Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors
Abstract
:1. Introduction
2. Laboratory Experiments
2.1. Materials and Methods
2.2. Results and Analysis
2.2.1. Rock Fragment Distribution Curves
2.2.2. Rock Fragment Sizes
3. Scanning Electron Microscopy
3.1. Fracture Surface Morphologies
3.2. Fractal Dimension of Cracks in Fragments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kang, H.P.; Wang, G.F.; Jang, P.F.; Wang, J.C.; Zhang, N.; Jing, H.W.; Hang, B.X.; Yang, B.G.; Guan, X.M.; Wang, Z.G. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000 m. J. China Coal Soc. 2018, 43, 1789–1800. [Google Scholar]
- Jiao, Y.Y.; Song, L.; Wang, X.Z.; Adoko, A.C. Improvement of the U-shaped steel sets for supporting the roadways in loose thick coal seam. Int. J. Rock Mech. Min. Sci. 2013, 60, 19–25. [Google Scholar] [CrossRef]
- Liu, Q.S.; Kang, Y.S.; Bai, Y.Q. Research on supporting method for deep rock roadway with broken and soft surrounding rock in Guqiao Coal Mine. Rock Soil Mech. 2011, 32, 3097–3104. [Google Scholar]
- Kang, Y.S.; Liu, Q.S.; Xi, H.L. Numerical analysis of THM coupling of a deeply buried roadway passing through composite strata and dense faults in a coal mine. Bull. Eng. Geol. Environ. 2014, 73, 77–86. [Google Scholar] [CrossRef]
- Ma, N.J.; Hou, C.J. Theories and Applications of the Ground Pressure in Coal Mine Roadways; China Coal Industry Publishing House: Beijing, China, 1995. [Google Scholar]
- Peng, S. Topical areas of research needs in ground control: A state of the art review on coal mine ground control. Int. J. Min. Sci. Technol. 2010, 25, 1–6. [Google Scholar] [CrossRef]
- Murphy, M.; Finfinger, G.L.; Peng, S. Guest editorial—Special issue on ground control in mining. Int. J. Min. Sci. Technol. 2016, 26, 1–2. [Google Scholar] [CrossRef]
- Kang, H.P. Analysis on the application of bolt support in coal mine roadways. China J. Rock Mech. Eng. 2010, 29, 649–664. [Google Scholar]
- Basarir, H.K.; Sun, Y.T.; Li, G.C. Gateway stability analysis by global-local modeling approach. Int. J. Rock Mech. Min. Sci. 2019, 113, 31–40. [Google Scholar] [CrossRef]
- Zhang, W.; He, Z.M.; Zhang, D.S.; Qi, D.H.; Zhang, W.S. Surrounding rock deformation control of asymmetrical roadway in deep three-soft coal seam: A case study. J. Geophys. Eng. 2018, 15, 1917–1928. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.P.; Yuan, Q.; Tan, Y.L.; Wang, J.; Liu, G.L.; Qu, G.L.; Li, C. An innovative support technology employing a concrete-filled steel tubular structure for a 1000-m-deeproadway in a high in situ stress field. Tunn. Undergr. Space Technol. 2018, 73, 26–36. [Google Scholar] [CrossRef]
- Jia, H.S.; Wang, L.Y.; Liu, S.W.; Feng, Z.Y.; Fu, M.X. Design of multi-layer coupling support and span of setup entry roof at depth. Arab. J. Geosci. 2018, 11, 488–498. [Google Scholar] [CrossRef]
- Yang, J.H.; Song, G.F.; Yang, Y.; Yang, Z.Q. Application of the complex variable function method in solving the floor heave problem of a coal mine entry. Arab. J. Geosci. 2018, 11, 515–529. [Google Scholar] [CrossRef]
