Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Sieved Sand
2.1.2. Copper Tailings
2.1.3. Cement and Mixing Water
2.2. CPB Manufacturing
2.3. Methods
2.3.1. Miniature Slump Cone Tests
2.3.2. Mechanical Strength Tests
2.3.3. SEM Observations
2.3.4. MIP Measurements
3. Results and Discussion
3.1. Sand Effect on CPB’s Strength Property
3.2. Influence of Tailings-To-Sand Rate on Backfill Failure
3.3. MIP Analysis of Filling Specimens
3.4. SEM Observations of CPB Samples
4. Conclusions
- Since the totaling of sand to the backfill increased the mixture gradation, the compressive strengths were found to be greater at up to 89.0% and 99.2% of the solid contents of 72% and 76%, respectively, compared to samples without sand.
- Increasing the replacement ratio of the sand used within CPB increases the corresponding strength but reduces strength after a threshold limit of 30%, causing segregation.
- Inert sand with a high CaO ratio can be used as a cement material as well as being used as an aggregate in CPB samples, providing high strengths even at low cement amounts. This shows the importance of using sand to reduce cement costs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gedam, V.V.; Raut, R.D.; de Sousa Jabbour, A.B.L.; Agrawal, N. Moving the circular economy forward in the mining industry: Challenges to closed-loop in an emerging economy. Resour. Policy 2021, 74, 102279. [Google Scholar] [CrossRef]
- Kasap, T.; Yilmaz, E.; Guner, N.U.; Sari, M. Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties. Adv. Mater. Sci. Eng. 2022, 2022, 6993068. [Google Scholar] [CrossRef]
- Løvik, A.N.; Hagelüken, C.; Wäger, P. Improving supply security of critical metals: Current developments and research in the EU. Sustain. Mater. Technol. 2018, 15, 9–18. [Google Scholar] [CrossRef]
- Covre, P.W.; Ramos, S.J.; da Silveira Pereira, W.V.; de Souza, E.S.; Martins, G.C.; Teixeira, O.M.M.; Fernandes, A.R. Impact of copper mining wastes in the Amazon Properties and risks to environment and human health. J. Hazard. Mater. 2021, 421, 126688. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wang, W.; Yan, R.; Wu, A.; Wang, Y.; Yilmaz, E. A joint experiment and discussion for strength characteristics of cemented paste backfill considering curing conditions. Minerals 2022, 12, 211. [Google Scholar] [CrossRef]
- Lu, H.; Qi, C.; Chen, Q.; Gan, D.; Xue, Z.; Hu, Y. New procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Clean. Prod. 2018, 188, 601–612. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.; Ivannikov, A.; Khayrutdinov, A.; Tyulyaeva, Y. Geotechnology using composite materials from man-made waste is a paradigm of sustainable development. Mater. Today Proc. 2021, 38, 2078–2082. [Google Scholar] [CrossRef]
- Li, J.J.; Yilmaz, E.; Cao, S. Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills. Constr. Build. Mater. 2021, 299, 124288. [Google Scholar] [CrossRef]
- Saedi, A.; Jamshidi-Zanjani, A.; Darban, A.K. A review of additives used in the cemented paste tailings: Environmental aspects and application. J. Environ. Manag. 2021, 289, 112501. [Google Scholar] [CrossRef]
- Zhao, D. Reactive MgO-modified slag-based binders for cemented paste backfill and potential heavy-metal leaching behavior. Constr. Build. Mater. 2021, 298, 123894. [Google Scholar] [CrossRef]
- Kefeni, K.K.; Msagati, T.A.; Mamba, B.B. Acid mine drainage: Prevention, treatment options, and resource recovery A review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Hefni, M.; Ahmed, H.A.; Omar, E.S.; Ali, M.A. The potential re-use of Saudi mine tailings in mine backfill: A path towards sustainable mining in Saudi Arabia. Sustainability 2021, 13, 6204. [Google Scholar] [CrossRef]
