The Genesis of Pyrite in the Fule Pb-Zn Deposit, Northeast Yunnan Province, China: Evidence from Mineral Chemistry and In Situ Sulfur Isotope
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Analytical Methods
4. Mineralogical Characteristics of Pyrite
- (1)
- Zoned pyrite (Figure 2b) consists of a homogeneous core (Py1) and a bright mantle (Py2) with a particle size of 50–80 μm.
- (2)
- Euhedral pyrite includes pentagonal dodecahedral and cubic crystals (Figure 2c,d) with significant variations in crystal size, distributed in the center of the hydrothermal dolomite vein (Figure 2a). Pentagonal dodecahedral pyrite is also present in the fracture of recrystallized dolomite or the contact with sphalerite (Figure 2d). The large cubic crystal occurs in the fissure of recrystallized dolomite (Figure 2c). A small amount of cubic crystal occurs at the margin of the hydrothermal dolomite vein or is enveloped in sphalerite.
- (3)
- Subhedral euhedral pyrite occurs at the margin of the pyrite-bearing hydrothermal dolomite vein or filled in the fissure of recrystallized dolomite (Figure 2e–g).
- (4)
5. Results
5.1. Major Elements
5.2. In Situ S Isotope Analysis
6. Discussion
6.1. Chemical Composition and Sulfur Sources of Pyrite
6.2. Genesis of Pyrite
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, T.T.; Zhu, C.W.; Yang, G.S.; Zhang, G.S.; Fan, H.F.; Zhang, Y.X.; Wen, H.J. Primary study of germanium isotope composition in sphalerite from the Fule Pb-Zn deposit, Yunnan province. Ore Geol. Rev. 2020, 120, 103466. [Google Scholar] [CrossRef]
- Zhou, J.X.; Huang, Z.L.; Zhou, M.F.; Li, X.B.; Jin, Z.G. Constraints of C-O-S-Pb isotope compositions and Rb-Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb-Zn deposit, SW China. Ore Geol. Rev. 2013, 53, 77–92. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Carranza, E.J.M.; Lei, X.R. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposit in China. Ore Geol. Rev. 2014, 56, 327–351. [Google Scholar] [CrossRef]
- Hu, R.Z.; Fu, S.L.; Huang, Y.; Zhou, M.F.; Fu, S.H.; Zhao, C.H.; Wang, Y.J.; Bi, X.W.; Xiao, J.F. The giant South China Mesozoic low-temperature metallogenic domain: Reviews and a new geodynamic model. J. Asian Earth Sci. 2017, 137, 9–34. [Google Scholar] [CrossRef]
- Nian, H.L.; Cui, Y.L.; Li, Z.L.; Jia, F.J.; Chen, W.; Yang, S.X.; Yang, Z. Features of sphalerite-hosted fluid inclusions of Fule lead-zinc mining area and outskirts in Luoping area, eastern Yunnan Province, China. Acta Mineral. Sin. 2017, 37, 469–474. (In Chinese) [Google Scholar]
- Zhu, C.W.; Wen, H.J.; Zhang, Y.X.; Fu, S.H.; Fan, H.F.; Cloquet, C. Cadmium isotope fractionation in the Fule Mississippi Valley-type deposit, Southwest China. Miner. Deposita 2017, 52, 675–686. [Google Scholar] [CrossRef]
- Zhou, J.X.; Luo, K.; Wang, X.C.; Simon, A.W.; Wu, T.; Huang, Z.L.; Cui, Y.L.; Zhao, J.X. Ore genesis of the Fule Pb-Zn deposit and its relationship with the Emeishan large igneous province: Evidence from mineralogy, bulk C-O-S and in situ S-Pb isotopes. Gondwana Res. 2018, 54, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Qi, L.; Gao, J.; Ye, L.; Huang, Z.; Zhou, J. Re-Os dating of galena and sphalerite from lead-zinc sulfide deposits in Yunnan Province, SW China. J. Earth Sci. 2015, 26, 343–351. [Google Scholar] [CrossRef]
