Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment
Abstract
:1. Introduction
2. Site Description and Historical Background
3. Materials and Methods
3.1. Sample Selection and Preparation
3.2. Soil Characterization Methods
3.3. Static Test Methods
3.4. Leaching Test
4. Results and Discussion
4.1. Soil Components with Emphasis on Heavy Metal-Bearing Particles
4.2. Total Acid Generating Capacity and Net Acidity
4.3. Heavy Metal Contamination
Element (mg kg−1) | As | Bi | Cd | Co | Cr | Cu | Ni | Pb | Sb | Tl | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|
Detection Limit | 3 | 2 | 0.3 | 1 | 1 | 1 | 1 | 3 | 5 | 5 | 1 |
Technosol PH | |||||||||||
PH-1 | 319 | 86 | 3.0 | 46 | 18 | 504 | 8 | 2340 | <5 | 12 | 415 |
PH-2 | 150 | 108 | 3.3 | 46 | 7 | 400 | 8 | 3420 | 19 | 17 | 314 |
PH-3 | 152 | 100 | 3.1 | 47 | 9 | 384 | 9 | 2980 | 19 | 15 | 311 |
Roasted pyrite wastes (mean) | |||||||||||
Peña de Hierro 1 (N = 3) | 665 | 2.3 | 36 | 21 | 474 | 11 | 2707 | 561 | |||
Planes 2 (N = 3) | 1026 | 338 | 4515 | 70 | 267 | ||||||
Technosol ZA | |||||||||||
ZA-1 | >5000 | 121 | 4.9 | 15 | 67 | 1660 | 24 | >5000 | 42 | 81 | 576 |
ZA-2 | 532 | 20 | 1.0 | 43 | 89 | 4370 | 70 | 1850 | 11 | <5 | 1790 |
ZA-3 | 3630 | 174 | 27.8 | 142 | 149 | >10,000 | 101 | >5000 | 24 | 16 | 3810 |
Copper slag wastes (mean) | |||||||||||
Zarandas 3 (N = 6) | 110 | 5.6 | 4.5 | 283 | 4410 | 17 | 2088 | 380 | 5.5 | ||
Technosol LN | |||||||||||
LN-1 | 868 | 133 | 1.7 | 12 | 21 | 939 | 5 | >5000 | 6 | 15 | 655 |
LN-2 | 2030 | 260 | 1.7 | 7 | 31 | 178 | 5 | >5000 | 7 | 56 | 400 |
LN-3 | 1040 | 116 | 1.1 | 8 | 14 | 199 | 6 | >5000 | <5 | 9 | 266 |
Heap leaching wastes | |||||||||||
Rio Tinto 4 | 4310 | 0.7 | 25 | 77 | 537 | 11 | 7056 | 765 | 9 | 478 | |
Reference values | |||||||||||
Regional geochemical baseline 5 | 25 | 19 | 95 | 32 | 35 | 38 | 76 | ||||
Mine soils of Iberian Pyrite Belt 6 | 361 | 0.7 | 15 | 78 | 412 | 19 | 1080 | 298 |
4.4. Potential for Metal Release
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Salomons, W. Environmental impact of metals derived from mining activities. J. Geochem. Explor. 1995, 53, 53–56. [Google Scholar]
- Nordstrom, D.K. Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface waters. Appl. Geochem. 2011, 26, 1777–1791. [Google Scholar] [CrossRef]
- Hudson-Edwards, K. Tackling mine wastes. Science 2016, 352, 288–290. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Morman, S.A. Mine wastes and human health. Elements 2011, 7, 399–404. [Google Scholar] [CrossRef]
- Sánchez de la Campa, A.; De la Rosa, J.D.; Fernández-Caliani, J.C.; González-Castanedo, Y. Impact of abandoned mine waste on atmospheric respirable particulate matter in the historic mining district of Rio Tinto (Iberian Pyrite Belt). Environ. Res. 2011, 111, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.; De la Rosa, J.; Sánchez de la Campa, A.; González-Castanedo, Y.; Fernández-Caliani, J.C.; González, I.; Romero, A. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 2013, 449, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.; González, I.; Martín, J.M.; Vázquez, M.A.; Ortiz, P. Risk assessment of particle dispersion and trace element contamination from mine-waste dumps. Environ. Geochem. Health 2015, 37, 273–286. [Google Scholar] [CrossRef]
