Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece
Abstract
:1. Introduction
2. Case Study: The Ermioni VMS
2.1. Argolis Peninsula Regional Geology
2.2. Ermioni VMS Deposit Geology and Historical Background
2.3. Karakasi and Roro VMS Geochronology
3. Analytical Data
4. Results and Discussion
4.1. Origin of Hydrothermal Fluids
4.2. Geologic Setting of Karakasi and Roro VMS Systems
5. Conclusions
- The Pb and noble gases’ (Ar-He) isotopic geochemistry of massive (Roro) and stringer (Karakasi) pyrite indicates a deep and evolved heat source, which probably also acted as a source of metals, attributed to subduction and partial melting of a radiogenic He source (depleted Pindos Oceanic crust).
- Despite the unknown age of footwall volcaniclastic rocks, the radiogenic isotope composition of massive and stringer pyrite indicates a similar geotectonic setting for both footwall volcaniclastic rocks and the VMS systems.
- This study shows how stable (Fe, S) and radiogenic (Pb, Sr, Ar) isotopic examination focused on specific phases may be used in the identification of both the source of metals and the setting of VMS ore formation. In the case of Ermioni VMS, the stable and radiogenic isotope compositions of VMS pyrite from Karakasi (stringer ore) and Roro (massive ore) point to differences in the geologic environment of VMS formations. Roro massive pyrite shows higher δ57Fe and δ34S values relative to Karakasi stringer pyrite, attributed to direct interaction of ascending metal-bearing hydrothermal fluids with cold seawater. Karakasi stringer pyrite shows higher 87Sr/86Sr ratios and radiogenic Ar values (as 40Ar/36Ar) depicting the interaction of hydrothermal fluids with crustal material (hanging-wall turbidites).
- During the approximately 0.5 Ma period separating the two systems, the same hydrothermal and ore-forming system evolved from free discharge on the seafloor (Roro—easterly) to a sediment-confined, subseafloor system (Karakasi—westerly).The Roro massive ore resembles a seafloor style of formation of contemporary mound-shaped massive sulfides, whereas the later Karakasi VMS hosted in the footwall and hanging-wall lithologies points to hydrothermal circulation within the Ermioni basin floor lithologies.
- The results of this study can be used during exploration of fossilized upper Cretaceous marine environments of the Alpine Orogen, with corresponding benefits in the metallogenic potential of the eastern Mediterranean.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanks, W.C.P., III. Historical Evolution of Descriptive and Genetic Knowledge and Concepts. In Volcanogenic Massive Sulfide Occurrence Model; Shanks, W.C.P., III, Thurston, R., Eds.; Scientific Investigations Report, 2010–5070–C; USGS: Reston, VA, USA, 2012; pp. 23–32. [Google Scholar]
- Hutchinson, R.W. Volcanogenic sulfide deposits and their metallogenic significance. Econ. Geol. 1973, 68, 1223–1246. [Google Scholar] [CrossRef]
- Koski, R.A.; Mosier, D.L. Deposit type and associated commodities. In Volcanogenic Massive Sulfide Occurrence Model; Shanks, W.C.P., III, Thurston, R., Eds.; Scientific Investigations Report, 2010–5070–C; USGS: Reston, VA, USA, 2012; pp. 15–21. [Google Scholar]
- Galley, A.G.; Hannington, M.D.; Jonasson, I.R. Volcanogenic massive sulphide deposits. In Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods; Goodfellow, W.D., Ed.; Geological Association of Canada, Mineral Deposits Division, Special Publication: St. John’s, NL, Canada, 2007; pp. 141–161. [Google Scholar]
