Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Structural Evolution
4.2. Petrology and Mineral Chemistry
4.3. Pseudosections and Thermobarometry
H2O | SiO2 | Al2O3 | FeO | MgO | CaO | NaO2 | K2O | TiO2 | MnO | Fe2O3 | Total |
---|---|---|---|---|---|---|---|---|---|---|---|
5.25 | 59.87 | 17.05 | 4.82 | 5.58 | 2.05 | 1.18 | 2.12 | 1.09 | 0.89 | 0.10 | 100.00 |
Mineral | g | g | g | g | g | g | g | g | g | bi | bi | bi | cd | cd | pl | pl | pl | ksp | ksp |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Analysis No. | 604 | 41 | 605 | 215 | 65 | 66 | 67 | 8 | 11 | 209 | 211 | 718 | 504 | 506 | 101 | 102 | 301 | 104 | 105 |
Position | g1 core | g1 core | g1 core | g1 core | g1 rim | g1 rim | g1 rim | g2 core | g2 rim | matrix | matrix | bi inc-g | matrix | matrix | matrix | matrix | matrix | matrix | matrix |
SiO2 | 36.9 | 37.31 | 36.96 | 37.19 | 37.40 | 37.64 | 37.67 | 37.59 | 37.48 | 34.6 | 34.65 | 34.52 | 47.44 | 47.74 | 54.7 | 55.22 | 55.16 | 64.62 | 64.93 |
TiO2 | 0.08 | 0.01 | 0.03 | 0.07 | 0.04 | 0.10 | 0.00 | 0.04 | 0.02 | 4.31 | 4.01 | 3.98 | 0.00 | 0.07 | 0.04 | 0.04 | 0.04 | 0.01 | 0.05 |
Al2O3 | 20.61 | 20.54 | 20.92 | 20.79 | 20.56 | 20.53 | 20.90 | 21.10 | 20.49 | 19.73 | 19.40 | 17.74 | 32.52 | 32.53 | 28.53 | 28.67 | 28.01 | 18.93 | 18.83 |
Cr2O3 | 0.00 | 0.06 | 0.02 | 0.04 | 0.02 | 0.02 | 0.02 | 0.07 | 0.00 | 0.03 | 0.04 | 0.01 | 0.08 | 0.04 | 0.08 | 0.01 | 0.02 | 0.01 | 0.03 |
Fe2O3 | 0.25 | 0.00 | 0.00 | 0.00 | 0.33 | 0.00 | 0.00 | 0.62 | 0.15 | 0.06 | 0.05 | 0.00 | |||||||
MgO | 1.53 | 1.76 | 1.43 | 1.45 | 2.49 | 2.63 | 2.73 | 3.41 | 2.65 | 6.36 | 6.43 | 7.39 | 5.13 | 5.08 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 |
FeO | 31.2 | 32.59 | 31.53 | 30.47 | 34.89 | 34.82 | 34.62 | 34.67 | 33.24 | 21.97 | 20.93 | 21.94 | 12.49 | 12.56 | 0.08 | 0.09 | 0.08 | 0.11 | 0.07 |
MnO | 6.96 | 5.49 | 7.24 | 8.13 | 1.97 | 2.02 | 2.24 | 1.11 | 4.52 | 0.16 | 0.14 | 0.21 | 0.47 | 0.47 | 0.01 | 0.01 | 0.03 | 0.07 | 0.02 |
CaO | 2.02 | 2.01 | 1.99 | 2.41 | 2.55 | 2.37 | 2.39 | 2.36 | 1.80 | 0.03 | 0.25 | 0.11 | 0.03 | 0.03 | 10.86 | 10.81 | 10.76 | 0.07 | 0.01 |
P2O5 | 0.05 | 0.12 | 0.09 | 0.18 | 0.02 | 0.05 | 0.05 | 0.02 | 0.05 | 0.01 | 0.02 | 0.03 | 0.01 | 0.02 | 0.03 | 0.00 | 0.05 | 0.07 | 0.03 |
Na2O | 0.13 | 0.03 | 0.04 | 0.06 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.12 | 0.12 | 0.25 | 0.29 | 0.21 | 5.27 | 5.58 | 5.62 | 1.67 | 1.80 |
K2O | 0.01 | 0.03 | 0.02 | 0.01 | 0.04 | 0.00 | 0.02 | 0.01 | 0.01 | 9.97 | 8.81 | 8.60 | 0.00 | 0.00 | 0.15 | 0.20 | 0.15 | 14.61 | 15.12 |
H2O | 3.95 | 3.89 | 3.86 | ||||||||||||||||
Sum | 99.81 | 99.97 | 100.35 | 100.8 | 100.33 | 100.19 | 100.66 | 101.02 | 100.43 | 101.31 | 98.74 | 98.63 | 98.50 | 98.82 | 99.79 | 100.66 | 100.03 | 100.18 | 100.96 |
Si | 3.00 | 3.03 | 2.99 | 2.99 | 3.01 | 3.03 | 3.02 | 2.99 | 3.02 | 2.62 | 2.67 | 2.68 | 4.98 | 5.00 | 2.47 | 2.48 | 2.49 | 2.97 | 2.97 |
Ti | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.25 | 0.23 | 0.23 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Al | 1.97 | 1.96 | 1.99 | 1.97 | 1.95 | 1.95 | 1.97 | 1.98 | 1.95 | 1.76 | 1.76 | 1.62 | 4.03 | 4.01 | 1.52 | 1.52 | 1.49 | 1.03 | 1.02 |
Cr | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe3 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | |||||||