- Helser, J.; Vassilieva, E.; Cappuyns, V. Environmental and human health risk assessment of sulfidic mine waste: Bioaccessibility, leaching and mineralogy. J. Hazard. Mat. 2022, 424, 127313. [Google Scholar] [CrossRef]
- Jambor, J.L. Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In Environmental Aspects of Mine Wastes; Jambor, J.L., Blowes, D.W., Ritchie, A.I.M., Eds.; Mineralogical Association of Canada Short Course: Ottawa, ON, Canada, 2003; Volume 31, pp. 117–146. [Google Scholar]
- Lottermoser, B.G. Mine Wastes. In Characterization, Treatment and Environmental Impacts, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Jamieson, H.E.; Stephen, S.R.; Parsons, M.B. Mineralogical characterization of mine waste. Appl. Geochem. 2015, 57, 85–105. [Google Scholar] [CrossRef]
- Cánovas, C.R.; De La Aleja, C.G.; Macías, F.; Pérez-López, R.; Basallote, M.D.; Olías, M.; Nieto, J.M. Mineral reactivity in sulphide mine wastes: Influence of mineralogy and grain size on metal release. Eur. J. Mineral. 2019, 31, 263–273. [Google Scholar] [CrossRef]
- Arranz, J.C.; Rodríguez-Gómez, V.; Fernández-Naranjo, F.J.; Vadillo, L. Assessment of the pollution potential of a special case of abandoned sulfide tailings impoundment in Riotinto mining district (SW Spain). Environ. Sci. Pollut. Res. 2021, 28, 14054–14067. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, Update 2015; World Soil Resources Reports; FAO: Rome, Italy, 2015; Volume 106, pp. 1–192. [Google Scholar]
- Gómez-González, M.A.; Voegelin, A.; García-Guinea, J.; Bolea, E.; Laborda, F.; Garrido, F. Colloidal mobilization of arsenic from mining-affected soils by surface runoff. Chemosphere 2016, 144, 1123–1131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson-Edwards, K.A.; Schell, C.; Macklin, M.G. Mineralogy and geochemistry of alluvium contaminated by metal mining in the Rio Tinto area, southwest Spain. Appl. Geochem. 1999, 14, 1015–1030. [Google Scholar] [CrossRef]
- García-Palomero, F. Mineralizaciones de Riotinto (Huelva): Geología, génesis y modelos geológicos para su explotación y evaluación de reservas minerales. In Recursos Minerales de España; Martínez-Frías, J., García-Guinea, J., Eds.; Consejo Superior de Investigaciones Científicas, Textos Universitarios: Madrid, Spain, 1992; Volume 15, pp. 1325–1352. [Google Scholar]
- Noble, A.C. Technical Report on the Riotinto Copper Project. 2022. Available online: https://atalayamining.com/wp-content/uploads/2022/09/Technical-Report-on-the-Riotinto-Project_Sept2022_FINAL.pdf (accessed on 2 February 2023).