- Lydon, J.W. Volcanogenic massive sulphide deposits Part 1: A descriptive model. Geosc. Can. 1984, 11, 195–202. [Google Scholar]
- Sawkins, F.J. Metal Deposits in Relation to Plate Tectonics, 2nd ed.; Springer: New York, NY, USA, 1990. [Google Scholar]
- Barrie, C.T.; Cathles, L.M.; Erendi, A.; Schwaiger, H.; Murray, C. Heat and Fluid Flow in Volcanic-associated Massive Sulfide-Forming Hydrothermal Systems. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Barrie, C.T., Hannington, M.D., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 8. [Google Scholar] [CrossRef]
- Leistel, J.M.; Marcoux, E.; Thiéblemont, D.; Quesada, C.; Sánchez, A.; Almodóvar, G.R.; Pascual, E.; Sáez, R. The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt, Review and preface to the Thematic Issue. Miner. Depos. 1998, 33, 2–30. [Google Scholar] [CrossRef]
- Barrie, C.T.; Hannington, M.D. (Eds.) Introduction: Classification of VMS deposits based on host rock composition. In Volcanic-Associated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings; Society of Economic Geologists: Littleton, CO, USA, 1999; Volume 8. [Google Scholar] [CrossRef]
- Franklin, J.M.; Hannington, M.D. Volcanogenic massive sulfides through time. In Proceedings of the Annual Meeting, Abstracts with Programs, Denver, CO, USA, 27–30 October 2002; Volume 34, p. 283. [Google Scholar]
- Gibson, H.L.; Allen, R.L.; Riverin, G.; Lane, T.E. The VMS model: Advances and application to exploration targeting. In Proceedings of the Exploration 07: 5th Decennial International Conference on Mineral Exploration, Toronto, ON, Canada, 9–12 September 2007; pp. 717–730. [Google Scholar]
- Pirajno, F.; Seltmann, R.; Yang, Y. A review of mineral systems and associated tectonic settings of northern Xinjiang, NW China. Geosc. Front. 2011, 2, 157–185. [Google Scholar] [CrossRef] [Green Version]
- Piercey, S. The setting, style and role of magmatism in the formation of volcanogenic massive sulfide deposits. Min. Depos. 2011, 46, 449–471. [Google Scholar] [CrossRef]
- Ross, P.-S.; Mercier-Langevin, P. The volcanic setting of VMS and SMS deposits: A review. Geosc. Can. 2014, 41, 365–377. [Google Scholar] [CrossRef]
- Martin-Izard, A.; Arias, D.; Arias, M.; Gumiel, P.; Sanderson, D.J.; Castañon, C.; Sanchez, J. Ore deposit types and tectonic evolution of the Iberian Pyrite Belt: From transtensional basins and magmatism to transpression and inversion tectonics. Ore Geol. Rev. 2016, 79, 254–267. [Google Scholar] [CrossRef]
- Hollis, S.P.; Yeats, C.J.; Wyche, S.; Barnes, S.J.; Ivanic, T.J.; Belford, S.M.; Davidson, G.J.; Roache, A.J.; Wingate, M.T.D. A review of volcanic-hosted massive sulfide (VHMS) mineralization in the Archaean Yilgarn Craton, Western Australia: Tectonic, stratigraphic and geochemical associations. Precambr. Res. 2019, 260, 113–135. [Google Scholar] [CrossRef]
- Schulz, K.J. Regional Environment. In Volcanogenic Massive Sulfide Occurrence Model; Shanks, W.C.P., III, Thurston, R., Eds.; Scientific Investigations Report, 2010–5070–C; USGS: Reston, VA, USA, 2012; pp. 37–60. [Google Scholar]
- Mousivand, F.; Rastad, E.; Meffre, S.; Peter, J.M.; Mohajjel, M.; Zaw, K.; Emami, M.H. Age and tectonic setting of the Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide deposit, southern Iran. Miner. Depos. 2012, 47, 911–931. [Google Scholar] [CrossRef]
- Lobanov, K.V.; Yakubchuk, A.; Creaser, R.A. Besshi-type VMS deposits of the Rudny Altai (Central Asia). Econ. Geol. 2014, 109, 1403–1430. [Google Scholar] [CrossRef]