- Li, J.J.; Cao, S.; Yilmaz, E.; Liu, Y.P. Compressive fatigue behavior and failure evolution of additive fiber-reinforced cemented tailings composites. Int. J. Miner. Metall. Mater. 2022, 29, 345–355. [Google Scholar] [CrossRef]
- Behera, S.K.; Ghosh, C.N.; Mishra, D.P.; Singh, P.; Mishra, K.; Buragohain, J.; Mandal, P.K. Strength development and microstructural investigation of lead-zinc mill tailings based paste backfill with fly ash as alternative binder. Cem. Concr. Compos. 2020, 109, 103553. [Google Scholar] [CrossRef]
- Yilmaz, E.; Belem, T.; Benzaazoua, M. One-dimensional consolidation parameters of cemented paste backfills. Gospod. Surowcami Miner. / Miner. Resour. Manag. 2012, 28, 29–45. [Google Scholar]
- Qi, C.; Fourie, A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Miner. Eng. 2019, 144, 106025. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E.; Feng, G.R.; Cao, S.; Sun, L.J. Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading. Constr. Build. Mater. 2021, 279, 122417. [Google Scholar] [CrossRef]
- Bull, A.J.; Fall, M. Thermally induced changes in metalloid leachability of cemented paste backfill that contains blast furnace slag. Miner. Eng. 2020, 156, 106520. [Google Scholar] [CrossRef]
- Huang, Z.; Yilmaz, E.; Cao, S. Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum. Minerals 2021, 11, 409. [Google Scholar] [CrossRef]
- Koohestani, B.; Koubaa, A.; Belem, T.; Bussière, B.; Bouzahzah, H. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler. Constr. Build. Mater. 2016, 121, 222–228. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Wu, A.; Li, H.; Bruno, T.A.; Zhou, X.; Wang, X. Effect of mixing time on hydration kinetics and mechanical property of cemented paste backfill. Constr. Build. Mater. 2020, 247, 118516. [Google Scholar] [CrossRef]
- Ermolovich, E.A.; Ivannikov, A.L.; Khayrutdinov, M.M.; Kongar-Syuryun, C.B.; Tyulyaeva, Y.S. Creation of a nanomodified backfill based on the waste from enrichment of water-soluble ores. Materials 2022, 15, 3689. [Google Scholar] [CrossRef] [PubMed]
- Li, J.J.; Yilmaz, E.; Cao, S. Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill. Minerals 2020, 10, 922. [Google Scholar] [CrossRef]
- Pan, A.; Grabinsky, M. Mechanical characterization of cemented paste backfill. Eng 2023, 4, 738–747. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, D.; Tian, Y.; Liu, X. Numerical simulation of stress-strain behaviour of cemented paste backfill in triaxial compression. Eng. Geol. 2017, 231, 165–175. [Google Scholar] [CrossRef]
- Mangane, M.B.C.; Argane, R.; Trauchessec, R.; Lecomte, A.; Benzaazoua, M. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill. Miner. Eng. 2018, 116, 3–14. [Google Scholar] [CrossRef]
- Deng, X.; Zhang, J.; Klein, B.; Zhou, N.; Dewit, B. Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill. Int. J. Miner. Process. 2017, 168, 116–125. [Google Scholar] [CrossRef]
- Xue, X.; Gu, Y.; Zhang, X.; Wu, S.; Sun, P.; Cui, J.; Wang, X. Mechanical behavior and microscopic mechanism of fiber reinforced coarse aggregate cemented backfill. Constr. Build. Mater. 2023, 366, 130093. [Google Scholar] [CrossRef]
- Kasap, T.; Yilmaz, E.; Sari, M. Effects of mineral additives and age on microstructure evolution and durability properties of sand-reinforced cementitious mine backfills. Constr. Build. Mater. 2022, 352, 129079. [Google Scholar] [CrossRef]
- Lyu, H.; Chen, Y.; Pu, H.; Ju, F.; Zhang, K.; Li, Q.; Wu, P. Dynamic properties and fragmentation mechanism of cemented tailings backfill with various particle size distributions of aggregates. Constr. Build. Mater. 2023, 366, 130084. [Google Scholar] [CrossRef]