Mg | 0.18 | 0.21 | 0.17 | 0.17 | 0.30 | 0.32 | 0.33 | 0.40 | 0.32 | 0.72 | 0.74 | 0.85 | 0.80 | 0.79 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Fe2 | 2.12 | 2.21 | 2.13 | 2.05 | 2.35 | 2.34 | 2.32 | 2.31 | 2.24 | 1.39 | 1.35 | 1.42 | 1.10 | 1.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Mn | 0.48 | 0.38 | 0.49 | 0.55 | 0.14 | 0.14 | 0.15 | 0.08 | 0.31 | 0.01 | 0.01 | 0.01 | 0.04 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Ca | 0.17 | 0.18 | 0.17 | 0.20 | 0.22 | 0.20 | 0.21 | 0.20 | 0.16 | 0.00 | 0.02 | 0.01 | 0.00 | 0.00 | 0.53 | 0.52 | 0.52 | 0.00 | 0.00 |
P | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Na | 0.02 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.04 | 0.06 | 0.04 | 0.46 | 0.49 | 0.49 | 0.15 | 0.16 |
K | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.96 | 0.86 | 0.85 | 0.00 | 0.00 | 0.01 | 0.01 | 0.01 | 0.86 | 0.88 |
OH | 2.00 | 2.00 | 2.00 | ||||||||||||||||
Sum | 8.00 | 7.98 | 7.99 | 7.99 | 8.00 | 7.99 | 8.00 | 8.00 | 8.00 | 9.74 | 9.66 | 9.72 | 11.03 | 11.01 | 5.00 | 5.01 | 5.01 | 5.02 | 5.04 |
XFe/Xna | 0.92 | 0.91 | 0.93 | 0.92 | 0.89 | 0.88 | 0.88 | 0.85 | 0.88 | 0.66 | 0.65 | 0.62 | 0.56 | 0.57 | 0.53 | 0.51 | 0.51 | 0.00 | 0.00 |
Alm/An | 0.72 | 0.74 | 0.72 | 0.69 | 0.78 | 0.78 | 0.77 | 0.77 | 0.74 | 0.46 | 0.48 | 0.48 | 0.15 | 0.15 | |||||
Prp/Ab | 0.06 | 0.07 | 0.06 | 0.06 | 0.10 | 0.11 | 0.11 | 0.14 | 0.11 | 0.01 | 0.01 | 0.01 | 0.85 | 0.85 | |||||
Grs/Or | 0.06 | 0.06 | 0.06 | 0.07 | 0.07 | 0.07 | 0.07 | 0.07 | 0.05 | ||||||||||
Sps | 0.16 | 0.13 | 0.17 | 0.19 | 0.04 | 0.05 | 0.05 | 0.03 | 0.10 |
4.4. Phase Equilibria Modeling and P-T Path
4.4.1. Pseudosection Calculated with the Measured Bulk Composition
4.4.2. Pseudosection Calculated with the Melt-Reintegrated Bulk Composition
4.5. P-T Conditions by Using a Multi-Equilibrium Geothermobarometry Approach
5. Discussion
5.1. P-T Evolution of the Migmatitic Paragneisses of the Filali Unit
5.2. Geodynamic Implications
6. Conclusions
- Three stages are recognized in the metamorphic evolution of the aluminous migmatitic paragneisses of the Filali unit, marked by the chemical zoning of garnet porphyroblasts and the evolution of associated mineral assemblages characterized by the presence of kyanite and rutile (M1), sillimanite, k-feldspar and melt (M2), and cordierite (M3). These mineralogical assemblages are characteristic of different geothermal gradients and, thus, different tectonic contexts.
- The main regional foliation S2 is consistent in the Filali metapelites (migmatitic gneiss, gneiss, and micaschists), granulite, and peridotite.
- In the migmatitic paragneisses, the syn-thermal peak assemblage associated with the main regional foliation S2 occurs under conditions of 7 kbar and 750 °C. These conditions are characteristic of MP-HT gradients. Geochronological data available on the Massif show that the age of the MP-HT metamorphic event (M2) is Oligo-Miocene. The M2 stage is coeval with the extensional D2 deformation responsible for an extreme lithospheric thinning of units previously thickened through collision.
- The P-T conditions of the early metamorphic peak assemblage (MP-MHT and foliation S1) are 9.3 kbar and 660 °C. These conditions were calculated by reintegrating the melt previously produced during the partial melting into the sillimanite stability field. They are established in the amphibolite facies and represent a metamorphic gradient of Barrovian type (20 °C/km). The pressure peak in the migmatitic paragneisses is related to crustal thickening associated with continental collision during the Variscan orogeny.