- Hawke, M.L.; Meffre, S.; Stein, H.; Hilliard, P.; Large, R. Geochronology of the DeGrussa volcanic-hosted massive sulphide deposit and associated mineralisation of the Yerrida, Bryah and Padbury Basins, Western Australia. Precambr. Res. 2015, 267, 250–284. [Google Scholar] [CrossRef]
- Stein, H.J.; Morgan, J.W.; Scherstén, A. Re–Os dating of low-level highly-radiogenic (LLHR) sulfides: The Harnäs gold deposit, southwest Sweden records continental scale tectonic events. Econ. Geol. 2000, 95, 1657–1671. [Google Scholar] [CrossRef]
- Yang, J.-H.; Zhou, X.-H. Rb–Sr, Sm–Nd and Pb isotope systematics of pyrite: Implications for the age and genesis of lode gold deposits. Geology 2001, 29, 711–714. [Google Scholar] [CrossRef]
- Nozaki, T.; Kato, Y.; Suzuki, K. Re–Os geochronology of the Iimori Besshi-type massive sulfide deposit in the Sanbagawa metamorphic belt, Japan. Geochim. Cosmochim. Acta 2010, 74, 4322–4331. [Google Scholar] [CrossRef]
- Pirajno, F.; Chen, Y.; Li, N.; Li, C.; Zhou, L. Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: Implications for tectonic setting and geodynamic evolution. Geosci. Front. 2016, 7, 345–357. [Google Scholar] [CrossRef] [Green Version]
- Huston, D.L.; Stevens, B.; Southgate, P.N.; Muhling, P.; Wyborn, L. Australian Zn-Pb-Ag Ore-Forming Systems: A Review and Analysis. Econ. Geol. 2006, 101, 1117–1157. [Google Scholar] [CrossRef]
- Zengqian, H.; Liquan, W.; Zaw, K.; Xuanxue, M.; Mingjie, W.; Dingmou, L.; Guitang, P. Post-collisional crustal extension setting and VHMS mineralization in the Jinshajiang orogenic belt, southwestern China. Ore Geol. Rev. 2003, 22, 177–199. [Google Scholar] [CrossRef]
- Triantafyllidis, S.; Tombros, S.F.; Zhai, D.; Kokkalas, S. The Upper Cretaceous Ermioni VMS Deposit, Argolis Peninsula, Peloponnese, Greece: Type, genesis, and geotectonic setting. Ore Geol. Rev. 2021, 138, 104403. [Google Scholar] [CrossRef]
- Tombros, S.F.; Triantafyllidis, S.; Kokkalas, S.; Fitros, M.; Zhai, D.; Papavasiliou, J.; Spiliopoulou, A.; Kappis, K.; Skliros, V.; Perraki, M. Hydraulic-Thermodynamic Modeling of the upper Cretaceous “Mafic-Pelitic” Ermioni VMS deposit, Greece. Ore Geol. Rev. 2022, 148, 105039. [Google Scholar] [CrossRef]
- Kiss, G.B.; Molnár, K.; Benkó, Z.; Skoda, P.; Kapui, Z.; Garuti, G.; Zaccarini, F.; Palcsu, L.; Czuppon, G. Tracing the Source of Hydrothermal Fluid in Ophiolite-Related Volcanogenic Massive Sulfide Deposits: A Case Study from the Italian Northern Apennines. Minerals 2023, 13, 8. [Google Scholar] [CrossRef]
- Bogdanov, K.; Tsonev, D.; Kuzmanov, K. Mineralogy of gold in the Elshitsa massive sulphide deposit, Sredna Gora zone, Bulgaria. Mineral. Depos. 1997, 32, 219–229. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Eliopoulos, D.G.; Chryssoulis, S. A comparison of high Au massive sulfide ores hosted in ophiolite complexes of the Balkan Peninsula with modern analogues: Genetic significance. Ore Geol. Rev. 2008, 33, 81–100. [Google Scholar] [CrossRef]
- Revan, M.K.; Maslennikov, V.V.; Genç, Y.; Delibaş, O.; Maslennikova, S.P.; Sadykov, S.A. Sulfur isotope study of vent chimneys from Upper Cretaceous volcanogenic massive sulfide deposits of the eastern Pontide metallogenic belt, NE Turkey. Turk. J. Earth Sci. 2016, 25, 227–241. [Google Scholar] [CrossRef]
- Ucurum, A.; Demir, C.S.; Otlu, N.; Erturk, M.; Ekici, T.; Kirk, J.; Ruiz, J.; Mathur, R.; Arehart, G.B. Re-Os Age and Stable Isotope (O-H-S-Cu) Geochemistry of North Eastern Turkey’s Kuroko-Type Volcanogenic Massive Sulfide Deposits: An Example from Cerattepe-Artvin. Minerals 2021, 11, 226. [Google Scholar] [CrossRef]
