Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Design
2.2. Materials
2.2.1. GGBFS
2.2.2. PAM
2.2.3. SP
2.2.4. Sodium Tetraborate
2.3. Experimental Variables and Ratios
2.4. Experimental Setup
- 1.
- The length changes in GGBFS geopolymer specimens were measured according to ASTM C157 regulations [42]. The dimensions of the rectangular specimens were 285 mm × 25 mm × 25 mm, and the length change was measured every day at the ages of 1–14, 28, and 56 days:Ɛ = (L2 − L1) ÷ L1 × 100%,
- 2.
- Weight loss
- 3.
- Steel ring strain (ring test)
3. Results and Discussion
3.1. Length Change and Shrinkage of GGBFS Geopolymers
3.2. Steel Ring Strain of GGBFS Geopolymers
3.3. Weight Loss of GGBFS Geopolymers under Sulfate Acid Attacks
3.4. GGBFS Geopolymers Crack Propagation Imaging
4. Conclusions
- The homogenized shrinkage results indicated that the addition of 0.7% polymer materials mitigated shrinkage the best. The length changes in PAM, SP, and ST at an age of 56 days were 64%, 63%, and 19%, respectively.
- The ring test results indicate that the total strain of the control group at an age of 3 days was 2182 × 10−6. After 0.7% PAM was added, the total strain reached 225 × 10−6; that is, the degree of shrinkage decreased by 89%, which is the largest decrease noted in this study.
- Cracks appeared when a specimen sustained a certain amount of shrinkage. The larger the number of cracks, the lower the durability of the specimen against sulfate attacks. Therefore, when the degree of shrinkage decreased, the number of cracks also decreased. In this study, the addition of 0.7% PAM resulted in optimal durability against sulfate attacks, with a weight loss of approximately 17.61%.
- The image analysis results indicate that the addition of polymer materials effectively reduced the degree of shrinkage of GGBFS geopolymers.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, N.Q.; Li, B.L.; Cao, R.L.; Shi, J.J.; Chen, C.; Zhang, Y.M. The influence of steel slag and ferronickel slag on the properties of alkali-activated slag mortar. Constr. Build. Mater. 2019, 227, 116614. [Google Scholar] [CrossRef]
- Adediran, A.; Yliniemi, J.; Moukannaa, S.; Ramteke, D.D.; Perumal, P.; Illikainen, M. Enhancing the thermal stability of alkali-activated Fe-rich fayalite slag-based mortars by incorporating ladle and blast furnace slags: Physical, mechanical and structural changes. Cem. Concr. Res. 2023, 166, 107098. [Google Scholar] [CrossRef]
- Konstantinos, K.; Georgios, B.; Vasiliki, K.; Evangelos, P.; Witold, K.; Grzegorz, P.; Jarosław, K. Assessment of Alkali Activation Potential of a Polish Ferronickel Slag. Sustainability 2019, 11, 1863. [Google Scholar] [CrossRef] [Green Version]
- Konstantinos, K.; Lourdes, Y.; Georgios, B.; Vasiliki, K.; Evangelos, P. Factors affecting co-valorization of fayalitic and ferronickel slags for the production of alkali activated materials. Sci. Total Environ. 2020, 721, 137753. [Google Scholar] [CrossRef]
- Lin, B.Z. A Study on Testing Mortar Properties with a Cement Replacement by Using Reducing Slag; National Taipei University of Technology Department of Civil Engineering: Taipei, Taiwan, 2012. [Google Scholar]
- Komnitsas, K.A. Potential of geopolymer technology towards green buildings and sustainable cities. Procedia Eng. 2011, 21, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.D.; Pu, X.C.; Scrivener, K.L.; Pratt, P.L. No Access Alkali-activated slag cement and concrete: A review of properties and problems. Advances in, Cem. Concr. Res. 1995, 7, 93–102. [Google Scholar] [CrossRef]
- Yang, L.C.; Cheng, T.W. Effects of fillers on improving shrinkage of inorganic polymers made from ground granulated blast furnace slag. Min. Metall. Dep. Taipei Inst. Technol.-Taiwan Univ. Sci. Technol. Educ. Found. J. 2011, 5, 48–53. [Google Scholar]
- Olawuyi, B.J.; Boshoff, W.P. Influence of SAP content and curing age on air void distribution of high performance concrete using 3D volume analysis. Constr. Build. Mater. 2017, 135, 580–589. [Google Scholar] [CrossRef]