- De Mello, C.R.; Tornos, F.; Conde, C.; Tassinari, C.C.G.; Farci, A.; Vega, R. Geology, geochemistry, and geochronology of the giant Rio Tinto VMS deposit, Iberian Pyrite Belt, Spain. Econ. Geol. 2022, 117, 1149–1177. [Google Scholar] [CrossRef]
- Dutrizac, J.E.; Jambor, J.L.; O’Reilly, J.B. Man’s first use of jarosite: The pre-Roman mining-metallurgical operations at Rio Tinto, Spain. Can. Min. Metall. Bull. 1983, 76, 78–82. [Google Scholar]
- Rothenberg, B.; García-Palomero, F. The Rio Tinto enigma-no more. Inst. Archaeo-Metall. Stud. Newsl. 1986, 8, 3–5. [Google Scholar]
- Salkield, L.U. A Technical History of the Rio Tinto Mines: Some Notes on Exploitation from Pre-Phoenician Times to the 1950s; The Institution of Mining and Metallurgy: London, UK, 1987; p. 116. [Google Scholar]
- Gallego, L.; Fernández-Caliani, J.C. Pyrite ore cargo spills as a source of soil pollution and ecological risk along the abandoned railway corridors of the Tharsis and Rio Tinto mines (Spain). Environ. Monit. Assess. 2023, 195, 97. [Google Scholar] [CrossRef] [PubMed]
- Lottermoser, B.G. Evaporative mineral precipitates from a historical smelting slag dump, Rio Tinto, Spain. Neues Jb. Miner. Abh. 2005, 181, 183–190. [Google Scholar] [CrossRef]
- Chopin, E.I.B.; Alloway, B.J. Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Sci. Total Environ. 2007, 373, 488–500. [Google Scholar] [CrossRef] [PubMed]
- López, M.; González, I.; Romero, A. Trace element contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environ. Geol. 2008, 54, 805–818. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C.; Barba-Brioso, C.; González, I.; Galán, E. Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (Southwest Spain). Water Air Soil Pollut. 2009, 200, 211–226. [Google Scholar] [CrossRef]
- González, I.; Galán, E.; Romero, A. Assessing soil quality in areas affected by sulfide mining. Application to soils in the Iberian Pyrite Belt (SW Spain). Minerals 2011, 1, 73–108. [Google Scholar] [CrossRef] [Green Version]
- Arranz, J.C.; Cala, V.; Iribarren, I. Geochemistry and mineralogy of surface pyritic tailings impoundments at two mining sites of the Iberian Pyrite Belt (SW Spain). Environ. Earth Sci. 2012, 65, 669–680. [Google Scholar] [CrossRef]
- Romero-Baena, A.J.; Barba-Brioso, C.; Ross, A.; González, I.; Aparicio, P. Mobility of potentially toxic elements in family garden soils of the Riotinto mining area. Appl. Clay Sci. 2021, 203, 105999. [Google Scholar] [CrossRef]
- Urrutia, M.M.; García-Rodeja, E.; Macias, F. Sulfide oxidation in coal-mine dumps: Laboratory measurement of acidifying potential with H2O2 and its application to characterize spoil materials. Environ. Manag. 1992, 16, 81–89. [Google Scholar] [CrossRef]
- Kahle, M.; Kleber, M.; Jahn, R. Review of XRD-based quantitative analyses of clay minerals in soils: The suitability of mineral intensity factors. Geoderma 2002, 109, 191–205. [Google Scholar] [CrossRef]
- Bussan, D.; Harris, A.; Douvris, C. Monitoring of selected trace elements in sediments of heavily industrialized areas in Calcasieu Parish, Louisiana, United States by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Microchem. J. 2019, 144, 51–55. [Google Scholar] [CrossRef]
- Ahern, C.R.; McElnea, A.E.; Sullivan, L.A. Acid Sulfate Soils Laboratory Methods Guidelines; Queensland Department of Natural Resources, Mines and Energy: Indooroopilly, Australia, 2004.
- Nordstrom, D.K. Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering; Kittrick, J.A., Fanning, D.S., Hossner, L.R., Eds.; SSSA Special Publications; Soil Science Society of America: Madison, WI, USA, 1982; Volume 10, pp. 37–56. [Google Scholar]
- Dold, B. Acid rock drainage prediction: A critical review. J. Geochem. Explor. 2017, 172, 120–132. [Google Scholar] [CrossRef]
- McElnea, A.E.; Ahern, C.R.; Menzies, N.W. The measurement of actual acidity in acid sulfate soils and the determination of sulfidic acidity in suspension after peroxide oxidation. Austr. J. Soil Res. 2002, 40, 1133–1157. [Google Scholar] [CrossRef]
- Dold, B. Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulfide mine waste. J. Geochem. Explor. 2003, 80, 55–68. [Google Scholar] [CrossRef]
- EN 12457-2:2002; European Standard EN 12457-2 Characterization of Waste–Leaching–Compliance Test for Leaching of Granular Waste Materials and Sludges, Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/kg for Materials with Particle Size below 4 mm (without or with Size Reduction). European Committee for Standardization: Brussels, Belgium, 2002.