- Tornos, F.; Peter, J.M.; Allen, R.; Conde, C. Controls on the sitting and style of volcanogenic massive sulphide deposits. Ore Geol. Rev. 2015, 68, 142–163. [Google Scholar] [CrossRef]
- Bortolotti, V.; Carras, N.; Chiari, M.; Fazzuoli, M.; Marcucci, M.; Photiades, A.; Principi, G. New geological observations and biostratigraphic data on the Argolis Peninsula: Paleographic and geodynamic implications. Ofioliti 2002, 27, 43–46. [Google Scholar]
- Aronis, G. Research on the Iron-Pyrite Deposits in the Hemioni Mining District, Geological and Geophysical Surveys; Subsurface Research Department, Ministry of Coordination: Athens, Greece, 1951; pp. 153–188, (In Greek with English Abstract). [Google Scholar]
- Mousoulos, L. Les gisements pyriteux du district minier d’Hermione. Étude sur leurgèologie et minéralogie. Le problème de leurgenèse. Ann. Géol. Pays Hellén. 1958, 9, 119–164. [Google Scholar]
- Philippson, A. Der Peloponnes: Versuch Einer Landeskunde auf Geologischer Grundlage; R. Frielander: Berlin, Germany, 1892. [Google Scholar]
- Renz, C. Trias und jura in der Argolis. Zeitshr. Deutsch. Geol. Ges. 1906, 58, 379–395. [Google Scholar]
- Ktenas, C. Formations primaires semimetamorphiques du Peloponnese Central. Comptes Rendus Geosci. Société Géologique Fr. 1917, 24, 61–63. [Google Scholar]
- Marinos, G. Das auftreten granitischer gesteine in Argolis (Ermioni) and das Alter der Schiefersandsteinformation. Bull. Geol. Soc. Gr. 1955, 2, 121–123. [Google Scholar]
- Aranitis, S. Beiträge zur kenntis der geologie des gebietes von Hermionis (Griecheland). Bull. Geol. Soc. Greece 1963, 4, 97–105. [Google Scholar]
- Mercier, J. Étude géologique des zones internes des Hellénides en Macédoine central (Gréce). Contribution á l’ etude du metamorphisme et de l’evolution magmatique des zones internes des Hellénides. Théses, Paris. Ann. Géol. Pays Hellén. 1968, 20, 1–792. [Google Scholar]
- Aubouin, J.; Bonneau, M.; Celet, P.; Charvet, J.; Clement, B.; DeGardin, J.M.; Dercourt, J.; Ferrière, J.; Fleury, J.J.; Guernet, C. Contribution à la géologie des Hellénides: Le Gavrovo, le Pinde et la zone ophiolitique subpélagonienne. Ann. Soc. Géol. Nord. 1970, 90, 277–306. [Google Scholar]
- Celet, P.; Ferrière, J. Les Hellénides internes: Le Pélagonien. Eclogae Geol. Helv. 1978, 71, 467–495. [Google Scholar]
- Jacobshagen, V.; Dürr, S.; Kockel, F.; Kopp, K.O.; Kowalczyk, S. Structure and geodynamic evolution of the Aegean region. In Alps, Apennines, Hellenides; Closs, H., Roeder, D., Schmidt, K., Eds.; Schweizerbart: Stuttgart, Germany, 1978; pp. 537–564. [Google Scholar]
- Varnavas, S.P.; Panagos, A.G. Mesozoic metalliferous sediments from the ophiolites of Ermioni, Greece: Analogue to recent mid-ocean ridge ferromanganese deposits. Chem. Geol. 1984, 42, 227–242. [Google Scholar] [CrossRef]
- Baumgartner, P.O. Jurassic sedimentary evolution and nappe emplacement in the Argolis Peninsula (Peloponnesus, Greece). Mém. Soc. Helv. Sci. Nat. 1985, 99, 1–111. [Google Scholar]
- Photiades, A. Contribution à l’ étude géologique et métallogénique des unites ophiolitiques de l’ Argolide septentrionale (Grèce). Ph.D. Thesis, Université de Besancon, Besancon, France, 1986. [Google Scholar]
- Robertson, A.H.F.; Varnavas, S.P.; Panagos, A.G. Ocean ridge origin and tectonic setting of Mesozoic sulphide and oxide deposits of the Argolis peninsula of the Peloponnesus, Greece. Sedim. Geol. 1987, 53, 1–32. [Google Scholar] [CrossRef]