- The P-T conditions of the retrograde assemblage are around 3.5 kbar and 685 °C. The cordierite-bearing retrograde assemblage is equilibrated in the amphibolite facies. The mineralogical assemblage of HT-MP is replaced by those of LP-HT in response to a sequence of strongly decompressive reactions, manifested along a sub-isothermal P-T path. This decompression is controlled by an extension in a back-arc context during the opening of the Alboran Sea. This is related to the westward retreat of an Alpine subduction (slab rollback), which is at the origin of the exhumation of the different units of the Lower and Upper Sebtides.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Do Couto, D.; Gorini, C.; Jolivet, L.; Jolivet, L.; Lebret, N.; Augier, R.; Gumiaux, C.; d’Acremont, E.; Ammar, A.; Jabour, H.; et al. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics 2016, 677–678, 280–311. [Google Scholar] [CrossRef]
- Lonergan, L.; White, N. Origin of the Betic-Rif mountain belt. Tectonics 1997, 16, 504–522. [Google Scholar] [CrossRef]
- Faccenna, C.; Piromallo, C.; Crespo Blanc, A.; Jolivet, L.; Rosetti, F. Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 2004, 23, TC1012. [Google Scholar] [CrossRef]
- Jolivet, L.; Augier, R.; Faccenna, C.; Negro, F.; Rimmele, G.; Agard, P.; Robin, C.; Rossetti, F.; Crespo-Blanc, A. Subduction, convergence and the mode of back arc extension in the Mediterranean region. Bull. Soc. Géol. Fr. 2008, 179, 525–550. [Google Scholar] [CrossRef]
- Vergés, J.; Fernàndez, M. Tethys–Atlantic interaction along the Iberia–Africa plate boundary: The Betic–Rif orogenic system. Tectonophysics 2012, 579, 144–172. [Google Scholar] [CrossRef]
- Platt, J.P.; Behr, W.M.; Johanesen, K.; Williams, J.R. The Betic-Rif arc and its orogenic hinterland: A review. Annu. Rev. Earth Planet. Sci. 2013, 41, 313–357. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. Int. Geol. Rev. 2019, 63, 65–86. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A.; El Kadiri, K.; Negro, F.; De Lamotte, D.F.; Soto, J.I.; Saddiqi, O. The Rif Belt. In Continental Evolution: The Geology of Morocco: Structure, Stratigraphy, and Tectonics of the Africa-Atlantic-Mediterranean Triple Junction; Michard, A., Saddiqi, O., Chalouan, A., Lamotte, D.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 203–302. [Google Scholar] [CrossRef]
- Gueydan, F.; Pitra, P.; Afiri, A.; Poujol, M.; Essaifi, A.; Paquette, J.L. Oligo-Miocene thinning of the Beni Bousera peridotites and their variscan crustal host rocks, Internal Rif, Morocco. Tectonics 2015, 34, 1244–1268. [Google Scholar] [CrossRef]
- Michard, A.; Chalouan, A.; Feinberg, H.; Goffé, B.; Montigny, R. How does the Alpine belt end between Spain and Morocco? Bull. Soc. Géol. Fr. 2002, 173, 3–15. [Google Scholar] [CrossRef]
- Michard, A.; Negro, F.; Saddiqi, O.; Bouybaouène, M.L.; Chalouan, A.; Montigny, R.; Goffé, B. Pressure-temperature-time constraints on the Maghrebide mountain building: Evidence from the Rif-Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. C. R. Geosci. 2006, 338, 92–114. [Google Scholar] [CrossRef]
- Montel, J.M.; Kornprobst, J.; Vielzeuf, D. Preservation of old U–Th–Pb ages in shielded monazite: Example from the Beni Bousera Hercynian kinzigites (Morocco). J. Metamorph. Geol. 2000, 18, 335–342. [Google Scholar] [CrossRef]
- Rossetti, F.; Theye, T.; Lucci, F.; Bouybaouène, M.L.; Dini, A.; Gerdes, A.; Phillips, D.; Cozzupoli, D. Timing and modes of granite magmatism in the core of the Alboran Domain (rif chain, northern Morocco): Implications for the Alpine evolution of the western Mediterranea. Tectonics 2010, 29, TC2017. [Google Scholar] [CrossRef]
- Rossetti, F.; Lucci, F.; Theye, T.; Bouybaouenne, M.L.; Gerdes, A.; Opitz, J.; Dini, A.; Lipp, C. Hercynian anatexis in the envelope of the Beni Bousera peridotites (Alboran Domain, Morocco): Implications for the tectono-metamorphic evolution of the deep crustal roots of the Mediterranean region. Gondwana Res. 2020, 83, 157–182. [Google Scholar] [CrossRef]
- Massonne, H.J. Wealth of P–T–t information in medium-high grade metapelites: Example from the Jubrique Unit of the Betic Cordillera, S Spain. Lithos 2014, 208–209, 137–157. [Google Scholar] [CrossRef]