- López-Arce, P.; Garrido, F.; García-Guinea, J.; Voegelin, A.; Göttlicher, J.; Nieto, J.M. Historical roasting of thallium- and arsenic-bearing pyrite: Current Tl pollution in the Riotinto mine area. Sci. Total Environ. 2019, 648, 1263–1274. [Google Scholar] [CrossRef] [Green Version]
- Romero, A.; González, I.; Galán, E. Estimation of potential pollution of waste mining dumps at Peña del Hierro (Pyrite Belt, SW Spain) as a base for future mitigation actions. Appl. Geochem. 2006, 21, 1093–1108. [Google Scholar] [CrossRef]
- Jerz, J.K.; Rimstidt, J.D. Efflorescent iron sulfate minerals: Paragenesis, relative stability, and environmental impact. Am. Miner. 2003, 88, 1919–1932. [Google Scholar] [CrossRef]
- Miller, S.; Robertson, A.; Donahue, T. Advances in acid drainage prediction using the net acid generating (NAG) test. In Proceedings of the fourth International Conference on Acid Rock Drainage, Vancouver, BC, Canada, 31 May–6 June 1997; Volume 2, pp. 533–547. [Google Scholar]
- Karlsson, T.; Räisänen, M.L.; Lehtonen, M.; Alakangas, L. Comparison of static and mineralogical ARD prediction methods in the Nordic environment. Environ. Monit. Assess. 2018, 190, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cánovas, C.R.; Quispe, D.; Macías, F.; Callejón-Leblic, B.; Arias-Borrego, A.; García-Barrera, T.; Nieto, J.M. Potential release and bioaccessibility of metal/loids from mine wastes deposited in historical abandoned sulfide mines. Environ. Pollut. 2023, 316, 120629. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef] [PubMed]
- Barsova, N.; Yakimenko, O.; Tolpeshta, I.; Motuzova, G. Current state and dynamics of heavy metal soil pollution in Russian Federation—A review. Environ. Pollut. 2019, 249, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Reimann, C.; Caritat, P. Chemical Elements in the Environment; Springer: Berlin/Heidelberg, Germany, 1998; p. 398. [Google Scholar]
- Grantcharova, M.M.; Fernández-Caliani, J.C. Soil acidification, mineral neoformation and heavy metal contamination driven by weathering of sulphide wastes in a Ramsar wetland. Appl. Sci. 2022, 12, 249. [Google Scholar] [CrossRef]
- Galán, E.; Fernández Caliani, J.C.; González, I.; Aparicio, P.; Romero, A. Influence of geological setting on geochemical baselines of trace elements in soils. Application to soils of South-West Spain. J. Geochem. Explor. 2008, 98, 89–106. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.C. La contaminación del suelo por la minería metálica de la Faja Pirítica Ibérica. Macla 2022, 26, 1–2. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Abrahim, G.M.S.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2007, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Ficklin, W.H.; Plumlee, G.S.; Smith, K.S.; McHugh, J.B. Geochemical classification of mine drainages and natural drainages in mineralized areas. In Proceedings of the 7th International Symposium on Water-Rock Interaction, Park City, UT, USA, 13–18 July 1992; pp. 381–384. [Google Scholar]