- Lyu, C.; Gao, J.F.; Qi, L.; Huang, X.W. Re-Os isotope system of sulfide from the Fule carbonate-hosted Pb-Zn deposit, SW China: Implications for Re-Os dating of Pb-Zn mineralization. Ore Geol. Rev. 2020, 121, 103558. [Google Scholar] [CrossRef]
- Craig, J.R.; Vokes, F.M.; Solberg, T.N. Pyrite: Physical and chemical textures. Miner. Deposita 1998, 34, 82–101. [Google Scholar] [CrossRef]
- Deditius, A.P.; Reich, M.; Kesler, S.E.; Utsunomiya, S.; Chryssoulis, S.L.; Walshe, J.; Ewing, R.C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochim. Et Cosmochim. Acta 2014, 140, 644–670. [Google Scholar] [CrossRef] [Green Version]
- Large, R.R.; Halpin, J.A.; Danyushevsky, L.V.; Maslennikov, V.V.; Bull, S.W.; Long, J.A.; Gregory, D.D.; Lounejeva, E.; Lyons, T.W.; Sack, P.J. Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet. Sci. Lett. 2014, 389, 209–220. [Google Scholar] [CrossRef]
- Franchini, M.; Mcfarlane, C.; Maydagán, L.; Reich, M.; Lentz, D.R.; Meinert, L.; Bouhier, V. Trace metals in pyrite and marcasite from the Agua Rica porphyry-high sulfidation epithermal deposit, Catamarca, Argentina: Textural features and metal zoning at the porphyry to epithermal transition. Ore Geol. Rev. 2015, 66, 366–387. [Google Scholar] [CrossRef]
- Genna, D.; Gaboury, D. Deciphering the hydrothermal evolution of a VMS system by LA-ICP-MS using trace elements in pyrite: An example from the Bracemac-McLeod deposits, Abitib, Canada, and implications for exploration. Econ. Geol. 2015, 110, 2087–2108. [Google Scholar] [CrossRef]
- Large, R.R.; Danyushevsky, L.; Hollit, C.; Maslennikov, V.V.; Meffre, S.; Gilbert, S.; Bull, S.; Scott, R.; Emsbo, P.; Thomas, H.; et al. Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ. Geol. 2009, 104, 635–668. [Google Scholar] [CrossRef]
- Reich, M.; Deditius, A.; Chryssoulis, S.; Li, J.W.; Ma, C.Q.; Parada, M.A.; Barra, F.; Mittermayr, F. Pyrite as a record of hydrothermal fluid evolution in a porphyry copper system: A SIMS/EMPA trace element study. Geochim. Et Cosmochim. Acta 2013, 104, 42–62. [Google Scholar] [CrossRef]
- Sung, Y.H.; Brugger, J.; Ciobanu, C.L.; Pring, A.; Skinner, W.; Nugus, M. Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia. Miner. Deposita 2009, 44, 765–791. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.Y. Migration of trace elements in pyrite from orogenic gold deposits: Evidence from LA-ICP-MS analyses. Acta Geol. Sin. 2014, 88 (Suppl. 2), 841–842. [Google Scholar] [CrossRef]
- Winderbaum, L.; Ciobanu, C.L.; Cook, N.J.; Paul, M.; Metcalfe, A.; Gilbert, S. Multivariate analysis of an LA-ICP-MS trace element dataset for pyrite. Math. Geosci. 2012, 44, 823–842. [Google Scholar] [CrossRef]