- Sun, X.M.; Chen, F.; He, M.C.; Gong, W.L.; Xu, H.C.; Lu, H. Physical modeling of floor heave for the deep-buried roadway excavated in ten degree inclined strata using infrared thermal imaging technology. Tunn. Undergr. Space Technol. 2017, 63, 228–243. [Google Scholar] [CrossRef]
- Chang, Q.L.; Zhou, H.Q.; Xie, Z.H.; Shen, S.P. Anchoring mechanism and application of hydraulic expansion bolts used in soft rock roadway floor heave control. Int. J. Min. Sci. Technol. 2013, 23, 323–328. [Google Scholar] [CrossRef]
- Tang, S.B.; Tang, C.A. Numerical studies on tunnel floor heave in swelling ground under humid conditions. Int. J. Rock Mech. Min. Sci. 2012, 55, 139–150. [Google Scholar] [CrossRef]
- Wang, C.L.; Li, G.Y.; Gao, A.S.; Shi, F.; Lu, Z.J.; Lu, H. Optimal pre-conditioning and support designs of floor heave in deep roadways. Geomech. Eng. 2018, 14, 429–437. [Google Scholar]
- Kang, Y.S.; Liu, Q.S.; Gong, G.Q.; Wang, H.C. Application of a combined support system to the weak floor reinforcement in deep underground coal mine. Int. J. Rock Mech. Min. Sci. 2017, 71, 143–150. [Google Scholar] [CrossRef]
- Liu, S.W.; Zhang, W.G.; Feng, Y.L. Study on migration mechanism of slipping floor heave rock mass in deep roadway and its control countermeasure. J. Min. Saf. Eng. 2013, 30, 706–711. [Google Scholar]
- Grady, D.E. Local inertial effects in dynamic fragmentation. J. Appl. Phys. 1982, 53, 322–325. [Google Scholar] [CrossRef]
- Grady, D.E. Fragment size prediction in dynamic fragmentation. AIP Conf. Proc. 1982, 78, 456–459. [Google Scholar]
- Glenn, L.A.; Gommerstadt, B.Y.; Chudnovsky, A. A fracture mechanics model of fragmentation. J. Appl. Phys. 1986, 60, 1224–1226. [Google Scholar] [CrossRef]
- Glenn, L.A.; Chudnovsky, A. Strain energy effects on dynamic fragmentation. J. Appl. Phys. 1986, 59, 1379–1380. [Google Scholar] [CrossRef]
- Zhou, F.H.; Molinari, J.F.; Ramesh, K.T. Effects of material properties on the fragmentation of brittle materials. Int. J. Fract. 2006, 139, 169–196. [Google Scholar] [CrossRef]
- Levy, S.; Molinari, J.F. Dynamic fragmentation of ceramics, signature of defects and scaling of fragment sizes. J. Mech. Phys. 2010, 58, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Weibull, W. A statistical theory of the strength of materials. Ing. Kapsakad. Handl. 1939, 151, 1–45. [Google Scholar]
- Cheong, Y.S.; Reynolds, G.K.; Salman, A.D.; Hounslow, M.J. Modelling fragment size distribution using two-parameter Weibull equation. Int. J. Miner. Process. 2004, 74, S227–S237. [Google Scholar] [CrossRef]
- Blair, D.P. Curve-fitting schemes for fragmentation data. Fragblast 2004, 8, 137–150. [Google Scholar] [CrossRef]
- Hou, T.X.; Xu, Q.; Yang, X.G.; Lu, P.Y.; Zhou, J.W. Experimental study of the fragmentation characteristics of brittle rocks by the effect of a free fall round hammer. Int. J. Fract. 2015, 194, 169–185. [Google Scholar] [CrossRef]
- James, D.H.; Robert, J.R.; John, G.S.; Suporn, B. Dynamic fragmentation of granite for impact energies of 6–28 J. Eng. Fract. Mech. 2012, 79, 103–125. [Google Scholar]