- Melchiorre, M.; Álvarez-Valero, A.M.; Vergés, J.; Fernàndez, M.; Belousova, E.A.; El Maz, A.; Moukadiri, A. In situ U-Pb zircon geochronology on metapelitic granulites of Beni Bousera (Betic-Rif system, N Morocco). Geol. Soc. Am. Spec. Pap. 2017, 526, 151–171. [Google Scholar] [CrossRef]
- Homonnay, E.; Corsini, M.; Lardeaux, J.-M.; Romagny, A.; Münch, P.; Bosch, D.; Cenki-Tok, B.; Ouazzani-Touhami, M. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran domain. Tectonophysics 2018, 722, 507–535. [Google Scholar] [CrossRef]
- El Bakili, A. Evolution Tectono-métamorphique et Chronologique des Unités Métamorphiques du Rif Interne (Béni Bousera, Nord du Maroc). Ph.D. Thesis, Université Côte d’Azur, Nice, France, 2021. [Google Scholar]
- Obata, M. The Ronda peridotite: Garnet-, spinel-, and plagioclase-lherzolite facies and the P-T trajectories of a high-temperature mantle intrusion. J. Petrol. 1980, 21, 533–572. [Google Scholar] [CrossRef]
- Van der Wal, D.; Vissers, R.L.M. Uplift and emplacement of upper mantle rocks in the western Mediterranean. Geology 1993, 21, 1119–1122. [Google Scholar] [CrossRef]
- Rossetti, F.; Dini, A.; Lucci, F.; Bouybaouène, M.L.; Faccenna, C. Early Miocene strike slip tectonics and granite emplacement in the Alboran Domain (Rif Chain, Morocco): Significance for the geodynamic evolution of Western Mediterranean. Tectonophysics 2013, 608, 774–791. [Google Scholar] [CrossRef]
- Casciello, E.; Fernández, M.; Vergés, J.; Cesarano, M.; Torné, M. The Alboran Domain in the Western Mediterranean evolution: The birth of a concept. Bull. Soc. Géol. Fr. 2015, 186, 23–34. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 2007, 25, 511–527. [Google Scholar] [CrossRef]
- Powell, R.; Guiraud, M.; White, R.W. Truth and beauty in metamorphic phase equilibria: Conjugate variables and phase diagrams. Can. Mineral. 2005, 43, 21–33. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R. Melt loss and the preservation of granulite facies mineral assemblages. J. Metamorph. Geol. 2002, 20, 621–632. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Halpin, A. Spatially-focused melt formation in aluminous metapelites from Broken Hill, Australia. J. Metamorph. Geol. 2004, 22, 825–845. [Google Scholar] [CrossRef]
- Indares, A.D.; White, R.W.; Powell, R. Phase equilibria modelling of kyanite-bearing anatectic paragneisses from the central Grenville Province. J. Metamorph. Geol. 2008, 26, 815–836. [Google Scholar] [CrossRef]
- Guilmette, C.; Indares, A.; Hebert, R. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modelling and tectonic implications. Lithos 2011, 124, 66–81. [Google Scholar] [CrossRef]
- Balanyá, J.C.; García-Dueñas, V. Les directions structurales dans le Domaine d’Alboran de part et d’autre du Détroit de Gibraltar. C. R. Acad.Sci. 1987, 304, 929–933. [Google Scholar]
- Augier, R.; Agard, P.; Monié, P.; Jolivet, L.; Robin, C.; Booth-Rea, G. Exhumation, doming and slab retreat in the Betic Cordillera (SE Spain): In situ 40Ar/39Ar ages and P–T–d–t paths for the Nevado-Filabride complex. J. Metamorph. Geol. 2005, 23, 357–381. [Google Scholar] [CrossRef]
- Negro, F.; Beyssac, O.; Goffé, B.; Saddiqi, O.; Bouybaouène, M.L. Thermal structure of the Alboran Domain in the Rif (northern Morocco) and the Western Betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J. Metamorph. Geol. 2006, 24, 309–327. [Google Scholar] [CrossRef]
- El Maz, A.; Guiraud, M. Paragenèse à faible variance dans les mètapèlites de la série de Filali (Rif interne marocain): Description, interprétation et conséquences géodynamiques. Bull. Soc. Géol. Fr. 2001, 172, 469–485. [Google Scholar] [CrossRef]
- Afiri, A.; Gueydan, F.; Pitra, P.; Essaifi, A.; Précigout, J. Oligo-Miocene exhumation of the Beni-Bousera peridotite through a lithosphere-scale extensional shear zone. Geodin. Acta 2011, 24, 49–60. [Google Scholar] [CrossRef]
- Bouybaouène, M.L.; Goffé, B.; Michard, A. High pressure, low-temperature metamorphism in the Sebtides nappes, northern Rif, Morocco. Geogaceta 1995, 17, 117–119. [Google Scholar]
- Goffé, B.; Azañon, J.M.; Bouybaouène, M.L.; Jullien, M. Metamorphic cookeite in Alpine metapelites from Rif, northern Morocco, and the Betic Chain, southern Spain. Eur. J. Mineral. 1996, 8, 335–348. [Google Scholar] [CrossRef]
- Bouybaouène, M.L.; Goffé, B.; Michard, A. High-pressure granulites on top of the Beni Bousera peridotites, Rif belt, Morocco: A record of an ancient thickened crust in the Alboran domain. Bull. Soc. Géol. Fr. 1998, 169, 153–162. [Google Scholar]
