3.08 | 3.25 | 4.38 | 4.36 | ||||||
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | ||||||
Si apfu | 0.02 | 0.01 | 0.01 | 0.02 | 0.02 | |||||||
Al | 0.01 | |||||||||||
S | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | 2.00 | ||||||
K | 0.01 | 0.02 | 0.01 | 0.01 | ||||||||
Ca | 0.01 | 0.08 | 0.03 | 0.04 | 0.03 | 0.06 | ||||||
Fe | 0.01 | 0.31 | 0.01 | 0.24 | 0.02 | 0.32 | ||||||
Mn | 0.03 | 0.03 | 0.01 | 0.01 | ||||||||
Cr | 0.98 | 0.99 | 0.96 | 0.95 | 0.98 | 0.98 | ||||||
V | 0.01 | 0.01 | 0.02 | 0.04 | 0.02 | 0.02 | ||||||
Na | 0.09 | 0.16 | 0.03 | 0.27 | 0.01 | |||||||
Sr | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | ||||||
Ba | 0.14 | 0.01 | 0.13 | 0.01 | 0.14 | |||||||
H2O | 0.55 | 0.50 | 0.22 | 0.29 | 0.33 | 0.41 |
Figure 10a | Figure 10b | Figure 10c | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | |||||||||
wt.% | mean 5 | s.d. | range | mean 2 | mean 4 | mean 8 | s.d. | range | mean 5 | s.d. | range | mean 5 | s.d. | range |
Si | 0.29 | 0.10 | 0.17–0.42 | n.d. | n.d. | 0.18 | 0.07 | 0.08–0.30 | n.d. | n.d. | ||||
Al | 0.06 | 0.01 | 0.05–0.07 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | |||||
S | 38.97 | 0.47 | 38.29–39.53 | 53.15 | n.d. | 39.18 | 0.34 | 38.79–39.79 | 38.98 | 0.12 | 38.86–39.20 | 53.28 | 0.31 | 52.71–53.62 |
K | 0.58 | 0.14 | 0.42–0.85 | n.d. | n.d. | 0.24 | 0.12 | 0.06–0.49 | n.d. | n.d. | ||||
Ca | 1.66 | 0.22 | 1.38–1.92 | 0.27 | n.d. | 1.57 | 0.38 | 1.08–2.29 | n.d. | n.d. | ||||
Cu | n.d. | 0.19 | n.d. | n.d. | n.d. | n.d. | 0.16 | 0.03 | 0.13–0.22 | |||||
Ni | n.d. | 0.33 | 1.63 | n.d. | n.d. | n.d. | 0.14 | 0.04 | 0.09–0.21 | |||||
Co | n.d. | n.d. | 0.27 | n.d. | n.d. | n.d. | n.d. | |||||||
Fe | 11.67 | 0.41 | 11.16–12.33 | 46.53 | 98.05 | 12.94 | 0.67 | 12.09–14.26 | 57.58 | 0.24 | 57.26–57.92 | 46.84 | 0.19 | 46.52–47.12 |
Mn | 0.66 | 0.33 | 0.41–1.26 | n.d. | n.d. | 0.39 | 0.20 | 0.11–0.78 | 0.41 | 0.12 | 0.28–0.57 | n.d. | ||
Cr | 30.68 | 0.73 | 29.67–31.75 | n.d. | 0.10 | 31.32 | 0.35 | 30.75–31.84 | 1.84 | 0.20 | 1.61–2.09 | 0.10 | 0.14 | 0.02–0.37 |
V | 0.77 | 0.29 | 0.32–1.12 | n.d. | n.d. | 0.26 | 0.06 | 0.19–0.37 | 1.21 | 0.11 | 1.08–1.35 | n.d. | ||
Na | 0.05 | 0.03 | 0.03–0.11 | n.d. | n.d. | 0.23 | 0.20 | 0.06–0.63 | n.d. | n.d. | ||||
Sr | 1.65 | 0.04 | 1.62–1.71 | n.d. | n.d. | 2.77 | 0.55 | 2.08–3.79 | n.d. | n.d. | ||||
Ba | 9.35 | 0.60 | 8.51–10.05 | n.d. | n.d. | 6.51 | 1.82 | 3.40–8.90 | n.d. | n.d. | ||||
H2O | 3.61 | 4.42 | ||||||||||||
Total | 100.00 | 100.46 | 100.05 | 100.00 | 100.02 | 100.52 | ||||||||
Si apfu | 0.02 | 0.01 | ||||||||||||
S | 2.00 | 2.00 | 2.00 | 1.00 | 2.00 | |||||||||
K | 0.02 | 0.01 | ||||||||||||
Ca | 0.07 | 0.01 | 0.06 | |||||||||||
Ni | 0.01 | 0.02 | ||||||||||||
Fe | 0.34 | 1.00 | 0.98 | 0.38 | 0.85 | 1.01 | ||||||||
Mn | 0.02 | 0.01 | 0.01 | |||||||||||
Cr | 0.97 | 0.99 | 0.03 | |||||||||||
V | 0.02 | 0.01 | 0.02 | |||||||||||
Na | 0.02 | |||||||||||||
Sr | 0.03 | 0.05 | ||||||||||||
Ba | 0.11 | 0.08 | ||||||||||||
H2O | 0.33 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galuskin, E.V.; Galuskina, I.O.; Vapnik, Y.; Zieliński, G. Discovery of “Meteoritic” Layered Disulphides ACrS2 (A = Na, Cu, Ag) in Terrestrial Rock. Minerals 2023, 13, 381. https://doi.org/10.3390/min13030381
Galuskin EV, Galuskina IO, Vapnik Y, Zieliński G. Discovery of “Meteoritic” Layered Disulphides ACrS2 (A = Na, Cu, Ag) in Terrestrial Rock. Minerals. 2023; 13(3):381. https://doi.org/10.3390/min13030381
Chicago/Turabian StyleGaluskin, Evgeny V., Irina O. Galuskina, Yevgeny Vapnik, and Grzegorz Zieliński. 2023. "Discovery of “Meteoritic” Layered Disulphides ACrS2 (A = Na, Cu, Ag) in Terrestrial Rock" Minerals 13, no. 3: 381. https://doi.org/10.3390/min13030381
APA StyleGaluskin, E. V., Galuskina, I. O., Vapnik, Y., & Zieliński, G. (2023). Discovery of “Meteoritic” Layered Disulphides ACrS2 (A = Na, Cu, Ag) in Terrestrial Rock. Minerals, 13(3), 381. https://doi.org/10.3390/min13030381