- Yuan, K.F.; Tao, D.C.; Xu, H.; Xie, W. Pepper grading based on the minimum bounding rectangle. Chin. Agric. Sci. Bull. 2016, 32, 166–170. [Google Scholar]
- Zhou, J.X. MATLAB from Entry to Mastery; Posts and Telecommunications Press: Beijing, China, 2008; pp. 235–254. [Google Scholar]
- Salman, A.D.; Fu, J.; Gorham, D.A.; Hounslow, M.J. Impact breakage of fertiliser granules. Powder Technol. 2003, 130, 359–366. [Google Scholar] [CrossRef]
- Wang, H.; Ramesh, K.T. Dynamic strength and fragmentation of hot-pressed silicon carbide under uniaxial compression. Acta Mater. 2004, 52, 355–367. [Google Scholar] [CrossRef]
- Cai, J.C.; Wei, W.; Hu, X.Y.; Liu, R.C.; Wang, J.J. Fractal characterization of fracture network extension in porous media. Fractals 2017, 23, 1750023. [Google Scholar] [CrossRef]
- Xie, H.P.; Gao, F.; Zhou, H.W.; Zuo, J.P. Study on the fractal characteristics of rock fracture and broken. J. Disaster Prev. Mitig. Eng. 2003, 123, 1–9. [Google Scholar]
- Dreuzy, J.R.D.; Davy, P.; Bour, O. Hydraulic properties of two-dimensional random fracture networks following a power law length distribution: 1. Effective connectivity. Water Resour. Res. 2001, 37, 2065–2078. [Google Scholar] [CrossRef] [Green Version]
- Peng, R.D.; Xie, H.P.; Ju, Y. Computation method of fractal dimension for 2-D digital image. J. China Univ. Min. Technol. 2004, 33, 20–24. [Google Scholar]
Rock Specimens | Density (kg/m3) | Uniaxial Compressive Strength (UCS) (MPa) | Tensile Strength (MPa) | Elastic Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|---|
Limestone | 2678 | 137.63 | 3.51 | 60.63 | 0.28 |
Gritstone | 2415 | 80.24 | 3.32 | 20.63 | 0.35 |
Mudstone | 2640 | 27.18 | 0.99 | 16.92 | 0.24 |
Rock Specimens | Particle Size | Fragment Mass (g) | Fragment Quantity | Mean Equivalent Diameter/mm | Mean Horizontal Size/mm | Mean Vertical Size/mm |
---|---|---|---|---|---|---|
Limestone | >2.5 | 2.5 | 5 | 1.49 | 1.65 | 1.57 |
1.5~2.5 | 0.1 | 11 | ||||
1.0~1.5 | 0.1 | 37 | ||||
0.5~1 | 0.1 | 181 | ||||
Total | 2.8 | 234 | ||||
Gritstone | >2.5 | 1.6 | 20 | 0.93 | 1.02 | 1.02 |
1.5~2.5 | 0.2 | 21 | ||||
1.0~1.5 | 0.1 | 56 | ||||
0.5~1 | 0.5 | 1161 | ||||
Total | 2.4 | 1258 | ||||
Mudstone | >2.5 | 0.3 | 25 | 1.24 | 1.39 | 1.36 |
1.5~2.5 | 0.9 | 72 | ||||
1.0~1.5 | 0.4 | 168 | ||||
0.5~1 | 0.8 | 564 | ||||
Total | 2.4 | 829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, M.; Huang, S.; Liu, S.; Jia, H. Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors. Minerals 2023, 13, 392. https://doi.org/10.3390/min13030392
Fu M, Huang S, Liu S, Jia H. Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors. Minerals. 2023; 13(3):392. https://doi.org/10.3390/min13030392
Chicago/Turabian StyleFu, Mengxiong, Shuaishuai Huang, Shaowei Liu, and Housheng Jia. 2023. "Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors" Minerals 13, no. 3: 392. https://doi.org/10.3390/min13030392
APA StyleFu, M., Huang, S., Liu, S., & Jia, H. (2023). Experimental Study on the Size of Rock Fragments Ejected from Boreholes Drilled in Coal Mine Roadway Floors. Minerals, 13(3), 392. https://doi.org/10.3390/min13030392