- Ma, X.; Liu, J.; Wu, Z.; Shi, C. Effects of SAP on the properties and pore structure of high performance cement-based materials. Constr. Build. Mater. 2017, 131, 476–484. [Google Scholar] [CrossRef]
- Plank, J.; Sakai, E.; Miao, C.; Yu, C.; Hong, J. Chemical admixtures-Chemistry, applications and their impact on concrete microstructure and durability. Cem. Concr. Res. 2015, 78, 81–99. [Google Scholar] [CrossRef]
- Yang, Z.X.; Shi, P.; Zhang, Y.; Li, Z.M. Effect of superabsorbent polymer introduction on properties of alkali-activated slag mortar. Constr. Build. Mater. 2022, 340, 127541. [Google Scholar] [CrossRef]
- Tu, W.L.; Zhu, Y.; Fang, G.H.; Wang, X.G.; Zhang, M.Z. Internal curing of alkali-activated fly ash-slag pastes using superabsorbent polymer. Cem. Concr. Res. 2019, 116, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.H.; Cheng, T.W. Study on Shrinkage Properties and Durability of Inorganic Polymer Green Cement and Concrete; The Chinese Institute of Environmental Engineering: Kaohsiung, Taiwan, 2015; pp. 1–12. [Google Scholar]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Effect of admixtures on properties of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1367–1374. [Google Scholar] [CrossRef]
- Palacios, M.; Puertas, F. Effect of shrinkage-reducing admixtures on the properties of alkali—Activated slag mortars and pastes. Cem. Concr. Res. 2007, 37, 691–702. [Google Scholar] [CrossRef]
- Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B. Effect of Elevated temperature curing on properties of alkali-activated slag concrete. Cem. Concr. Res. 1999, 29, 1619–1625. [Google Scholar] [CrossRef]
- Jin, M.L.; Zhong, W.O.; Jin, C.M.; Ya, H.W.; Wu, H. The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Constr. Build. Mater. 2017, 155, 239–249. [Google Scholar]
- NO.16; JSCE Standard Specifications for Design and Construction of Concrete Structures. JSCE: Tokyo, Japan, 2007.
- Schröfl, C.; Mechtcherine, V.; Gorges, M. Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem. Concr. Res. 2012, 42, 865–873. [Google Scholar] [CrossRef]
- Weber, S.; Reinhardt, H.W. A new generation of high performance concrete: Concrete with autogenous curing. Adv. Cem. Based Mater. 1997, 6, 59–68. [Google Scholar] [CrossRef]
- Bentz, D.P.; Snyder, K.A. Protected paste volume in concrete: Extension to internal curing using saturated lightweight fine aggregate. Cem. Concr. Res. 1999, 29, 1863–1867. [Google Scholar] [CrossRef]
- Jensen, O.M.; Hansen, P.F. Water-entrained cement-based materials-I: Principle and theoretical background. Cem. Concr. Res. 2001, 31, 647–654. [Google Scholar] [CrossRef]
- Ma, X.W.; Zhang, J.K.; Liu, J.H. Review on superabsorbent polymer as internal curing agent of high performance cement-based material. J. Chin. Chem. Soc. China 2015, 43, 1099–1110. [Google Scholar]
- Zheng, X.G.; Han, M.; Liu, L.L. Effect of Superabsorbent Polymer on the Mechanical Performance and Microstructure of Concrete. Materials 2021, 14, 3232. [Google Scholar] [CrossRef]
- Hasholt, M.T.; Jensen, O.M.; Kovler, K.; Zhutovsky, S. Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength? Constr. Build. Mater. 2012, 31, 226–230. [Google Scholar] [CrossRef]
- Chen, X.P.; Shan, G.R.; Huang, J.; Huang, Z.M.; Weng, Z.X. Synthesis and properties of acrylic-based superabsorbent. J. Appl. Polym. Sci. 2004, 92, 619–624. [Google Scholar] [CrossRef]
- Esteves, L.P.; Cachim, P.; Ferreira, V.M. Mechanical properties of cement morats with superabsorbent polymers. In Advances in Construction Materials; Springer: Berlin/Heidelberg, Germany, 2007; pp. 451–462. [Google Scholar]
- Shen, D.J.; Wang, T.; Chen, Y.; Wang, M.L.; Jiang, G.Q. Effect of internal curing with super absorbent polymers on the relative humidity of early-age concrete. Constr. Build. Mater. 2015, 99, 246–253. [Google Scholar] [CrossRef]
