Geochemical Records of the Late Glacial and Holocene Paleoenvironmental Changes from the Lake Kaskadnoe-1 Sediments (East Sayan Mountains, South Siberia)
Abstract
:1. Introduction
2. Regional Setting
3. Material and Methods
3.1. Sample Collection and Sediment Lithology
3.2. AMS 14C Dating
3.3. Determination of Major and Trace Element Composition
4. Results
4.1. Lithology and Chronology
4.2. Variations in Major Elements and Trace Elements
5. Discussion
5.1. Potential Climatic Implication of Major Elements and Some Trace Elements
5.2. Variations in Catchment CIA and Climate in the Past 13,200 cal Years
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catalan, J.; Bartons, M.; Camarero, L.; Grimalt, J.O. Mountain waters as witnesses of global pollution. In Living with Water: Targeting Quality in a Dynamic World; Pechan, P., de Vries, G.E., Eds.; Springer: New York, NY, USA, 2013; pp. 31–67. [Google Scholar]
- Woolway, R.; Merchant, C. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 2019, 12, 271–276. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Yao, T.; Xie, H.; Yang, K.; Zhu, L.; Shum, C.K. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Sci. Rev. 2020, 208, 103269. [Google Scholar] [CrossRef]
- Mackay, A.W.; Bezrukova, E.V.; Leng, M.J.; Meaney, M.; Nunes, A.; Piotrowska, N.; Self, A.; Shchetnikov, A.A.; Shilland, E.; Tarasov, P.E.; et al. Aquatic ecosystem responses to Holocene climate change and biome development in boreal, central Asia. Quat. Sci. Rev. 2012, 41, 119–131. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Shchetnikov, A.A.; Kuzmin, M.I.; Sharova, O.G.; Kulagina, N.V.; Letunova, P.P.; Ivanov, E.V.; Kraynov, M.A.; Kerber, E.V.; Filinov, I.A.; et al. First data on the environment and climate change within the Zhom-Bolok volcanic field (Eastern Sayan Mountains) in the Middle–Late Holocene. Dokl. Earth Sci. 2016, 468, 527–531. [Google Scholar] [CrossRef]
- Shchetnikov, A.A.; Bezrukova, E.V.; Krivonogov, S.K. Late Glacial to Holocene volcanism of Jom-Bolok Valley (East Sayan Mountains, Siberia) recorded by microtephra layers of the Lake Kaskadnoe-1 sediments. J. Asian Earth Sci. 2019, 173, 291–303. [Google Scholar] [CrossRef]
- Stepanova, O.G.; Trunova, V.A.; Osipov, E.Y.; Kononov, E.E.; Vorobyeva, S.S.; Parkhomchuk, E.V.; Kalinkin, P.N.; Vorobyeva, E.E.; Vershinin, K.E.; Rastigeev, S.A.; et al. Glacier dynamics in the southern part of East Siberia (Russia) from the final part of the LGM to the present based on from biogeochemical proxies from bottom sediments of proglacial lakes. Quat. Int. 2019, 524, 4–12. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Shchetnikov, A.A.; Kulagina, N.V.; Amosova, A.A. Lateglacial and Holocene vegetation and environmental change in the Jom-Bolok volcanic region, East Sayan Mountains, South Siberia, Russia. Boreas 2021, 50, 935–947. [Google Scholar] [CrossRef]
- Shchetnikov, A.; Bezrukova, E.V. Lakes of the Jom-Bolok Volcanoes Valley in the East Sayan Mts., Baikal region: Morphogenesis and potential for regional paleoenvironmental studies. J. Geogr. Sci. 2019, 29, 1823–1840. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, T.W. Oriental and Western Siberia: A Narrative of Seven Years’ Explorations and Adventures in Siberia, Mongolia, the Kirghis Steppes, Chinese Tartary and Part of Central Asia; Bradley, J.W., Ed.; J.W. Bradley: Philadelphia, PA, USA, 1859. [Google Scholar]
- Kropotkin, P.A. A Trip to the Oka Guard Post. Memoirs of the Russian Geographical Society, Siberian Division; Tipografija Okruzhnogo Shtaba: Irkutsk, Russia, 1867; pp. 9–10. (In Russian) [Google Scholar]