- Clift, P.D.; Robertson, A.H.F. Evidence of a late Mesozoic Ocean basin and subduction/accretion in southern Greek Neo-Tethys. Geology 1989, 17, 559–563. [Google Scholar] [CrossRef]
- Robertson, A.H.F.; Clift, P.D.; Degnan, P.J.; Jones, G. Palaeogeographic and palaeotectonic evolution of the eastern Mediterranean Neotethys. Palaeogeogr. Palaeoclim. Palaeoecol. 1991, 87, 289–343. [Google Scholar] [CrossRef]
- Clift, P.D.; Dixon, J.E. Jurassic ridge collapse, subduction initiation and ophiolite obduction in the southern Greek Tethys. Eclog. Geol. Helv. 1998, 91, 128–138. [Google Scholar] [CrossRef]
- Bortolotti, V.; Carras, N.; Chiari, M.; Fazzuoli, M.; Marcucci, M.; Photiades, A.; Principi, G. The Argolis peninsula in the paleogeographic and geodynamic frame of the Hellenides. Ofioliti 2003, 28, 79–94. [Google Scholar]
- Saccani, E.; Padoa, E.; Photiades, A. Tectono-magmatic significance of Triassic MORBs from the Argolis Peninsula (Greece): Implication for the origin of the Pindos Ocean. Ofioliti 2002, 27, 73–74. [Google Scholar]
- Saccani, E.; Photiades, A.; Padoa, E. Geochemistry, petrogenesis and tectono-magmatic significance of volcanic and subvolcanic rocks from the Koziakas mélange (Western Thessaly, Greece). Ofioliti 2003, 28, 43–67. [Google Scholar]
- Photiades, A. The diversity of Jurassic volcanism in the inner parts of the Hellenides: The northern Argolis ophiolitic units (Peloponnese, Greece). Bull. Geol. Soc. Greece 1989, 23, 515–530. [Google Scholar]
- Dostal, J.; Toscani, L.; Photiades, A.; Capedri, S. Geochemistry and petrogenesis of Tethyan ophiolites form northern Argolis (Peloponnesus, Greece). Eur. J. Min. 1991, 3, 105–121. [Google Scholar] [CrossRef]
- Photiades, A.D.; Economou, G.S. Clinopyroxene and spinel composition of ophiolitic volcanic rocks (Southern Argolis Peninsula, Greece): Implications for the geodynamic evolution. Bull. Geol. Soc. Greece 1992, 28, 69–83. [Google Scholar]
- Clift, P.D. Accretion tectonics of the Neotethyan Ermioni Complex, Peloponnesos, Greece. J. Geol. Soc. 1996, 153, 745–757. [Google Scholar] [CrossRef]
- Bortolotti, V.; Chiari, M.; Marcucci, M.; Marroni, M.; Pandolfi, L.; Principi, G.; Saccani, E. Comparison among the Albanian and Greek ophiolites: In search of constraints for the evolution of the Mesozoic Tethys Ocean. Ofioliti 2004, 29, 19–35. [Google Scholar]
- Tsamantouridis, P.; Polychronakis, I. Reconnaissance Report on the Mineralogy of the Skra Area, Kilkis Prefecture; Report in Greek, Athens, No 2488; Institute of Geology and Mineral Exploration of Greece: Thessaloniki, Greece, 1977; unpublished. [Google Scholar]
- Tsamantouridis, P.; Polychronakis, I. Annual Report (1979) on the Results of Exploratory Works at Public Grant F9 and the Skra Area (Kilkis Prefecture); Report in Greek, Athens, No 3150; Institute of Geology and Mineral Exploration of Greece: Thessaloniki, Greece, 1980; 16p, unpublished. [Google Scholar]
- Tsamantouridis, P. Study of the Sulphide Mineralization of Eastern Paikon Area (Kilkis District); Institute of Geology and Mineral Exploration of Greece, Mineral Deposit Research (in Greek): Thessaloniki, Greece, 1980; Volume 13, 39p. [Google Scholar]
- Skarpelis, N. Massive Sulfide Metallogeny and Petrology of the External Metamorphic Zone of the Hellenides. Ph.D. Thesis, National Kapodistrian University of Athens, Zografou, Greece, 1982. (In Greek with English Abstract). [Google Scholar]
- Skounakis, S.; Sovatzoglou-Skounakis, E. The Co and Ni traces distribution within the deposits of Cu-bearing pyrite of Ermioni, Argolida. Ann. Géol. Pays Hellén. 1975, 13, 54–60. [Google Scholar]