- Basori, M.B.I.; Gilbert, S.; Large, R.R.; Zaw, K. Textures and trace element composition of pyrite from the Bukit Botol volcanic-hosted massive sulphide deposit, Peninsular Malaysia. J. Asian Earth Sci. 2018, 158, 173–185. [Google Scholar] [CrossRef]
- Meng, Y.M.; Hu, R.Z.; Huang, X.W.; Gao, J.F.; Christian, S. The origin of the carbonate-hosted Huize Zn-Pb-Ag deposit, Yunnan province, SW China: Constraints from the trace element and sulfur isotopic compositions of pyrite. Mineral. Petrol. 2019, 113, 369–391. [Google Scholar] [CrossRef]
- Ren, T.; Zhou, J.X.; Wang, D.; Yang, G.S.; Lv, C.L. Trace elemental and S-Pb isotopic geochemistry of the Fule Pb-Zn deposit, NE Yunnan Province. Acta Petrol. Sin. 2019, 35, 3493–3505. (In Chinese) [Google Scholar]
- Li, L.T. The geological feature of Fulechang Pb-Zn deposit and inference of deep prospecting in Luoping, Yunnan. Geol. Yunnan 2014, 33, 240–244. (In Chinese) [Google Scholar]
- Keith, M.; Häckel, F.; Haase, K.M.; Schwarz-Schampera, U.; Klemd, R. Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol. Rev. 2016, 72, 728–745. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. Rev. Mineral. Geochem. 1986, 16, 491–559. [Google Scholar]
- Gomes, M.L.; Fike, D.A.; Bergmann, K.D.; Jones, C.; Knoll, A.H. Environmental insights from high-resolution (SIMS) sulfur isotope analyses of sulfides in Proterozoic microbialites with diverse mat textures. Geobiology 2018, 16, 17–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohmoto, H. Biogeochemistry of sulfur and the mechanisms of sulfide-sulfate mineralization in Archean oceans. In Early Organic Evolution: Implications for Mineral and Energy Resources; Schidlowski, M., Golubic, S., Kimberley, M.M., McKirdy, D.M., Trudinger, P.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 378–397. [Google Scholar]
- Wilhelms, A.; Larter, S.R.; Head, I.; Farrimond, P.; Diprimio, R.; Zwach, C. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 2001, 411, 1034–1037. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Canfield, D.E.; Teske, A. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature 1996, 382, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Habicht, K.S.; Canfield, D.E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. Geochim. Et Cosmochim. Acta 1997, 61, 5351–5361. [Google Scholar] [CrossRef] [PubMed]
- Loftus-Hills, G.; Solomon, M. Cobalt, nickel and selenium in sulphides as indicators of ore genesis. Miner. Deposita 1967, 2, 228–242. [Google Scholar] [CrossRef]
- Fleischer, M. Minor elements in some sulphide minerals. Econ. Geol. 1955, 50, 970–1024. [Google Scholar]
- Wilkin, R.T.; Barnes, H.L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Et Cosmochim. Acta 1996, 60, 4167–4179. [Google Scholar] [CrossRef]
- Bajwah, Z.U.; Seccombe, P.K.; Offler, R. Trace element distribution, Co/Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Miner. Deposita 1987, 22, 292–303. [Google Scholar] [CrossRef]
- Bralia, A.; Sabatini, G.; Troja, F. A revaluation of the Co/Ni ratio in pyrite as geochemical tool in ore genesis problems. Miner. Deposita 1979, 14, 353–374. [Google Scholar] [CrossRef]