- Obruchev, S.V.; Lurye, M.L. Kropotkin and Peretolchin volcanoes in East Sayan. In Transactions of Laboratory of Volcanology; Publisher of the AN USSR: Moscow, Russia, 1954. (In Russian) [Google Scholar]
- Yarmolyuk, V.V.; Nikiforov, A.V.; Ivanov, V.G. The structure, composition, sources and mechanism of Zhom-Bolok valley lava flows (Holocene, South-Baikal volcanic area). Vulkanol. Seismol. 2003, 5, 41–59. (In Russian) [Google Scholar]
- Kiselev, A.I.; Medvedev, M.E.; Golovko, G.A. Volcanism of the Baikal Rift Zone and Problems of Deep Magma Genesis; Nauka: Novosibirsk, Russia, 1979. (In Russian) [Google Scholar]
- Ivanov, A.V.; Arzhannikov, S.G.; Demonterova, E.I.; Arzhannikova, A.V.; Orlova, L.A. Jombolok Holocene volcanic field in the East Sayan Mts., Siberia, Russia: Structure, style of eruptions, magma compositions, and radiocarbon dating. Bull. Volcanol. 2011, 73, 1279–1294. [Google Scholar] [CrossRef]
- Arzhannikov, S.G.; Ivanov, A.V.; Arzhannikova, A.V.; Demonterova, E.I.; Jolivet, M.; Voronin, V.I.; Buyantuev, V.A.; Oskolkov, V.A. Age of the Jombolok lava field (East Sayan): Evidence from dendrochronology and radiocarbon dating. Russ. Geol. Geophys. 2017, 58, 20–36. [Google Scholar] [CrossRef]
- Arzhannikov, S.G.; Braucher, R.; Jolivet, M.; Arzhannikova, A.V. Late Pleistocene glaciations in southern East Sayan and detection of MIS 2 terminal moraines based on beryllium (10Be) dating of glacier complexes. Russ. Geol. Geophys. 2015, 56, 1509–1521. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Kulagina, N.V.; Reshetova, S.A.; Shchetnikov, A.A.; Krainov, M.A.; Filinov, I.A. Environment of the Oka Plateau (East Sayan Mountains) in the Late glacial and Holocene: A case study of a complex record from the Lake Khikushka sediments. Geomorphology 2022, 3, 61–73. [Google Scholar] [CrossRef]
- Bezrukova, E.V.; Reshetova, S.A.; Volchatova, E.V.; Kuzmin, M.I. First reconstructions of vegetation and climate changes in the central part of the Oka Plateau (East Sayan Mountains) in the Middle-Late Holocene. Dokl. Earth Sci. 2022, 506, 687–692. [Google Scholar] [CrossRef]
- Koinig, K.A.; Shotyk, W.; Lotter, A.F.; Ohlendorf, C.; Sturm, M. 9000 years of geochemical evolution of lithogenic major and trace elements in the sediment of an alipine lake-the role of climate, vegetation, and land-use history. J. Paleolimnol. 2003, 30, 307–320. [Google Scholar] [CrossRef]
- Schmidt, R.; Roth, M.; Tessadri, R.; Weckström, K. Disentangling late-Holocene climate and land-use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. J. Paleolimnol. 2008, 40, 453–469. [Google Scholar] [CrossRef]
- Minyuk, P.S.; Borkhodoev, V.Y.; Wennrich, V. Inorganic geochemistry data from Lake El’gygytgyn sediments: Marine isotope stages 6–11. Clim. Past. 2014, 10, 467–485. [Google Scholar] [CrossRef] [Green Version]
- Strelkov, S.A.; Vdovin, V.V. Altai-Sayan Mountain Region (Evolution of Topography of Siberia and the Far East); Publishing House Nauka: Moscow, Russia, 1969. (In Russian) [Google Scholar]
- Plyusnin, V.M.; Kitov, A.D.; Ivanov, E.N.; Sheinkman, V.S. Distinctive characteristics of formation and dynamics of Nival-Glacial Ge-osystems in the South of East Siberia and on Mongolian Altai. Geogr. Nat. Resour. 2013, 34, 5–18. [Google Scholar] [CrossRef]
- Jarvis, A.; Reuter, H.I.; Nelson, A.; Guevara, E. Hole-Filled SRTM for the Globe Version 4, Available from the CGIAR-CSI SRTM 90m Database. 2008. Available online: http://srtm.csi.cgiar.org (accessed on 10 January 2023).