- Justs, J.; Wyrzykowski, M.; Bajare, D.; Lura, P. Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem. Concr. Res. 2015, 76, 82–90. [Google Scholar] [CrossRef]
- Mo, J.; Ou, Z.; Zhao, X.; Liu, J.; Wang, Y. Influence of superabsorbent polymer on shrinkage properties of reactive powder concrete blended with granulated blast furnace slag. Constr. Build. Mater. 2017, 146, 283–296. [Google Scholar] [CrossRef]
- Mechtcherine, V.; Reinhardt, H. Application of Super Absorbent Polymers (SAP) in Concrete Construction State of the Art Reports Prepared by Technical Committee 225-SAP; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Snoeck, D.; Jensen, O.M.; De Belie, N. The influence of superabsorbent polymers on the autogenous shrinkage properties of cement pastes with supplementary cementitious materials. Cem. Concr. Res. 2015, 74, 59–67. [Google Scholar] [CrossRef]
- Craeye, B.; Geirnaert, M.; De Schutter, G. Super absorbing polymers as an internal curing agent for mitigation of early-age cracking of high-performance concrete bridge decks. Constr. Build. Mater. 2011, 25, 1–13. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Ouellet-Plamondon, C.M.; Guizani, L.; Bhojaraju, C.; Brial, V. On mitigating rebar-concrete interface damages due to the pre-cracking phenomena using superabsorbent polymers. Constr. Build. Mater. 2020, 253, 119181. [Google Scholar] [CrossRef]
- Ribeiro, A.B.; Vinagre, M.; Goncalves, A. Shrinkage of mortars with a suspension of superabsorbent polymers. In Proceedings of the International RILEM Conference on Use of Superabsorbent Polymers and Other New Additives in Concrete, Lyngby, Denmark, 15–18 August 2010; RILEM Publications SARL: Bagneux, France, 2010. [Google Scholar]
- Song, C.; Choi, Y.C.; Choi, S. Effect of internal curing by superabsorbent polymers—Internal relative humidity and autogenous shrinkage of alkali-activated slag mortars. Constr. Build. Mater. 2016, 123, 198–206. [Google Scholar] [CrossRef]
- Al Makhadmeh, W.; Soliman, A. Understanding the shrinkage behaviour of alkali-activated slag binders modified by the superabsorbent polymer. Constr. Build. Mater. 2023, 365, 130053. [Google Scholar] [CrossRef]
- Thomas, R.J.; Lezama, D.; Peethamparan, S. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing. Cem. Concr. Res. 2017, 97, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Al Makhadmeh, W.A.; Soliman, A. Effect of activator nature on property development of alkali-activated slag binders. J. Sustain. Cem. Based Mater. 2020, 10, 240–256. [Google Scholar] [CrossRef]
- Chen, W.W.; Li, B.; Wang, J.; Thom, N.C. Effects of alkali dosage and silicate modulus on autogenous shrinkage of alkali-activated slag cement paste. Cem. Concr. Res. 2021, 141, 106322. [Google Scholar] [CrossRef]
- ASTM C157; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM Standards: West Conshohocken, PA, USA,, 2014.
- ACTM C1012; Standard Test Method for Length Change of Hydraulic-Cement Mortars Exposed to a Sulfate Solution. ASTM Standards: West Conshohocken, PA, USA, 2004.
- ASTM C1581; Standard Test Method for Determining Age at Cracking and Induced Tensile Stress Characteristics of Mortar and Concrete under Restrained Shrinkage. ASTM Standards: West Conshohocken, PA, USA, 2018.
- Collepardi, M.; Borsoi, A.; Collepardi, S.; Olagot, J.J.O.; Troli, R. Effects of shrinkage reducing admixture in shrinkage compensating concrete under non-wet curing conditions. Cem. Concr. Compos. 2005, 27, 704–708. [Google Scholar] [CrossRef]
- Folliard, K.J.; Berke, N.S. Properties of high-performance concrete containing shrinkage-reducing admixture. Cem. Concr. Res. 1997, 27, 1357–1364. [Google Scholar] [CrossRef]
- Lura, P.; Jensen, O.M.; van Breugel, K. Autogenous shrinkage in high-performance cement paste: An evaluation of basic mechanisms. Cem. Concr. Res. 2003, 33, 223–232. [Google Scholar] [CrossRef]