- Sánchez-España, J.; López-Pamo, E.; Santofimia, E.; Aduvire, O.; Reyes-Andrés, J.; Barettino, D. Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 2005, 20, 1320–1356. [Google Scholar] [CrossRef]
- Romero, A.; González, I.; Galán, E. Stream water geochemistry from mine wastes in Peña de Hierro, Riotinto Area, SW Spain. A case of extreme acid mine drainage. Environ. Earth Sci. 2011, 62, 645–656. [Google Scholar] [CrossRef]
- Durães, N.; Bobos, I.; Ferreira da Silva, E. Speciation and precipitation of heavy metals in high-metal and high-acid mine waters from the Iberian Pyrite Belt (Portugal). Environ. Sci. Pollut. Res. 2017, 24, 4562–4576. [Google Scholar] [CrossRef] [PubMed]
- Madejón, P.; Barba-Brioso, C.; Lepp, N.W.; Fernández-Caliani, J.C. Traditional agricultural practices enable sustainable remediation of highly polluted soils in Southern Spain for cultivation of food crops. J. Environ. Manag. 2011, 92, 1828–1836. [Google Scholar] [CrossRef]
- Paktunc, D.; Dutrizac, J.E. Characterization of arsenate-for-sulfate substitution in synthetic jarosite using X-ray diffraction and X-ray absorption spectroscopy. Canad. Mineral. 2003, 41, 905–919. [Google Scholar] [CrossRef]
- Asta, M.P.; Cama, J.; Martínez, M.; Giménez, J. Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J. Hazard. Mater. 2009, 171, 965–972. [Google Scholar] [CrossRef]
- Morin, G.; Calas, G. Arsenic in soils, mine tailings, and former industrial sites. Elements 2006, 2, 97–101. [Google Scholar] [CrossRef]
- Haffert, L.; Craw, D. Mineralogical controls on environmental mobility of arsenic from historic mine processing residues, New Zealand. Appl. Geochem. 2008, 23, 1467–1483. [Google Scholar] [CrossRef]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for PHREEQC version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. US Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Plumlee, G.S.; Smith, K.S.; Montour, M.R.; Ficklin, W.H.; Mosier, E.L. Geologic controls on the composition of natural waters and mine waters draining diverse mineral–deposit types. In The Environmental Geochemistry of Mineral Deposits. Part B: Case Studies and Research Topics; Filipek, L.H., Plumlee, G.S., Eds.; Reviews in Economic Geology; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 6B, pp. 373–432. [Google Scholar]
Technosol | Peña de Hierro (PH) | Zarandas (ZA) | La Naya (LN) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Major minerals | Hem + Jrs + Qz | Mca + Chl/Kln + Qz ± Jrs ± Py | Qz + Py + Mca ± Jrs | |||||||||||