- Haissen, F.; Garcia-Casco, A.; Torres-Roldan, R.; Aghzer, A. Decompression reactions and P-T conditions in high-pressure granulites from Casares-Los Reales units of the Betic-Rif belt (S Spain and N Morocco). J. Afr. Earth Sci. 2004, 39, 375–383. [Google Scholar] [CrossRef]
- Álvarez-Valero, A.M.; Jagoutz, O.; Stanley, J.; Manthei, C.; El Maz, A.; Moukadiri, A.; Piasecki, A. Crustal attenuation as a tracer for the emplacement of the Beni Bousera ultramafic massif (Betico-Rifean belt). Geol. Soc. Am. Bull. 2014, 126, 1614–1624. [Google Scholar] [CrossRef]
- Kornprobst, J. Contribution à l’étude pétrographique et structurale de la zone interne du Rif (Maroc septentrional)[Petrography and structure of the Rif inner area, northern Morocco]. Notes Mèm. Serv. Géol. Maroc 1974, 251, 256p. [Google Scholar]
- Reuber, I.; Michard, A.; Chalouan, A.; Juteau, T.; Jermoumi, B. Structure and emplacement of the Alpine-type peridotites from Beni Bousera, Rif, Morocco: A polyphase tectonic interpretation. Tectonophysics 1982, 82, 231–251. [Google Scholar] [CrossRef]
- Saddiqi, O.; Reuber, I.; Michard, A. Sur la tectonique de dénudation du manteau infracontinental dans les Béni Bousera, Rif septentrional, Maroc. C. R. Acad. Sci. 1988, 307, 657–662. [Google Scholar]
- Tornè, M.; Banda, E.; Garcia-Duenas, V.; Balanyá, J.C. Mantle-lithosphere bodies in the Alboran crustal domain (Ronda peridotites, Betic-Rif orogenic belt). Earth Planet. Sci. Lett. 1992, 110, 163–171. [Google Scholar] [CrossRef]
- Pearson, D.G.; Davies, G.R.; Nixon, P.H.; Milledge, H.J. Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences. Nature 1989, 335, 60–66. [Google Scholar] [CrossRef]
- Davies, G.R.; Nixon, P.H.; Pearson, D.G.; Obata, M. Tectonic implications of graphitized diamonds from the Ronda peridotite massif, southern Spain. Geology 1993, 21, 471–474. [Google Scholar] [CrossRef]
- El Atrassi, F.; Brunet, F.; Bouybaouène, M.L.; Chopin, C.; Chazot, G. Melting textures and microdiamonds preserved in graphite pseudomorphs from the Beni Bousera peridotite massif, Morocco. Eur. J. Mineral. 2011, 23, 157–168. [Google Scholar] [CrossRef]
- Platt, J.P.; Vissers, R.M.S. Extensional collapse of the thickened continental lithosphere: A working hypothesis for the Alboran Sea and Gibraltar arc. Geology 1989, 17, 540–543. [Google Scholar] [CrossRef]
- Seber, D.; Barazangi, M.; Ibenbrahim, A.; Demnati, A. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic mountains. Nature 1996, 379, 785–790. [Google Scholar] [CrossRef]
- Calvert, A.; Sandvol, E.; Seber, D.; Barazangi, M.; Roecker, S.; Mourabit, T.; Vidal, F.; Alguacil, G.; Jabour, N. Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography. J. Geophys. Res. 2000, 105, 10871–10898. [Google Scholar] [CrossRef]
- Balanyá, J.C.; Azañon, J.M.; Sánchez-Gomez, M.; Garcia-Dueñas, V. Pervasive ductile extension, isothermal decompression and thinning of the Jubrique Unit in the Paleogene (Alpujarride Complex, western Betics, Spain). C. R. Acad. Sci. 1993, 316, 1595–1601. [Google Scholar]
- Sánchez-Rodriguez, L.; Gebauer, D. Mesozoic formation of pyroxenites and gabbros in the Ronda area (southern Spain), followed by early Miocene subduction metamorphism and emplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe dating of zircon. Tectonophysics 2000, 316, 19–44. [Google Scholar] [CrossRef]
- Van Hinsbergen, D.J.J.; Vissers, R.L.M.; Spakman, W. Origin and consequences of western Mediterranean subduction, rollback, and slab segmentation. Tectonics 2014, 33, 393–419. [Google Scholar] [CrossRef]
- Hidas, K.; Booth-Rea, G.; Garrido, C.J.; Martínez-Martínez, J.M.; Padrón-Navarta, J.A.; Konc, Z.; Giaconia, F.; Frets, E.; Marchesi, C. Back arc basin inversion and subcontinental mantle emplacement in the crust: Kilometre-scale folding and shearing at the base of the proto-Alborán lithospheric mantle (Betic Cordillera, southern Spain). J. Geol. Soc. 2013, 170, 47–55. [Google Scholar] [CrossRef]
- Azdimousa, A.; Bourgois, J.; Poupeau, G.; Vázquez, M.; Asebriy, L.; Labrin, E. Fission track thermochronology of the Beni Bousera peridotite massif (Internal Rif, Morocco) and the exhumation of ultramafic rocks in the Gibraltar Arc. Arab. J. Geosci. 2014, 7, 1993–2005. [Google Scholar] [CrossRef]