- Xie, T.; Fang, C.; Mohamad, M.S.; Visintin, A.P. Characterizations of autogenous and drying shrinkage of ultra-high performance concrete (UHPC): An experimental study. Cem. Concr. Compos. 2018, 91, 156–173. [Google Scholar] [CrossRef]
- Li, Z.; Nedeljković, M.; Chen, B.; Ye, G. Mitigating the autogenous shrinkage of alkali-activated slag by metakaolin. Cem. Concr. Res. 2019, 122, 30–41. [Google Scholar] [CrossRef]
- Li, Z.; Ye, G. Experimental study of the chemical deformation of metakaolin based geopolymer. In Proceedings of the SynerCrete, Funchal, Portugal, 24–26 October 2018; p. 18. [Google Scholar]
- Potapova, E.N.; Manushina, A.S.; Urbanov, A.V. Effect of kaolin heat treatment on its properties1. Refract. Ind. Ceram. 2018, 58, 525–529. [Google Scholar] [CrossRef]
- Jiang, D.; Li, X.; Lv, Y.; Li, C.; Jiang, W.; Liu, Z.; Xu, J.; Zhou, Y.; Dan, J. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cem. Concr. Res. 2021, 149, 106581. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, S.; Liang, X.; Granja, J.; Azenha, M.; Ye, G. Internal curing of alkali-activated slag-fly ash paste with superabsorbent polymers. Constr. Build. Mater. 2020, 263, 1200985. [Google Scholar] [CrossRef]
- Li, Z.; Wyrzykowski, M.; Dong, H.; Granja, J.; Azenha, M.; Lura, P.; Ye, G. Internal curing by superabsorbent polymers in alkali-activated slag. Cem. Concr. Res. 2020, 135, 106123. [Google Scholar] [CrossRef]
- Vafaei, B.; Farzanian, K.; Ghahremaninezhad, A. The influence of superabsorbent polymer on the properties of alkali-activated slag pastes. Constr. Build. Mater. 2020, 236, 117525. [Google Scholar] [CrossRef]
- Oh, S.; Choi, Y.C. Superabsorbent polymers as internal curing agents in alkali activated slag mortars. Constr. Build. Mater. 2018, 159, 1–8. [Google Scholar] [CrossRef]
- Yang, J.B.; Sun, Z.P.; Belie, N.D.; Snoeck, D.D. Mitigating plastic shrinkage cracking in alkali-activated slag systems by internal curing with superabsorbent polymers. Cem. Concr. Compos. 2022, 134, 104784. [Google Scholar] [CrossRef]
- Wu, L.S.; Yu, Z.H.; Zhang, C.; Yuan, Z.; Bangi, T.Y. Shrinkage and tensile properties of ultra-high-performance engineered cementitious composites (UHP-ECC) containing superabsorbent polymers (SAP) and united expansion agent (UEA). Constr. Build. Mater. 2022, 339, 127697. [Google Scholar] [CrossRef]
Chemical Composition (%) | GGBFS | NaOH | Na2SO3 (wt%) | |
---|---|---|---|---|
SiO2 | 34.2 | 28 | ||
Al2O3 | 14.35 | |||
Fe2O3 | 0.29 | 0.0004 | <0.2 | |
CaO | 39.67 | |||
MgO | 7.75 | |||
SO3 | 0.57 | |||
Na2O | 0.24 | 9 | ||
K2O | 0.28 | |||
NaOH | 98.2 | |||
NaCO3 | 0.165 | |||
NaCL | 0.0135 | |||
Physical property | Fineness (cm2/g) | 4207 | - | |
Specific gravity | 2.93 | 0.598 | 1.38 | |
°Bé | - | - | 37 |
Mix Symbol | SP (g) | PAM (g) | ST (g) | GGBFS (g) | NaOH (g) | Na2SiO3 (g) | Water (g) |
---|---|---|---|---|---|---|---|
0.3 SP | 0.3 | - | - | 100 | 14.66 | 32.26 | 8.57 |
0.5 SP | 0.5 | - | - | ||||
0.7 SP | 0.7 | - | - | ||||
0.9 SP | 0.9 | - | - | ||||
0.3 PAM | - | 0.3 | - | ||||
0.5 PAM | - | 0.5 | - | ||||
0.7 PAM | - | 0.7 | - | ||||
0.9 PAM | - | 0.9 | - | ||||
0.3 ST | - | - | 0.3 | ||||
0.5 ST | - | - | 0.5 | ||||
0.7 ST | - | - | 0.7 | ||||
0.9 ST | - | - | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuo, W.-T.; Juang, C.-U.; Shiu, Y.-W. Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials. Minerals 2023, 13, 475. https://doi.org/10.3390/min13040475
Kuo W-T, Juang C-U, Shiu Y-W. Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials. Minerals. 2023; 13(4):475. https://doi.org/10.3390/min13040475
Chicago/Turabian StyleKuo, Wen-Ten, Chuen-Ul Juang, and Yu-Wei Shiu. 2023. "Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials" Minerals 13, no. 4: 475. https://doi.org/10.3390/min13040475
APA StyleKuo, W. -T., Juang, C. -U., & Shiu, Y. -W. (2023). Research on Reducing Shrinkage Behavior of Ground Granulated Blast Furnace Slag Geopolymers Using Polymer Materials. Minerals, 13(4), 475. https://doi.org/10.3390/min13040475