- Skounakis, S.; Sovatzoglou-Skounakis, E. The Co-content of pyrite and chalcopyrite as geothermometer for the Cu-bearing pyrite ore deposits of Hermione’s (Argolis) and Perivoli’s (Pindos) areas, Greece. Ann. Géol. Pays Hellén. 1982, 31, 89–94. [Google Scholar]
- Sideris, C.; Skounakis, S. Metallogeny in the basic rocks of a paleosubduction area-The case of Ermioni Cu-bearing pyrite mines (East Peloponnesos, Greece). Chem. Erde 1987, 47, 93–96. [Google Scholar]
- Varnavas, S.P.; Panagos, A.G.; Philippakis, G. On the metallogenesis of the Hermioni area, Greece. Mesozoic mid-ocean ridge deposits. Geol. Carpath. 1985, 36, 219–233. [Google Scholar]
- Tombros, S.F.; Seymour, K. Hermione, evolution of a Te-bearing epithermal mineralization, Argolis, Hellas. Bull. Geol. Soc. Greece 2007, 40, 996–1008. [Google Scholar] [CrossRef] [Green Version]
- Tombros, S.F.; Seymour, K.; Spry, P.G.; William-Jones, A.E. Karakasi mines, Hermione, evolution of a Cyprus-type Cu-Zn deposit, Argolis, Greece. In Proceedings of the Digging Deeper, 9th Biennial SGA Meeting, Dublin, Scotland, 20–23 August 2007. [Google Scholar]
- Hilton, D.R.; Hammerschmidt, K.; Loock, G.; Friedrichsen, H. Helium and argon isotope systematics of the central Lau Basin and Valu Fa Ridge: Evidence of crust/mantle interactions in a back-arc basin. Geochim. Cosmochim. Acta 1993, 57, 2819–2841. [Google Scholar] [CrossRef]
- Yuce, G.; Taskiran, L. Isotope and chemical compositions of thermal fluids at Tekman geothermal area (Eastern Turkey). Geochem. J. 2013, 47, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Morey, A.A.; Bierlein, F.P.; Cherry, D.P.; Turner, G. Genesis of greenstone-hosted Cu–Au mineralisation at Hill 800, Mt Useful Slate Belt, eastern Victoria. Austr. J. Ear. Sci. 2002, 49, 787–799. [Google Scholar] [CrossRef]
- Albarede, F.; Blichert-Toft, J.; Gentelli, L.; Milot, J.; Vaxevanopoulos, M.; Klein, S.; Westner, K.; Birch, T.; Davis, G.; de Gallatay, F. A miner’s perspective on Pb isotope provenances in the Western and Central Mediterranean. J. Arch. Sci. 2020, 12, 105194. [Google Scholar] [CrossRef]
- Yao, H.-Q.; Zhou, H.-Y.; Peng, X.-T.; Bao, S.-X.; Wu, Z.-J.; Li, J.-T.; Sun, Z.-L.; Chen, Z.-Q.; Chen, G.-Q. Metal sources of black smoker chimneys, Endeavour Segment, Juan de Fuca Ridge: Pb isotope constraints. Appl. Geochem. 2009, 24, 1971–1977. [Google Scholar] [CrossRef]
- Verati, C.; Lancelot, J.; Hékinian, R. Pb isotope study of black-smokers and basalts from Pito Seamount site (Easter microplate). Chem. Geol. 1999, 155, 45–63. [Google Scholar] [CrossRef]
- Gamo, T.; Chiba, H.; Yamanaka, T.; Okudaira, T.; Hashimoto, J.; Tsuchida, S.; Ishibashi, J.; Kataoka, S.; Tsunogai, U.; Okamura, K. Chemical characteristics of newly discovered black smoker fluids and associated hydrothermal plumes at the Rodriguez Triple Junction, Central Indian Ridge. EarthPlanet. Sci. Lett. 2001, 193, 371–379. [Google Scholar] [CrossRef]
- Wang, Y.; Han, X.; Qiu, Z. Source and nature of ore-forming fluids of the Edmond hydrothermal field, Central Indian Ridge: Evidence from He-Ar isotope composition and fluid inclusion study. Acta Oceanol. Sin. 2018, 36, 101–108. [Google Scholar] [CrossRef]
- Mougel, B.; Moreira, M.; Agranier, A. A “high 4He/3He” mantle material detected under the East Pacific Rise (15°4′N). Geophys. Res. Lett. 2015, 42, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Hopp, J.; Trieloff, M.; Buikin, A.I.; Korochantseva, E.V.; Schwarz, W.H.; Althaus, T.; Altherr, R. Heterogeneous mantle argon isotope composition in the subcontinental lithospheric mantle beneath the Red Sea region. Chem. Geol. 2007, 240, 36–53. [Google Scholar] [CrossRef]
