Estimation of Electrical Spectra of Irregular Embedded Samples
Abstract
:1. Introduction
2. Theory
3. Materials and Methods
3.1. Measurement of Cylindrical Samples
3.2. Measurement of Embedded Samples
3.3. Simulation
4. Results
4.1. Guptasarma Consistency
4.2. Estimation of the Spectra
4.3. Simplified Estimations
5. Discussion
5.1. Dependence on Sample Shape
5.2. Sources and Consequences of Error in DC Resistivity
5.3. Other Sources of Error
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IP | Induced polarization |
SIP | Spectral induced polarization |
SMS | Seafloor massive sulfides |
Appendix A. Approximation for Cylindrical Targets
Appendix A.1. Continuous Disk
Appendix A.2. Continuous Rod
References
- Seigel, H.; Nabighian, M.; Parasnis, D.S.; Vozoff, K. The early history of the induced polarization method. Lead. Edge 2007, 26, 312–321. [Google Scholar] [CrossRef]
- Wait, J. (Ed.) The Variable-Frequency Method. In Overvoltage Research and Geophysical Applications; International Series of Monographs on Earth Sciences; Elsevier: Pergamon, Turkey, 1959; Chapter 4; pp. 29–49. [Google Scholar] [CrossRef]
- Kemna, A.; Binley, A.; Cassiani, G.; Niederleithinger, E.; Revil, A.; Slater, L.; Williams, K.H.; Orozco, A.F.; Haegel, F.H.; Hördt, A.; et al. An overview of the spectral induced polarization method for near-surface applications. Near Surf. Geophys. 2012, 10, 453–468. [Google Scholar] [CrossRef]
- Kessouri, P.; Furman, A.; Huisman, J.; Martin, T.; Mellage, A.; Ntarlagiannis, D.; Bücker, M.; Ehosioke, S.; Fernandez, P.; Flores-Orozco, A.; et al. Induced polarization applied to biogeophysics: Recent advances and future prospects. Near Surf. Geophys. 2019, 17, 595–621. [Google Scholar] [CrossRef]
- Revil, A.; Vaudelet, P.; Su, Z.; Chen, R. Induced Polarization as a Tool to Assess Mineral Deposits: A Review. Minerals 2022, 12, 571. [Google Scholar] [CrossRef]
- Seigel, H.O.; Vanhala, H.; Sheard, S.N. Some case histories of source discrimination using time-domain spectral IP. Geophysics 1997, 62, 1394–1408. [Google Scholar] [CrossRef]
- Pelton, W.H.; Ward, S.H.; Hallof, P.G.; Sill, W.R.; Nelson, P.H. Mineral discrimination and removal of inductive coupling with multifrequency IP. Geophysics 1978, 43, 588–609. [Google Scholar] [CrossRef]
- Nelson, P.H.; Voorhis, G.D.V. Estimation of sulfide content from induced polarization data. Geophysics 1983, 48, 62–75. [Google Scholar] [CrossRef]
- Vanhala, H.; Peltoniemi, M. Spectral IP studies of Finnish ore prospects. Geophysics 1992, 57, 1545–1555. [Google Scholar] [CrossRef]
- Hoagland, P.; Beaulieu, S.; Tivey, M.A.; Eggert, R.G.; German, C.; Glowka, L.; Lin, J. Deep-sea mining of seafloor massive sulfides. Mar. Policy 2010, 34, 728–732. [Google Scholar] [CrossRef]
- Iturrino, G.J.; Davis, E.; Johnson, J.; Gröschel-Becker, H.; Lewis, T.; Chapman, D.; Cermak, V. Permeability, Electrical, and Thermal Properties of Sulfide, Sedimentary, and Basaltic Units from the Bent Hill Area of Middle Valley, Juan de Fuca Ridge. Proc. Ocean. Drill. Program Sci. Results 2000, 169, 1–42. [Google Scholar] [CrossRef]
- Bartetzko, A.; Klitzsch, N.; Iturrino, G.; Kaufhold, S.; Arnold, J. Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J. Volcanol. Geotherm. Res. 2006, 152, 109–120. [Google Scholar] [CrossRef]
- Spagnoli, G.; Hannington, M.; Bairlein, K.; Hördt, A.; Jegen, M.; Petersen, S.; Laurila, T. Electrical properties of seafloor massive sulfides. Geo Mar. Lett. 2016, 36, 235–245. [Google Scholar] [CrossRef]
- Revil, A.; Abdel Aal, G.Z.; Atekwana, E.A.; Mao, D.; Florsch, N. Induced polarization response of porous media with metallic particles—Part 2: Comparison with a broad database of experimental dataMetallic particle polarization: Part 2. Geophysics 2015, 80, D539. [Google Scholar] [CrossRef]
- Hupfer, S.; Martin, T.; Weller, A.; Günther, T.; Kuhn, K.; Ngninjio, V.D.N.; Noell, U. Polarization effects of unconsolidated sulphide-sand-mixtures. J. Appl. Geophys. 2015, 135, 456–465. [Google Scholar] [CrossRef]
- Wu, C.; Zou, C.; Wu, T.; Shen, L.; Zhou, J.; Tao, C. Experimental study on the detection of metal sulfide under seafloor environment using time domain induced polarization. Mar. Geophys. Res. 2021, 42, 17. [Google Scholar] [CrossRef]
- Guptasarma, D. True and apparent spectra of buried polarizable targets. Geophysics 1984, 49, 171. [Google Scholar] [CrossRef] [Green Version]
- Kruschwitz, S.F. Assessment of the Complex Resistivity Behaviour of Salt Affected Building Materials. Ph.D. Thesis, Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany, 2008. [Google Scholar]
- Hördt, A.; Milde, S. Studies with gel-filled sandstone samples with implications for the origin of induced polarization. Near Surf. Geophys. 2012, 10, 469–478. [Google Scholar] [CrossRef]
- Bairlein, K.; Hördt, A.; Nordsiek, S. The influence on sample preparation on spectral induced polarization of unconsolidated sediments. Near Surf. Geophys. 2014, 12, 667–678. [Google Scholar] [CrossRef]
- Wong, J. An electrochemical model of the induced-polarization phenomenon in disseminated sulfide ores. Geophysics 1979, 44, 1245–1265. [Google Scholar] [CrossRef]
- Bücker, M.; Orozco, A.F.; Kemna, A. Electrochemical polarization around metallic particles—Part 1: The role of diffuse-layer and volume-diffusion relaxation. Geophysics 2018, 83, E203–E217. [Google Scholar] [CrossRef]
- Mendieta, A.; Jougnot, D.; Leroy, P.; Maineult, A. Spectral Induced Polarization Characterization of Non-Consolidated Clays for Varying Salinities—An Experimental Study. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021125. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wichmann, M.; Hördt, A. Estimation of Electrical Spectra of Irregular Embedded Samples. Minerals 2023, 13, 412. https://doi.org/10.3390/min13030412
Wichmann M, Hördt A. Estimation of Electrical Spectra of Irregular Embedded Samples. Minerals. 2023; 13(3):412. https://doi.org/10.3390/min13030412
Chicago/Turabian StyleWichmann, Malte, and Andreas Hördt. 2023. "Estimation of Electrical Spectra of Irregular Embedded Samples" Minerals 13, no. 3: 412. https://doi.org/10.3390/min13030412
APA StyleWichmann, M., & Hördt, A. (2023). Estimation of Electrical Spectra of Irregular Embedded Samples. Minerals, 13(3), 412. https://doi.org/10.3390/min13030412