- El Bakili, A.; Corsini, M.; Chalouan, A.; Münch, P.; Romagny, A.; Lardeaux, J.M.; Azdimousa, A. Neogene polyphase deformation related to the Alboran basin evolution: New insights for the Beni Bousera massif (Internal Rif, Morocco). BSGF-Earth Sci. Bull. 2020, 191, 10. [Google Scholar] [CrossRef]
- Afiri, A. Étude Pétro-Structurale des Péridotites de Béni Bousera et des Roches Crustales Sus-Jacentes (Rif Interne, Maroc): Implications Géodynamiques. Ph.D. Thesis, Université Cadi Ayyad, Marrakech, Morocco, 2011. [Google Scholar]
- Sawyer, E.W. Atlas of Migmatites; The Canadian Mineralogist Special Publication (Volume 9); NRC Research Press: Ottawa, ON, Canada, 2008; 371p. [Google Scholar]
- Spear, F.S. Metamorphic fractional crystallization and internal metasomatism by diffusional homogenization of zoned garnets. Contrib. Mineral. Petrol. 1988, 99, 507–517. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 1998, 16, 309–343. [Google Scholar] [CrossRef]
- Powell, R.; Holland, T.J.B. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 1988, 6, 173–204. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. AX: A Program to Calculate Mineral End-Members from Chemical Analyses (Usually from an Electron Microprobe); Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Powell, R.; Holland, T.J.B. Course Notes for “THERMOCALC Workshop 2002: Calculating Metamorphic Phase Equilibria”; [CD-ROM]; 2002. [Google Scholar]
- Coggon, R.; Holland, T.J.B. Mixing properties of phengitic micas and revised garnet-phengite thermobarometers. J. Metamorph. Geol. 2002, 20, 683–696. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. Activity-composition relations for phases in petrological calculations: An asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 2003, 145, 492–501. [Google Scholar] [CrossRef]
- White, R.W.; Powell, R.; Holland, T.J.B.; Worley, B.A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at green schist and amphibolite facies conditions: Mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3. J. Metamorph. Geol. 2000, 18, 497–511. [Google Scholar] [CrossRef]
- Korhonen, F.J.; Brown, M.; Clark, C.; Bhattacharya, S. Osmulite–melt interactions in ultrahigh temperature granulites: Phase equilibria modelling and implications for the P–T–t evolution of the Eastern Ghats Province, India. J. Metamorph. Geol. 2013, 31, 881–907. [Google Scholar] [CrossRef]
- Yakymchuk, C.; Brown, M. Consequences of open system melting in tectonics. J. Geol. Soc. 2014, 171, 21–40. [Google Scholar] [CrossRef]
- Rosenberg, C.L.; Handy, M.R. Experimental deformation of partially melted granite revisited: Implications for the continental crust. J. Metamorph. Geol. 2005, 23, 19–28. [Google Scholar] [CrossRef]
- Fernández, R.D.; Arenas, R.; Pereira, M.F.; Sánchez-Martínez, S.; Albert, R.; Parra, L.M.M.; Rubio Pascual, F.J.; Matas, J. Tectonic evolution of Variscan Iberia: Gondwana–Laurussia collision revisited. Earth-Sci. Rev. 2016, 162, 269–292. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L. Alpine Evolution of the Ronda Ultramafic Complex and Its Country-Rocks (Betic Chain, Southern Spain): U-Pb SHRIMP Zircon and Fission-Track Dating. Ph.D. Thesis, Swiss Federal Institute of Technology, Zürich, Switzerland, 1998. [Google Scholar]
- Ruiz Cruz, M.D.; Sanz de Galdeano, C. Garnet variety and zircon ages in UHP meta-sedimentary rocks from the Jubrique zone (Alpujárride Complex, Betic Cordillera, Spain): Evidence for a pre-Alpine emplacement of the Ronda peridotite. Int. Geol. Rev. 2014, 56, 845–868. [Google Scholar] [CrossRef]
- Michard, A.; Goffé, B.; Bouybaouène, M.L.; Saddiqi, O. Late Hercynian Mesozoic thinning in the Alboran domain: Metamorphic data from the northern Rif, Morocco. Terra Nova 1997, 9, 171–174. [Google Scholar] [CrossRef]
- Zeck, H.P.; Whitehouse, M.J. Repeated age resetting in zircons from Hercynian–Alpine polymetamorphic schists (Betic–Rif tectonic belt, S. Spain)-a U–Th–Pb ion microprobe study. Chem. Geol. 2002, 182, 275–292. [Google Scholar] [CrossRef]
- Whitehouse, M.J.; Platt, J.P. Dating high-grade metamorphism—Constraints from rare-earth elements in zircon and garnet. Contrib. Mineral. Petrol. 2003, 145, 61–74. [Google Scholar] [CrossRef]
- Michard, A.; Chalouan, A.; Montigny, R.; Ouazzani-Touhami, M. Les nappes cristallophylliennes du Rif (Sebtides, Maroc), témoins d’un édifice alpin de type pennique incluant le manteau supérieur. C. R. Acad. Sci. 1983, 296, 1337–1340. [Google Scholar]