- Allègre, C.J.; Moreira, M.; Staudacher, T. 4He/3He dispersion and mantle convection. Geophys. Res. Lett. 1995, 22, 2325–2328. [Google Scholar] [CrossRef]
- Graham, D.W. Noble gases in geochemistry and cosmochemistry. In Reviews in Mineralogy and Geochemistry; Porcelli, D., Wieler, R., Ballentine, C., Eds.; Mineralogical Society of America: Washington, DC, USA, 2002; pp. 247–318. [Google Scholar]
- Kurz, M.D.; Jenkins, W.J.; Hart, S.R.; Clague, D. Helium isotopic variations in volcanic rocks from Loihi seamount and the Island of Hawaii. Earth Planet. Sci. Lett. 1983, 66, 388–406. [Google Scholar] [CrossRef]
- Triantafyllidis, S. Trace element geochemistry, mineralogy and texture of the Ermioni VMS mineralization host volcanics, and new insights on the geotectonic setting of volcanism, Argolis, Greece. Bull. Geol. Soc. Greece 2019, 7, 321–322. [Google Scholar]
- Sangster, D.F.; Outridge, P.M.; Davis, W.J. Stable lead isotope characteristics of lead ore deposits of environmental significance. Environ. Rev. 2000, 8, 115–147. [Google Scholar] [CrossRef]
- Hoffmann, A.W. Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. In Treatise in Geochemistry; Turekian, K.K., Holland, H.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar] [CrossRef]
- Ridley, W.I. Geochemical characteristics. In Volcanogenic Massive Sulfide Occurrence Model; Shanks, W.C.P., III, Thurston, R., Eds.; Scientific Investigations Report, 2010–5070–C; USGS: Reston, VA, USA, 2012; pp. 207–225. [Google Scholar]
- Müller, R.; Brey, G.P.; Seitz, H.-M.; Klein, S. Lead isotope analyses on Late Republican sling bullets. Archaeol. Anthrop. Sci. 2015, 7, 473–485. [Google Scholar] [CrossRef]
- Bindeman, I. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Rev. Min. Geoch. 2008, 69, 445–478. [Google Scholar] [CrossRef]
- Kleine, B.I.; Stefánsson, A.; Halldórsson, S.A.; Whitehouse, M.J.; Jónasson, K. Silicon and oxygen isotopes unravel quartz formation processes in the Icelandic crust. Geochem. Lett. 2018, 7, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Syverson, D.D.; Luhmann, A.J.; Tan, C.; Borrok, D.M.; Ding, K.; Seyfried, W.E., Jr. Fe isotope fractionation between chalcopyrite and dissolved Fe during hydrothermal recrystallization: An experimental study at 350 °C and 500 bars. Geochim. Cosmochim. Acta 2017, 200, 87–109. [Google Scholar] [CrossRef]
- Raiswell, R. Pyrite texture, isotopic composition and the availability of iron. Am. J. Sci. 1982, 282, 1244–1263. [Google Scholar] [CrossRef]
- Passier, H.F.; Middelburg, J.J.; De Lange, G.J.; Böttcher, M.E. Pyrite contents, microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology 1997, 25, 519–522. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Amer. Miner. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Bachmann, G.H.; Risch, H. Die geologischeentwicklung der Argolis-Halbinsel (Peloponnes, Griechenland). Geol. Jb. 1979, B32, 3–177. [Google Scholar]
Sample | 206Pb/204Pb | 207Pb/204Pb | 208Pb/204Pb | 4HeA | 3HeB | 40Ar/36ArC |
---|---|---|---|---|---|---|
ER1 | 18.08 | 15.6 | 38.81 | 4.19 | 37.05 | 301.2 |
ER2 | 18.06 | 15.63 | 38.82 | 2.5 | 22.92 | 315.9 |
ER3 | 18.1 | 15.61 | 38.82 | 5.72 | 49.51 | 358.1 |
ER4 | 18.06 | 15.61 | 38.83 | 3.88 | 33.05 | 314.2 |
ER5 | - | - | - | 2.49 | 22.32 | 331.3 |
ER12 | - | - | - | 1.43 | 12.99 | 328.8 |