- Koohestani, B.; Mokhtari, P.; Yilmaz, E.; Mahdipour, F.; Darban, A.K. Geopolymerization mechanism of binder-free mine tailings by sodium silicate. Constr. Build. Mater. 2021, 268, 121217. [Google Scholar] [CrossRef]
- Ueno, A.; Ogawa, Y. Influence of coarse aggregate shape on optimum fine to total aggregate ratio using a virtual voids-ratio diagram in concrete compaction. Cem. Concr. Compos. 2020, 106, 103463. [Google Scholar] [CrossRef]
- Ji, X.; Gu, X.; Wang, Z.; Xu, S.; Jiang, H.; Yilmaz, E. Admixture effects on the rheological/mechanical behavior and micro-structure evolution of alkali-activated slag backfills. Minerals 2023, 13, 30. [Google Scholar] [CrossRef]
- Li, L.; Zhan, B.J.; Lu, J.; Poon, C.S. Systematic evaluation of the effect of replacing river sand by different particle size ranges of fine recycled concrete aggregates (FRCA) in cement mortars. Constr. Build. Mater. 2019, 209, 147–155. [Google Scholar] [CrossRef]
- Kumar, S.P.; Balasubramanian, M. Mechanical and micro structure analysis on river sand replaced with quarry dust in self-compacting concrete. Mater. Today Proc. 2022, 68, 2413–2420. [Google Scholar] [CrossRef]
- Sari, M.; Yilmaz, E.; Kasap, T.; Karasu, S. Exploring the link between ultrasonic and strength behavior of cementitious mine backfill by considering pore structure. Constr. Build. Mater. 2023, 370, 130588. [Google Scholar] [CrossRef]
- Cheng, A.; Shu, P.; Deng, D.; Zhou, C.; Huang, S.; Ye, Z. Microscopic acoustic emission simulation and fracture mechanism of cemented tailings backfill based on moment tensor theory. Constr. Build. Mater. 2021, 308, 125069. [Google Scholar] [CrossRef]
- Zhao, K.; Yu, X.; Zhu, S.; Zhou, Y.; Wang, Q.; Wang, J. Acoustic emission investigation of cemented paste backfill prepared with tantalum-niobium tailings. Constr. Build. Mater. 2020, 237, 117523. [Google Scholar] [CrossRef]
- Gao, S.; Li, W.; Yuan, K.; Rong, C. Properties and application of thixotropic cement paste backfill with molybdenum tailings. J. Clean. Prod. 2023, 391, 136169. [Google Scholar] [CrossRef]
- Ouattara, D.; Yahia, A.; Mbonimpa, M.; Belem, T. Effects of superplasticizer on rheological properties of cemented paste backfills. Int. J. Miner. Process. 2017, 161, 28–40. [Google Scholar] [CrossRef]
- Gao, B.; Cao, S.; Yilmaz, E. Effect of content and length of polypropylene fibers on strength and microstructure of cementitious tailings-waste rock fill. Minerals 2023, 13, 142. [Google Scholar] [CrossRef]
- Zhou, N.; Zhang, J.; Ouyang, S.; Deng, X.; Dong, C.; Du, E. Feasibility study and performance optimization of sand-based cemented paste backfill materials. J. Clean. Prod. 2020, 259, 120798. [Google Scholar] [CrossRef]
- Kasap, T.; Yilmaz, E.; Sari, M. Physico-chemical and micro-structural behavior of cemented mine backfill: Effect of pH in dam tailings. J. Environ. Manage. 2022, 314, 115034. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, B.; Gao, Q.; He, J. Determining the pressure drop of cemented Gobi sand and tailings paste backfill in a pipe flow. Constr. Build. Mater. 2020, 255, 119371. [Google Scholar] [CrossRef]
- Zhou, N.; Du, E.; Zhang, J.; Zhu, C.; Zhou, H. Mechanical properties improvement of sand-based cemented backfill body by adding glass fibers of different lengths and ratios. Constr. Build. Mater. 2021, 280, 122408. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, J.; Zhou, N. Early-age strength of aeolian sand-based cemented backfilling materials: Experimental results. Arab. J. Sci. Eng. 2018, 43, 1697–1708. [Google Scholar] [CrossRef]
- Deng, D.Q.; Liang, Y.H.; Huangfu, F.C. Properties of Gobi aggregate and sulfide-rich tailings cemented paste backfill and its application in a high-stress metal mine. Adv. Civ. Eng. 2021, 2021, 6624915. [Google Scholar] [CrossRef]