- Michard, A.; Goffé, B.; Chalouan, A.; Saddiqi, O. Les corrélations entre les chaînes Bètico-Rifaines et les Alpes et leurs conséquences. Bull. Soc. Géol. Fr. 1991, 162, 1151–1160. [Google Scholar]
- Comas, M.C.; Platt, J.P.; Soto, J.I.; Watts, A.B. The origin and tectonic history of the Alboran Basin: Insights from Leg 161 results. In Proceedings of the Ocean Drilling Program Scientific Results; Zahn, R., Comas, M.C., Klaus, A., Eds.; Ocean Drilling Program: College Station, TX, USA, 1999; Volume 161, pp. 555–580. [Google Scholar]
- Acosta-Vigil, A.; Rubatto, D.; Bartoli, O.; Cesare, B.; Meli, S.; Pedrera, A.; Azor, A.; Tajčmanová, L. Age of anatexis in the crustal footwall of the Ronda peridotites, S Spain. Lithos 2014, 210–211, 147–167. [Google Scholar] [CrossRef]
- Sánchez-Navas, A.; García-Casco, A.; Mazzoli, S.; Martín-Algarra, A. Polymetamorphism in the Alpujarride Complex, Betic Cordillera, South Spain. J. Geol. 2017, 125, 637–657. [Google Scholar] [CrossRef]
- Kornprobst, J. Signification structurale des péridotites dans l’orogenèse bético-rifain: Arguments tirés de l’étude des détritus observés dans les sédiments paléozoïques. Bull. Soc. Géol. Fr. 1976, 7, 607–618. [Google Scholar] [CrossRef]
- Sanz de Galdeano, C.; Ruiz-Cruz, M.D. Late Palaeozoic to Triassic formations unconformably deposited over the Ronda peridotites (Betic Cordilleras): Evidence for their Variscan time of crustal emplacement. Estud. Geol. 2016, 72, e043. [Google Scholar] [CrossRef]
- Farah, A.; Michard, A.; Saddiqi, O.; Chalouan, A.; Chopin, C.; Montero, P.; Corsini, M.; Bea, F. The Beni Bousera marbles, record of a Triassic-Early Jurassic hyperextended margin in the Alpujarrides-Sebtides units (Rif belt, Morocco). BSGF-Earth Sci. Bull. 2021, 192, 26. [Google Scholar] [CrossRef]
- Tubía, J.M.; Cuevas, J.; Esteban, J.J. Localization of deformation and kinematic shift during the hot emplacement of the Ronda Peridotites (Betic Cordilleras, southern Spain). J. Struct. Geol. 2013, 50, 148–160. [Google Scholar] [CrossRef]
- Platt, J.P.; Whitehouse, M.J.; Kelley, S.P.; Carter, A.; Hollick, L. Simultaneous extensional exhumation across the Alboran Basin: Implications for the causes of late orogenic extension. Geology 2003, 31, 251–254. [Google Scholar] [CrossRef]
- Platt, J.P.; Argles, T.W.; Carter, A.; Kelley, S.P.; Whitehouse, M.J.; Lonergan, L. Exhumation of the Ronda peridotite and its crustal envelope: Constraints from thermal modelling of a P–T–time array. J. Geol. Soc. 2003, 160, 655–676. [Google Scholar] [CrossRef]
- Garrido, C.J.; Gueydan, F.; Booth-Rea, G.; Precigout, J.; Hidas, K.; Padrón-Navarta, J.A.; Marchesi, C. Garnet lherzolite and garnet-spinel mylonite in the Ronda peridotite: Vestiges of Oligocene backarc mantle lithospheric extension in the western Mediterranean. Geology 2011, 39, 927–930. [Google Scholar] [CrossRef]
- Mazzoli, S.; Martín-Algarra, A. Deformation partitioning during transpressional emplacement of a ’mantle extrusion wedge’: The Ronda Peridotites, Western Betic Cordillera, Spain. J. Geol. Soc. Lond. 2011, 168, 373–382. [Google Scholar] [CrossRef]
- Gueydan, F.; Mazzotti, S.; Tiberi, C.; Cavin, R.; Villaseñor, A. Western Mediterranean subcontinental mantle emplacement by continental margin obduction. Tectonics 2019, 38, 2142–2157. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A. The Alpine Rif belt (Morocco): A case of mountain building in a subduction-subduction-transform fault triple junction. Pure Appl. Geophys. 2004, 161, 489–519. [Google Scholar] [CrossRef]
- Pearson, D.G.; Davies, G.R.; Nixon, P.H. Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, north Morocco. J. Petrol. 1993, 34, 125–172. [Google Scholar] [CrossRef]
- Marrone, S.; Monié, P.; Rossetti, F.; Lucci, F.; Theye, T.; Bouybaouène, M.L.; Zaghloul, M.N. The pressure-temperature-time-deformation history of the Beni Mzala unit (Upper Sebtides, Rif belt, Morocco): Refining the Alpine tectono-metamorphic evolution of the Alboran Domain of the western Mediterranean. J. Metamorph. Geol. 2021, 39, 591–615. [Google Scholar] [CrossRef]
- Azañon, J.M.; Goffé, B. Ferro-and magnesio carpholite assemblages as record of high-P, low-T metamorphism in the central Alpujarrides, Betic Cordillera (SE Spain). Eur. J. Mineral. 1997, 9, 1035–1051. [Google Scholar] [CrossRef]