1σ | ± 0.019 | ±0.008 | ±0.012 | ±1.53 | ±12.94 | ±19.57 |
2σ | ±0.038 | ±0.016 | ±0.025 | ±3.07 | ±25.88 | ±39.14 |
St. Error | 0.01 | 0.004 | 0.006 | 0.626 | 5.28 | 7.99 |
EK11 | 18.1 | 15.63 | 38.83 | 1.78 | 12.98 | 410.2 |
EK12 | 18.1 | 15.63 | 38.83 | 1.55 | 11.48 | 453.7 |
1σ | - | - | - | ±0.163 | ±1.06 | ±30.75 |
2σ | - | - | - | ±0.326 | ±2.12 | ±61.51 |
St. Error | - | - | - | 0.115 | 0.75 | 21.75 |
Sample | R/RAD | Rb (ppm) | Sr (ppm) | 87Rb/86Sr | 87Sr/86Sr | |
ER1 | 6.37 | 0.93 | 5.98 | 0.4436 | 0.7091 | |
ER2 | 6.6 | 1.67 | 5.36 | 0.8954 | 0.7092 | |
ER3 | 6.22 | 0.84 | 3.78 | 0.7646 | 0.7092 | |
ER4 | 6.13 | 1.93 | 4.12 | 0.7896 | 0.7091 | |
ER5 | 6.43 | 1.36 | 8.04 | 0.5477 | 0.7099 | |
ER12 | 6.55 | 1.01 | 3.56 | 0.6549 | 0.7092 | |
1σ | ±0.183 | ±0.44 | ±1.71 | ±0.1671 | ±0.00074 | |
2σ | ±0.367 | ±0.88 | ±3.41 | ±0.3341 | ±0.00155 | |
St. Error | 0.074 | 0.179 | 0.696 | 0.0683 | 0.00032 | |
EK11 | 5.24 | 1.43 | 10.45 | 0.5566 | 0.7103 | |
EK12 | 5.34 | 1.59 | 9.64 | 0.5987 | 0.7109 | |
1σ | ±0.071 | ±0.11 | ±0.57 | ±0.0298 | ±0.00042 | |
2σ | ±0.141 | ±0.23 | ±1.15 | ±0.0595 | ±0.00085 | |
St. Error | 0.05 | 0.08 | 0.41 | 0.0211 | 0.0003 |
Sample | Lithotype | Mineral | δ18OV-SMOW | δ30Si |
---|---|---|---|---|
EK1 | Volcaniclastic | Qz | +13.11 | +1.11 |
EK2 | Volcaniclastic | Alb | +11.42 | −0.73 |
EK3 | Volcaniclastic | Qz | +13.84 | −0.98 |
EK4 | Volcaniclastic | Qz | +11.22 | −0.68 |
EK5 | Volcaniclastic | Qz | +11.95 | −1.03 |
ΕK6 | Volcaniclastic | Qz + cal | +5.06 | +0.85 |
ΕK7 | Stringer ore | Cal | +15.98 | −0.47 |
EK10 | Stringer ore | Cal | +17.59 | −0.59 |
1σ | ±2.42 | ±0.82 | ||
2σ | ±4.83 | ±1.65 | ||
St. Error | 0.91 | 0.29 | ||
ER8 | Volcaniclastic | Qz | 14.12 | −0.47 |
ER10 | Volcaniclastic | Qz | +14.43 | −0.54 |
1σ | ±0.22 | ±0.05 | ||
2σ | ±0.44 | ±0.1 | ||
St. Error | 0.16 | 0.04 | ||
Sample | Lithotype | Mineral | δ34S VCDT | 57Fe |
EK1 | Volcaniclastic | Py | +0.68 | - |
EK2 | Volcaniclastic | Py | +1.85 | - |
EK3 | Volcaniclastic | Py | +0.54 | - |
EK4 | Volcaniclastic | Py | +4.71 | - |
EK5 | Volcaniclastic | Py | +3.17 | - |
EK10 | Stringer ore | Sp | +1.96 | - |
EK11 | Stringer ore | Py | +5.32 | −0.89 |
EK12 | Stringer ore | Py | +4.82 | −0.87 |
1σ | ±1.87 | ±0.01 | ||
2σ | ±3.74 | ±0.03 | ||
St. Error | 0.59 | 0.01 | ||
ER1 | Massive ore | Py | +6.21 | −0.56 |
ER2 | Massive ore | Py | +5.32 | −0.62 |
ER3 | Massive ore | Py | +6.12 | −0.67 |
ER4 | Massive ore | Py | +5.93 | −0.62 |
ER5 | Massive ore | Py | +5.79 | −0.70 |
ER8 | Massive ore | Sp | +3.96 | - |
ER10 | Massive ore | Sp | +2.17 | - |
ER12 | Massive ore | Py | +5.53 | −0.77 |
1σ | ±1.39 | ±0.07 | ||
2σ | ±2.78 | ±0.15 | ||
St. Error | 0.49 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllidis, S.S.; Tombros, S.F. Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece. Minerals 2023, 13, 474. https://doi.org/10.3390/min13040474
Triantafyllidis SS, Tombros SF. Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece. Minerals. 2023; 13(4):474. https://doi.org/10.3390/min13040474
Chicago/Turabian StyleTriantafyllidis, Stavros Savvas, and Stylianos Fotios Tombros. 2023. "Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece" Minerals 13, no. 4: 474. https://doi.org/10.3390/min13040474
APA StyleTriantafyllidis, S. S., & Tombros, S. F. (2023). Deciphering the Evolution of Adjacent Volcanogenic Massive Sulfide (VMS) Systems Based on Radiogenic and Stable Isotopes, the Case of Ermioni, Argolis Peninsula, Ne Peloponnese, Greece. Minerals, 13(4), 474. https://doi.org/10.3390/min13040474