- Blaauw, M.; Christen, J.A.; Vazquez, J.E.; Goring, S. Classical Age-Depth Modelling of Cores from Deposits. R Package Version 2.5.0. 2022. Available online: https://CRAN.R-project.org/package=clam (accessed on 27 February 2023).
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Hogg, M.G.; et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 kcal BP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Amosova, A.A.; Chubarov, V.M.; Pashkova, G.V.; Finkelshtein, A.L.; Bezrukova, E.V. Wavelength dispersive X-ray fluorescence determi-nation of major oxides in bottom and peat sediments for paleoclimatic studies. Appl. Radiat. Isot. 2019, 144, 118–123. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Package ‘Factoextra’: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.5. 2017. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 3 March 2023).
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Shen, J.; Liu, X.; Wang, S.; Matsumoto, R. Paleoclimatic changes in the Qinghai lake area during the last 18,000 years. Quat. Int. 2005, 136, 131–140. [Google Scholar] [CrossRef]
- Zhou, W.; Cheng, P.; Wang, H.; Zhu, Y.; Jull, A.J.T.; Wu, Z. 14C Chronostratigraphy for Qinghai Lake in China. Radiocarbon 2014, 56, 143–155. [Google Scholar] [CrossRef]
- Kobe, F.; Bezrukova, E.V.; Leipe, C.; Shchetnikov, A.A.; Goslar, T.; Wagner, M.; Kostrova, S.S.; Tarasov, P.E. Holocene vegetation and climate history in Baikal Siberia reconstructed from pollen records and its implications for archaeology. Archaeol. Res. Asia 2020, 23, 100209. [Google Scholar] [CrossRef]
- Grimm, E.C. Tilia 1.7.16 Software; Illinois State Museum Research and Collection Center: Springfield, IL, USA, 2011. [Google Scholar]
- Zhong, W.; Pen, Z.; Xue, J.; Ouyang, J.; Tang, X.; Cao, J. Geochemistry of sediments from Barkol Lake in the westerly influenced northeast Xinjiang: Implications for catchment weathering intensity during the Holocene. J. Asian Earth Sci. 2012, 50, 7–13. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.; Feng, Z.; Mischke, S.; Gao, X.; Gao, D.; Sun, F. Holocene hydrological and climatic change on the northern Mongolian Plateau based on multi-proxy records from Lake Gun Nuur. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 325, 75–86. [Google Scholar] [CrossRef]
- Brown, E.T.; Le Callonnec, L.; German, C.R. Geochemical cycling of redox sensitive metals in sediments from Lake Malawi, a diagnostic paleotracer for episodic changes in mixing depth. Geochim. Cosmochim. Acta. 2000, 64, 3515–3523. [Google Scholar] [CrossRef]
- Sabatier, P.; Moernaut, J.; Bertrand, S.; Van Daele, M.; Kremer, K.; Chaumillon, E.; Arnaud, F. A Review of Event Deposits in Lake Sediments. Quaternary 2022, 5, 34. [Google Scholar] [CrossRef]
- Ulrich, M.; Matthes, H.; Schmidt, J.; Fedorov, A.; Schirmeister, L.; Siegert, C.; Schneider, B.; Strauss, J. Holocene thermokarst dynamics in Central Yakutia e A multi-core and robust grain-size endmember modeling approach. Quat. Sci. Rev. 2019, 218, 10–33. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Guerrero, B.; Avendano, D.; Caballero, M.; Lozano-García, S.; Brown, E.T.; Rodríguez, A.; García, B.; Barceinas, H.; Soler, A.M.; Albarran, A. Climatic control on magnetic mineralogy during the late MIS 6—Early MIS 3 in Lake Chalco, central Mexico. Quat. Sci. Rev. 2020, 230, 106163. [Google Scholar] [CrossRef]
- Baumer, M.M.; Wagner, B.; Meyer, H.; Leicher, N.; Lenz, M.; Fedorov, G.; Pestryakova, L.A.; Melles, M. Climatic and environmental changes in the Yana Highlands of north-eastern Siberia over the last c. 57 000 years, derived from a sediment core from Lake Emanda. Boreas 2021, 50, 114–133. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, B.; Xiong, S.; Wu, J.; Chen, Z.; Cui, J.; Chen, Y.; Ye, W.; Zhu, L. Shifts in the silicate weathering regime in South China during the Meso-Cenozoic linked to Asian summer monsoon evolution. Glob. Planet. Change 2022, 212, 103809. [Google Scholar] [CrossRef]