- Janots, E.; Negro, F.; Brunet, F.; Goffé, B.; Engi, M.; Bouybaouène, M.L. Evolution of the REE mineralogy in HP-LT metapelites of the Sebtides complex, Rif, Morocco: Monazite stability and geochronology. Lithos 2006, 87, 214–234. [Google Scholar] [CrossRef]
- Jolivet, L.; Faccenna, C. Mediterranean extension and the Africa-Eurasia collision. Tectonics 2000, 19, 1095–1106. [Google Scholar] [CrossRef]
- Duggen, S.; Hoernle, K.; van den Bogaard, P.; Harris, C. Magmatic evolution of the Alboran region: The role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 2004, 218, 91–108. [Google Scholar] [CrossRef]
- Lacombe, O.; Jolivet, L. Structural and kinematic relationships between Corsica and the Pyrenees-Provence domain at the time of the Pyrenean orogeny. Tectonics 2005, 24, TC1003. [Google Scholar] [CrossRef]
- Platt, J.P.; Kelley, S.P.; Carter, A.; Orozco, M. Timing of tectonic events in the Alpujárride Complex, Betic Cordillera, southern Spain. J. Geol. Soc. 2005, 162, 451–462. [Google Scholar] [CrossRef]
- Spakman, W.; Wortel, R. Tomographic view on western Mediterranean geodynamics. In The TRANSMED Atlas, The Mediterranean Region from Crust to Mantle; Cavazza, W., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; pp. 31–52. [Google Scholar] [CrossRef]
- Bezada, M.J.; Humphreys, E.D.; Toomey, D.R.; Harnafi, M.; Dávila, J.M.; Gallart, J. Evidence for slab rollback in westernmost Mediterranean from improved upper mantle imaging. Earth Planet. Sci. Lett. 2013, 368, 51–60. [Google Scholar] [CrossRef]
- Romagny, A. Évolution des Mouvements Verticaux Néogènes de la Chaîne du Rif (Nord Maroc): Apports d’une Analyse Structurale et Thermochronologique. Ph.D. Thesis, Université de Nice Sophia-Antipolis, Nice, France, 2014. [Google Scholar]
Sample Migmatitic Paragneisses | ||||||
---|---|---|---|---|---|---|
Assemblage | Early Metamorphic Peak Assemblage | Syn-Thermal Peak Assemblage | Retrograde Assemblage | |||
End-Member | a | SD(a)/a | a | SD(a)/a | a | SD(a)/a |
Garnet | ||||||
Py | 0.00270 | 0.66 | 0.0022 | 0.68 | 0.00038 | 0.00029 |
Gr | 0.00520 | 0.61 | 0.00044 | 0.76 | 0.00033 | 0.00025 |
Alm | 0.36 | 0.15 | 0.39 | 0.15 | 0.36 | 0.05 |
Spss | 0.000014 | 0.000005 | 0.00091 | 0.00033 | 0.0053 | 0.01 |
K-felspar | ||||||
San | 0.86 | 0.05 | 0.84 | 0.04 | ||
Ab | 0.53 | 0.06 | 0.62 | 0.03 | ||
Biotite | ||||||
Phl | 0.012 | 0.47 | 0.016 | 0.45 | 0.018 | 0.0083 |
Ann | 0.073 | 0.30 | 0.069 | 0.31 | 0.076 | 0.02 |
East | 0.02 | 0.44 | 0.02 | 0.42 | 0.02 | 0.0092 |
Ilmenite | ||||||
Ilm | 0.91 | 0.05 | 0.91 | 0.04 | 0.91 | 0.04 |
Pnt | 0.041 | 0.0078 | 0.024 | 0.005 | 0.024 | 0.005 |
Geik | 0.0056 | 0.002 | 0.017 | 0.0038 | 0.017 | 0.0038 |
Plagioclase | ||||||
An | 0.70 | 0.05 | 0.70 | 0.05 | 0.70 | 0.03 |
Ab | 0.51 | 0.07 | 0.51 | 0.15 | 0.51 | 0.03 |
Cordierite | ||||||
Crd | 0.23 | 0.16 | ||||
Fcrd | 0.30 | 0.14 | ||||
Mncrd | 0.00059 | 0.75 | ||||
Muscovite | ||||||
Mu | 0.78 | 0.10 | ||||
Cel | 0.018 | 0.55 | ||||
Fcel | 0.020 | 0.50 | ||||
Other | ky, ru, q, H2O | sill, ru, q, H2O | still, ru, q, H2O | |||
Results | SD | SD | SD | |||
T (°C) | 673 | 55 | 752 | 48 | 703 | 48 |
P (kbar) | 8.8 | 0.9 | 8.0 | 0.9 | 3.5 | 0.7 |
Correlation fit | 0.726 0.91 | (1.45) | 0.556 0.90 | (1.45) | 0.856 1.08 | (1.49) |
N(R) | 8 | 5 | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afiri, A.; Essaifi, A.; Charroud, A.; Aqnouy, M.; Abdelrahman, K.; Alali, A.; Abioui, M. Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco). Minerals 2023, 13, 484. https://doi.org/10.3390/min13040484
Afiri A, Essaifi A, Charroud A, Aqnouy M, Abdelrahman K, Alali A, Abioui M. Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco). Minerals. 2023; 13(4):484. https://doi.org/10.3390/min13040484
Chicago/Turabian StyleAfiri, Abdelkhaleq, Abderrahim Essaifi, Ali Charroud, Mourad Aqnouy, Kamal Abdelrahman, Amar Alali, and Mohamed Abioui. 2023. "Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco)" Minerals 13, no. 4: 484. https://doi.org/10.3390/min13040484
APA StyleAfiri, A., Essaifi, A., Charroud, A., Aqnouy, M., Abdelrahman, K., Alali, A., & Abioui, M. (2023). Tectonometamorphic Evolution of the Migmatitic Paragneisses of the Filali Unit (Internal Rif, Morocco). Minerals, 13(4), 484. https://doi.org/10.3390/min13040484