Accessories | Mca + Fsp + Brt + Ang | Fsp + Brt ± Hem ± Jrs ± Gp | Fsp + Brt + Ang ± Jrs ± Hem ± Gp | |||||||||||
Oxides (wt.%) | Hem1 | Hem2 | Hem3 | Ang1 | Ang2 | Jarosite-like minerals | Ang | Jarosite-like minerals | Pb-rich phosphate | |||||
Fe2O3 | 99.74 | 99.17 | 97.96 | 45.78 | 27.94 | 42.38 | 53.73 | 38.02 | 37.45 | 7.21 | 4.34 | |||
SO3 | 0.05 | 0.03 | 0.03 | 25.60 | 27.05 | 17.93 | 14.01 | 23.44 | 21.97 | 26.17 | 23.66 | 22.88 | 5.29 | 4.48 |
As2O5 | 0.04 | 4.00 | 9.88 | 2.66 | 4.97 | 0.70 | 3.14 | 1.67 | 2.34 | |||||
Sb2O5 | 0.04 | 0.05 | 0.02 | 0.05 | 0.05 | 0.15 | 3.55 | 0.20 | 0.11 | 0.34 | 0.44 | 0.07 | 0.13 | |
P2O5 | 12.13 | 11.67 | ||||||||||||
PbO | 73.97 | 72.19 | 1.40 | 12.55 | 8.30 | 1.98 | 73.11 | 14.88 | 12.31 | 32.60 | 31.69 | |||
CuO | 0.05 | 0.05 | 0.03 | 0.24 | 0.24 | 0.68 | 0.21 | 0.45 | 0.20 | 0.13 | 0.13 | |||
ZnO | 0.06 | 0.06 | ||||||||||||
K2O | 1.24 | 0.53 | 1.19 | 1.40 | 1.54 | 3.68 | 0.39 | 0.41 |
Sample | pH | Sulfur Speciation (wt.%) | Acidity (mmol H+/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O | KCl | H2O2 | Stotal | Spyr | Sjar | PSA | TAA | RA | TAG | NAG | |
PH-1 | 2.96 | 3.00 | 2.83 | 2.60 | 0.18 | 1.71 | 111 | 90 | 800 | 1001 | 144 |
PH-2 | 2.51 | 2.57 | 2.45 | 2.75 | 0.15 | 0.78 | 93 | 27 | 367 | 487 | 104 |
PH-3 | 2.14 | 2.58 | 2.41 | 2.63 | 0.16 | 1.07 | 97 | 36 | 503 | 636 | 93 |
ZA-1 | 2.96 | 2.75 | 1.86 | 2.53 | 0.16 | 2.44 | 102 | 19 | 1146 | 1267 | 442 |
ZA-2 | 4.56 | 3.36 | 2.20 | 0.55 | 0.11 | 0.24 | 66 | 10 | 110 | 186 | 632 |
ZA-3 | 5.35 | 5.34 | 5.08 | 6.80 | 3.54 | 1.78 | 2214 | 7 | 835 | 3056 | 240 |
LN-1 | 2.68 | 2.49 | 1.85 | 2.97 | 2.00 | 0.32 | 1248 | 26 | 151 | 1425 | 663 |
LN-2 | 2.51 | 2.44 | 1.65 | 3.15 | 1.42 | 1.66 | 890 | 30 | 780 | 1700 | 609 |
LN-3 | 3.02 | 3.01 | 1.78 | 1.67 | 1.26 | 0.33 | 786 | 31 | 153 | 971 | 463 |
Technosol Sample | pH | Eh | CE | Sulfate | Nitrate | Chloride | Cr | Ni | Cu | Zn | As | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mV | mS/cm | mg/L | μg/L | mg/L | μg/L | μg/L | mg/L | mg/L | μg/L | μg/L | mg/L | ||
PH-1 | 3.34 | 665 | 0.71 | 652 | 440 | 13 | 1.6 | 14.8 | 5.18 | 2.25 | 1.9 | 37.8 | 0.05 |
PH-2 | 2.50 | 747 | 1.13 | 384 | 330 | 1.7 | 1.1 | <0.2 | 0.23 | 0.49 | 3.4 | 1.8 | 2.62 |
PH-3 | 2.74 | 731 | 1.12 | 618 | 320 | 2.4 | 5.5 | 7.3 | 1.43 | 0.79 | 7.7 | 10.4 | 0.31 |
ZA-1 | 3.24 | 668 | 0.63 | 343 | 540 | 1.7 | 1.7 | 9.2 | 2.57 | 2.77 | 97.5 | 21.3 | 0.04 |
ZA-2 | 5.18 | 688 | 0.03 | 25 | 630 | 1.5 | <0.4 | 2.7 | 0.14 | 0.03 | 0.8 | 0.2 | 0.02 |
ZA-3 | 5.66 | 381 | 0.28 | 170 | 560 | 4.7 | <0.4 | 135.9 | 55.6 | 0.79 | 18.3 | 36.1 | 0.02 |
LN-1 | 3.07 | 574 | 0.49 | 191 | 230 | 6.6 | 3.2 | 2.6 | 0.72 | 0.04 | 35.0 | 0.7 | 5.55 |
LN-2 | 3.22 | 612 | 0.59 | 215 | 240 | 1.2 | 6.9 | 3.6 | 0.13 | 0.24 | 4.8 | 3.3 | 4.36 |