- Ouyang, S.; Huang, Y.; Zhou, N.; Li, J.; Gao, H.; Guo, Y. Experiment on hydration exothermic characteristics and hydration mechanism of sand-based cemented paste backfill materials. Constr. Build. Mater. 2022, 318, 125870. [Google Scholar] [CrossRef]
- Solismaa, S.; Torppa, A.; Kuva, J.; Heikkilä, P.; Hyvönen, S.; Juntunen, P.; Benzaazoua, M.; Kauppila, T. Substitution of cement with granulated blast furnace slag in cemented paste backfill: Evaluation of technical and chemical properties. Minerals 2021, 11, 1068. [Google Scholar] [CrossRef]
- Sari, M.; Yilmaz, E.; Kasap, T.; Guner, N.U. Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures. Constr. Build. Mater. 2022, 328, 127109. [Google Scholar] [CrossRef]
- Jia, Q.; Yang, Q.; Guo, L.; Knutsson, S.; Xue, P.; Liu, G.; Jiang, L. Effects of fine content, binder type and porosity on mechanical properties of cemented paste backfill with co-deposition of tailings sand and smelter slag. Electron. J. Geotech. Eng. 2016, 21, 6971–6988. [Google Scholar]
- Malusis, M.A.; Evans, J.C.; McLane, M.H.; Woodward, N.R. A miniature cone for measuring the slump of soil-bentonite cutoff wall backfill. Geotech. Test. J. 2008, 31, 373–380. [Google Scholar]
- Chen, S.; Yilmaz, E.; Xiang, Z.; Wang, Y. Curing conditions effect on pore structure, compressive strength and elastic modulus of cementitious tailings backfills. Powder Technol. 2023, in press. [Google Scholar] [CrossRef]
- Chen, Q.; Tao, Y.; Feng, Y.; Zhang, Q.; Liu, Y. Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill. J. Environ. Manage. 2021, 290, 112608. [Google Scholar] [CrossRef]
- Vargas, F.; Alsina, M.A.; Gaillard, J.F.; Pasten, P.; Lopez, M. Copper entrapment and immobilization during cement hydration in concrete mixtures containing copper tailings. J. Clean. Prod. 2021, 312, 127547. [Google Scholar] [CrossRef]
- Xue, G.L.; Yilmaz, E. Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads. Constr. Build. Mater. 2022, 338, 127667. [Google Scholar] [CrossRef]
- Liu, S.G.; Fall, M. Fresh and hardened properties of cemented paste backfill: Links to mixing time. Constr. Build. Mater. 2022, 324, 126688. [Google Scholar] [CrossRef]
- Wang, Y.; Duc, M.; Cui, Y.J.; Tang, A.M.; Benahmed, N.; Sun, W.J.; Ye, W.M. Aggregate size effect on the development of cementitious compounds in a lime-treated soil during curing. Appl. Clay Sci. 2017, 136, 58–66. [Google Scholar] [CrossRef]
- Dixit, A.; Patel, A.S.; Singh, D. Effect of different supplementary cementitious materials on compressive strength of concrete with varying size of aggregates. Mater. Today Proc. 2022, 56, 336–341. [Google Scholar] [CrossRef]
- Ying, Z.; Cui, Y.J.; Benahmed, N.; Duc, M. Changes in microstructure and water retention property of a lime-treated saline soil during curing. Acta Geotech. 2022, 17, 319–326. [Google Scholar] [CrossRef]
- Tian, X.; Fall, M. Non-isothermal evolution of mechanical properties, pore structure and self-desiccation of cemented paste backfill. Constr. Build. Mater. 2021, 297, 123657. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, T.; Feng, G.; Bai, J.; Pei, X.; Cui, B.; Song, C.; Ran, H. Electrical resistivity method to appraise static segregation of gangue-cemented paste backfill in the pipeline. Int. J. Press. Vessel. Pip. 2021, 192, 104385. [Google Scholar] [CrossRef]
- Wang, Z.; Feng, G.; Qi, T.; Guo, Y.; Du, X. Evaluation of static segregation of cemented gangue-fly ash backfill material using electrical resistivity method. Measurement 2020, 154, 107483. [Google Scholar] [CrossRef]