- Yusupova, A.R.; Nourgalieva, N.G. Geochemical basis of climate change indication in the Holocene sediments of Lake Bannoe (Southern Urals, Russia). Uchenye Zap. Kazan. Universiteta. Seriya Estestv. Nauk. 2021, 163, 514–526. (In Russian) [Google Scholar] [CrossRef]
- Alongi, D.M. Macro- and Micronutrient Cycling and Crucial Linkages to Geochemical Processes in Mangrove Ecosystems. J. Mar. Sci. Eng. 2021, 9, 456. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Kastner, M.; Gallego-Torres, D.; Rodrigo-Gamiz, M.; Nieto-Moreno, V.; Ortega-Huertas, M. Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat. Sci. Rev. 2015, 107, 25–46. [Google Scholar] [CrossRef]
- Takeuchi, N.; Fujita, K.; Aizen, V.B.; Narama, C.; Yokoyama, Y.; Okamoto, S.; Naoki, K.; Kubota, J. The disappearance of glaciers in the Tien Shan Mountains in Central Asia at the end of Pleistocene. Quat. Sci. Rev. 2014, 103, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bueno, C.; Figueira, R.C.L.; Ivanoff, M.D.; Toldo, E.E.; Ferreira, P.A.L.; Fornaro, L.; Garcıa-Rodrıguez, F. Inferring centennial terrigenous input for Patos Lagoon, Brazil: The world’s largest choked coastal lagoon. J. Paleolimnol. 2021, 66, 157–169. [Google Scholar] [CrossRef]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; van der Knaap, W.O.; Amman, B. Late Glacial and Holocene vegetational changes on the Ulagan high-mountain plateau, Altai Mountains, southern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 209, 259–279. [Google Scholar] [CrossRef]
- Blyakharchuk, T.A.; Wright, H.E.; Borodavko, P.S.; van der Knaap, W.O.; Ammann, B. Late Glacial and Holocene vegetational history of the Altai Mountains (southwestern Tuva Republic, Siberia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 245, 518–534. [Google Scholar] [CrossRef]
- Liu, Z.; Otto-Bliesner, B.L.; He, F.; Brady, E.C.; Tomas, R.; Clark, P.U.; Carlson, A.E.; Lynch-Stieglitz, J.; Curry, W.; Brook, E.; et al. Transient Simulation of Last Deglaciation with a New Mechanism for Bølling-Allerød Warming. Science 2009, 325, 310–314. [Google Scholar] [CrossRef] [Green Version]
- Horiuchi, K.; Matsuzaki, H.; Osipov, E.; Khlystov, O.; Fujii, S. Cosmogenic Be-10 and Al-26 dating of erratic boulders in the southern coastal area of Lake Baikal, Siberia. Nucl. Instrum. Methods Phys. Res. B 2004, 223–224, 633–638. [Google Scholar] [CrossRef]
- Shichi, K.; Takahara, H.; Krivonogov, S.K.; Bezrukova, E.V.; Kashiwaya, K.; Takehara, A.; Nakamura, T. Late Pleistocene and Holocene vegetation and climate records from Lake Kotokel, central Baikal region. Quat. Int. 2009, 205, 98–110. [Google Scholar] [CrossRef]
- Svensson, A.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Davies, S.M.; Johnsen, S.J.; Muscheler, R.; Parrenin, F.; Ras-mussen, S.O.; et al. A 60,000 year Greenland stratigraphic ice core chronology. Clim. Past. 2008, 4, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Wu, J.; Kelly, M.J.; Dykoski, C.A.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef]
- Laskar, J.; Robutel, P.; Joutel, F.; Gastineau, M.; Correia, A.C.M.; Levrard, B. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 2004, 428, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, S.O.; Bigler, M.; Blockley, S.P.; Blunier, T.; Buchardt, S.L.; Clausen, H.B.; Cvijanovic, I.; Dahl-Jensen, D.; Johnsen, S.J.; Fischer, H.; et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: Refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 2014, 106, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Tinner, W.; Lotter, A.F. Holocene expansions of Fagus sylvatica and Abies albain Central Europe: Where are we after eight decades of debate? Quat. Sci. Rev. 2006, 25, 526–549. [Google Scholar] [CrossRef]