LN-3 | 3.54 | 571 | 0.18 | 80 | 270 | 2.6 | <0.4 | <0.2 | 0.08 | 0.07 | 5.1 | 0.3 | 9.02 |
Element | Species (%) | PH-1 | PH-2 | PH-3 | ZA-1 | ZA-2 | ZA-3 | LN-1 | LN-2 | LN-3 | Median |
---|---|---|---|---|---|---|---|---|---|---|---|
As | H2AsO4− | 93.52 | 65.01 | 77.15 | 91.04 | 100 | 95.23 | 86.82 | 90.53 | 95.09 | 91.04 |
HAsO42− | 4.77 | ||||||||||
H3AsO4 | 6.48 | 34.99 | 22.85 | 8.96 | 13.18 | 9.47 | 4.91 | 8.96 | |||
Cd | Cd2+ | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Cu | Cu2+ | 90.29 | 75.31 | 82.04 | 73.28 | 96.26 | 93.59 | 82.76 | 86.57 | 89.49 | 86.57 |
CuSO4 | 9.68 | 24.69 | 17.95 | 26.71 | 3.61 | 5.58 | 17.21 | 13.43 | 10.51 | 13.43 | |
CuOH+ | 0.13 | 0.28 | |||||||||
Cu(OH)2 | 0.22 | ||||||||||
CuCl+ | 0.03 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 | |||||
Cu2(OH)22+ | 0.32 | ||||||||||
Ni | Ni2+ | 91.32 | 83.42 | 74.71 | 96.58 | 94.86 | 83.68 | 87.4 | 83.68 | ||
NiSO4 | 8.68 | 16.58 | 25.29 | 3.42 | 5.14 | 16.32 | 12.6 | 8.68 | |||
Pb | Pb2+ | 77.33 | 51.49 | 62.29 | 48.79 | 90.44 | 86.15 | 62.89 | 69.81 | 74.66 | 69.81 |
PbSO4 | 21.87 | 47.53 | 36.87 | 50.18 | 9.56 | 13.85 | 36.4 | 29.84 | 25.06 | 29.84 | |
PbCl+ | 0.44 | 0.06 | 0.09 | 0.34 | 0.06 | 0.17 | 0.06 | ||||
Pb(SO4)22− | 0.36 | 0.91 | 0.75 | 1.03 | 0.37 | 0.28 | 0.12 | 0.36 | |||
Zn | Zn2+ | 88.78 | 72.13 | 79.45 | 69.91 | 95.86 | 93.52 | 80.5 | 84.72 | 88.09 | 84.72 |
ZnSO4 | 10.9 | 27.02 | 19.9 | 29.12 | 4.11 | 6.38 | 19.17 | 15.05 | 11.82 | 15.05 | |
ZnOH+ | 0.01 | 0.02 | |||||||||
Zn(SO4)22− | 0.29 | 0.84 | 0.64 | 0.97 | 0.01 | 0.05 | 0.31 | 0.22 | 0.09 | 0.29 | |
ZnCl+ | 0.03 | 0.01 | 0.01 | 0.01 | 0.02 | 0.03 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Landero, S.; Fernández-Caliani, J.C.; Giráldez, M.I.; Morales, E.; Barba-Brioso, C.; González, I. Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment. Minerals 2023, 13, 456. https://doi.org/10.3390/min13040456
Fernández-Landero S, Fernández-Caliani JC, Giráldez MI, Morales E, Barba-Brioso C, González I. Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment. Minerals. 2023; 13(4):456. https://doi.org/10.3390/min13040456
Chicago/Turabian StyleFernández-Landero, Sandra, Juan Carlos Fernández-Caliani, María Inmaculada Giráldez, Emilio Morales, Cinta Barba-Brioso, and Isabel González. 2023. "Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment" Minerals 13, no. 4: 456. https://doi.org/10.3390/min13040456
APA StyleFernández-Landero, S., Fernández-Caliani, J. C., Giráldez, M. I., Morales, E., Barba-Brioso, C., & González, I. (2023). Soil Contaminated with Hazardous Waste Materials at Rio Tinto Mine (Spain) Is a Persistent Secondary Source of Acid and Heavy Metals to the Environment. Minerals, 13(4), 456. https://doi.org/10.3390/min13040456