- Béket Dalcé, J.; Li, L.; Yang, P. Experimental study of uniaxial compressive strength (UCS) distribution of hydraulic backfill associated with segregation. Minerals 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Benkirane, O.; Haruna, S.; Fall, M. Strength and microstructure of cemented paste backfill modified with nano-silica particles and cured under non-isothermal conditions. Powder Technol. 2023, 419, 118311. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zhang, Z.; Zhang, P.; Ma, Y.; Wang, A.; Wang, H. Intrinsic sulfuric acid resistance of C-(N)-ASH and NASH gels produced by alkali-activation of synthetic calcium aluminosilicate precursors. Cem. Concr. Res. 2023, 165, 107068. [Google Scholar] [CrossRef]
- Sari, M.; Yilmaz, E.; Kasap, T. Long-term ageing characteristics of cemented paste backfill: Usability of sand as a partial substitute of hazardous tailings. J. Clean. Prod. 2023, 401, 136723. [Google Scholar] [CrossRef]
- Cao, S.; Xue, G.L.; Yilmaz, E. Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending. IEEE Access 2019, 7, 139317–139328. [Google Scholar] [CrossRef]
- Jiang, H.; Han, J.; Ren, L.; Guo, Z.; Yilmaz, E. Study of early-age performance of cementitious backfills with alkali activated slag under internal sulfate attack. Constr. Build. Mater. 2023, 372, 130786. [Google Scholar] [CrossRef]
Physical Parameters | Tailings | Sand | Cement |
---|---|---|---|
Specific gravity, GS | 3.55 | 2.63 | 3.12 |
Specific surface area, SS, m2/g | 2.89 | 0.71 | 0.43 |
D10, μm | 5.96 | 113 | 4.62 |
D30, μm | 24.1 | 476 | 12.8 |
D50, μm | 43.6 | 1122 | 23.1 |
D60, μm | 60 | 1483 | 32.3 |
D90, μm | 132 | 2541 | 69 |
Cu, Coefficient of uniformity (D60/D10) | 10.1 | 13.1 | 6.99 |
Cc, Coefficient of curvature (D302)/(D60 × D10) | 1.62 | 1.35 | 1.10 |
Oxide Analysis | Tailings (%) | Sand (%) | Cement (%) |
---|---|---|---|
Fe2O3 | 41.8 | 0.44 | 3.13 |
Mn3O4 | 0.93 | 0.02 | 0.03 |
BaO | 0.02 | 0.01 | 0.09 |
TiO2 | 0.34 | 0.03 | 0.20 |
CaO | 4.25 | 55.6 | 64.5 |
K2O | 0.29 | 0.09 | 0.79 |
SO3 | 0.39 | 0.75 | 3.53 |
P2O5 | 0.05 | 0.01 | 0.03 |
SrO | 0.01 | 0.01 | 0.08 |
SiO2 | 26.5 | 1.85 | 16.9 |
Al2O3 | 7.11 | 1.51 | 5.81 |
MgO | 1.65 | 0.59 | 1.22 |
Na2O | 0.04 | 0.02 | 0.39 |
LOI | 20.1 | 41.28 | 3.90 |
Notation | Curing Time (Days) | Solid Content (wt.%) | Slump (cm) | OPC (wt.%) | Tailings (wt.%) | Sand (wt.%) |
---|---|---|---|---|---|---|
CT100-72 | 3, 14, 28, 56 | 72 | 25 | 7 | 100 | - |
CT100-76 | 3, 14, 28, 56 | 76 | 21 | 7 | 100 | - |
CT90-S10-72 | 3, 14, 28, 56 | 72 | 25 | 7 | 90 | 10 |
CT90-S10-76 | 3, 14, 28, 56 | 76 | 21 | 7 | 90 | 10 |
CT80-S20-72 | 3, 14, 28, 56 | 72 | 25 | 7 | 80 | 20 |
CT80-S20-76 | 3, 14, 28, 56 | 76 | 21 | 7 | 80 | 20 |
CT70-S30-76 | 3, 14, 28, 56 | 72 | 25 | 7 | 70 | 30 |
CT70-S30-76 | 3, 14, 28, 56 | 76 | 21 | 7 | 70 | 30 |
CT50-S50-A | 3, 14, 28, 56 | 72 | 25 | 7 | 50 | 50 |
CT50-S50-B | 3, 14, 28, 56 | 76 | 21 | 7 | 50 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guner, N.U.; Yilmaz, E.; Sari, M.; Kasap, T. Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties. Minerals 2023, 13, 437. https://doi.org/10.3390/min13030437
Guner NU, Yilmaz E, Sari M, Kasap T. Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties. Minerals. 2023; 13(3):437. https://doi.org/10.3390/min13030437
Chicago/Turabian StyleGuner, Nihat Utku, Erol Yilmaz, Muhammet Sari, and Tugrul Kasap. 2023. "Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties" Minerals 13, no. 3: 437. https://doi.org/10.3390/min13030437
APA StyleGuner, N. U., Yilmaz, E., Sari, M., & Kasap, T. (2023). Cementitious Backfill with Partial Replacement of Cu-Rich Mine Tailings by Sand: Rheological, Mechanical and Microstructural Properties. Minerals, 13(3), 437. https://doi.org/10.3390/min13030437