- Binney, H.; Edwards, M.; Macias-Fauria, M.; Lozhkin, A.; Anderson, P.; Kaplan, J.O.; Andreev, A.; Bezrukova, E.; Blyakharchuk, T.; Jankovska, V.; et al. Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns. Quat. Sci. Rev. 2017, 157, 80–97. [Google Scholar] [CrossRef]
- Shahgedanova, M.; Popovnin, V.; Aleynikov, A.; Stokes, C.R. Geodetic mass balance of Azarova Glacier, Kodar mountains, eastern Siberia, and its links to observed and projected climatic change. Ann. Glaciol. 2011, 52, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Blyakharchuk, T.A.; Chernova, N.A. Vegetation and climate in the Western Sayan Mts according to pollen data from Lugovoe Mire as a background for prehistoric cultural change in southern Middle Siberia. Quat. Sci. Rev. 2013, 75, 22–42. [Google Scholar] [CrossRef]
- Zhang, D.; Feng, Z. Holocene climate variations in the Altai Mountains and the surrounding areas: A synthesis of pollen records. Earth Sci. Rev. 2018, 185, 847–869. [Google Scholar] [CrossRef]
- Kloeppel, B.D.; Gower, S.T.; Trechel, I.W.; Kharuk, V. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: A global comparison. Oecologia 1998, 14, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Agatova, A.R.; Nazarov, A.N.; Nepop, R.K.; Rodnight, H. Holocene glacier fluctuations and climate changes in the southeastern part of the Russian Altai (South Siberia) based on a radiocarbon chronology. Quat. Sci. Rev. 2012, 43, 74–93. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Im, S.T.; Petrov, I.A.; Yagunov, M.N. Decline of Dark Coniferous Stands in Baikal Region. Contemp. Probl. Ecol. 2016, 9, 617–625. [Google Scholar] [CrossRef]
Sample ID | Core Depth, cm | 14C yr BP | 14C Ages Corrected on Reservoir Effect of 980 Years | Calibrated 95.4% Range (cal yr BP) | Modeled Age, cal yr BP |
---|---|---|---|---|---|
Poz-76417 | 11 | 2070 ± 30 | 1090 ± 30 | 933–1057 | 1000 |
Poz-76459 | 67 | 7060 ± 50 | 6080 ± 50 | 6801–7147 | 6950 |
Poz-76460 | 91 | 8960 ± 50 | 7980 ± 50 | 8649–8991 | 8840 |
Poz-76461 | 113 | 9820 ± 60 | 8840 ± 60 | 9650–10,163 | 9920 |
Poz-76462 | 128 | 11,160 ± 60 | 10,180 ± 60 | 11,513–12,076 | 11,830 |
Poz-76463 | 142 | 11,820 ± 70 | 10,840 ± 70 | 12,711–12,957 | 12,790 |
Poz-76604 | 149 | 12,310 ± 70 | 11,330 ± 70 | 13,114–13,348 | 13,220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezrukova, E.V.; Amosova, A.A.; Chubarov, V.M. Geochemical Records of the Late Glacial and Holocene Paleoenvironmental Changes from the Lake Kaskadnoe-1 Sediments (East Sayan Mountains, South Siberia). Minerals 2023, 13, 449. https://doi.org/10.3390/min13030449
Bezrukova EV, Amosova AA, Chubarov VM. Geochemical Records of the Late Glacial and Holocene Paleoenvironmental Changes from the Lake Kaskadnoe-1 Sediments (East Sayan Mountains, South Siberia). Minerals. 2023; 13(3):449. https://doi.org/10.3390/min13030449
Chicago/Turabian StyleBezrukova, Elena V., Alena A. Amosova, and Victor M. Chubarov. 2023. "Geochemical Records of the Late Glacial and Holocene Paleoenvironmental Changes from the Lake Kaskadnoe-1 Sediments (East Sayan Mountains, South Siberia)" Minerals 13, no. 3: 449. https://doi.org/10.3390/min13030449
APA StyleBezrukova, E. V., Amosova, A. A., & Chubarov, V. M. (2023). Geochemical Records of the Late Glacial and Holocene Paleoenvironmental Changes from the Lake Kaskadnoe-1 Sediments (East Sayan Mountains, South Siberia). Minerals, 13(3), 449. https://doi.org/10.3390/min13030449