- Gregory, D.D.; Large, R.R.; Halpin, J.A.; Steadman, J.A.; Hickman, A.H.; Ireland, T.R.; Holden, P. The chemical conditions of the late Archean Hamersley basin inferred from whole rock and pyrite geochemistry with Δ33S and δ34S isotope analyses. Geochim. Et Cosmochim. Acta 2015, 149, 223–250. [Google Scholar] [CrossRef]
- Gregory, D.D.; Lyons, T.W.; Large, R.R.; Jiang, G.; Stepanov, A.S.; Diamond, C.W.; Figueroa, M.C.; Olin, P. Whole rock and discrete pyrite geochemistry as complementary tracers of ancient ocean chemistry: An example from the Neoproterozoic Doushantuo Formation, China. Geochim. Et Cosmochim. Acta 2017, 216, 201–220. [Google Scholar] [CrossRef]
- Alonso-Azcárate, J.; Rodas, M.; Fernández-Díaz, L.; Bottrell, S.H.; Mas, J.R.; López-Andrés, S. Causes of variation in crystal morphology in metamorphogenic pyrite deposits of the Cameros Basin (N Spain). Geol. J. 2001, 36, 159–170. [Google Scholar] [CrossRef] [Green Version]
Sample No. | Pyrite Type | Fe | Cu | Zn | Ni | Se | As | S | Cd | Pb | Co | Total | Co/Ni | Cu/Ni | Zn/Ni | S/Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | |||||||||||||||||
fl17-3-core | Py1 | Zoned pyrite | 44.85 | 0.06 | 1.13 | 0.76 | 0.00 | 0.44 | 53.03 | 0.01 | 0.01 | 0.19 | 100.48 | 0.25 | 0.08 | 1.49 | 2.06 |
fl17-4-core | 44.29 | 0.07 | 1.09 | 1.29 | 0.03 | 0.99 | 52.49 | 0.01 | 0.04 | 0.28 | 100.59 | 0.22 | 0.06 | 0.85 | 2.06 | ||
fl17-5-core | 41.91 | 0.04 | 0.66 | 1.55 | 0.01 | 1.37 | 52.96 | - | - | 0.50 | 99.00 | 0.32 | 0.03 | 0.43 | 1.10 | ||
fl17-6-core | 42.15 | 0.02 | 0.48 | 1.05 | 0.06 | 1.14 | 53.40 | - | - | 0.45 | 98.76 | 0.42 | 0.02 | 0.46 | 1.10 | ||
S.D. | 0.28 | 0.01 | 0.02 | 0.27 | 0.02 | 0.28 | 0.27 | - | 0.02 | 0.05 | 0.05 | 0.02 | 0.01 | 0.32 | 0.00 | ||
Median | 44.57 | 0.07 | 1.11 | 1.03 | 0.02 | 0.72 | 52.76 | 0.01 | 0.03 | 0.24 | 100.54 | 0.24 | 0.07 | 1.17 | 2.06 | ||
Mean | 44.57 | 0.07 | 1.11 | 1.03 | 0.02 | 0.72 | 52.76 | 0.01 | 0.03 | 0.24 | 100.54 | 0.24 | 0.07 | 1.17 | 2.06 | ||
fl2001-02 | Py2 | Subhedral-euhedral pyrite | 46.20 | 0.05 | 0.10 | 0.08 | 0.04 | 0.38 | 53.32 | 0.02 | 0.03 | 0.06 | 100.30 | 0.78 | 0.58 | 1.28 | 2.01 |
fl2001-03 | 46.15 | 0.01 | 0.09 | - | 0.04 | 0.19 | 53.28 | 0.03 | 0.02 | 0.06 | 99.85 | - | - | - | 2.01 | ||
fl2001-09 | 46.41 | - | 0.02 | 0.01 | 0.03 | 0.43 | 53.11 | 0.01 | - | 0.04 | 100.05 | 3.89 | - | 1.67 | 1.99 | ||
fl2001-10 | 46.30 | - | 0.79 | - | 0.05 | 0.52 | 53.67 | - | - | 0.05 | 101.38 | - | - | - | 2.02 | ||
fl2001-11 | 45.95 | - | 2.01 | - | - | 0.18 | 54.03 | 0.01 | - | 0.05 | 102.23 | - | - | - | 2.05 | ||
fl2001-12 | 45.01 | - | 1.86 | - | 0.03 | 0.32 | 52.27 | 0.01 | - | 0.05 | 99.55 | - | - | - | 2.02 | ||
fl2013-17 | 46.45 | - | 0.14 | 0.02 | - | 0.23 | 53.80 | - | - | 0.03 | 100.66 | 1.67 | - | 7.72 | 2.02 | ||
fl2013-14 | 46.29 | 0.03 | 0.36 | - | 0.09 | 0.25 | 53.73 | - | 0.02 | 0.04 | 100.81 | - | - | - | 2.02 | ||
fl2001-04 | 45.64 | 0.07 | 0.05 | 0.13 | 0.05 | 0.65 | 52.83 | 0.01 | 0.20 | 0.05 | 99.68 | 0.40 | 0.52 | 0.35 | 2.02 | ||
fl2001-05 | 45.88 | 0.08 | 0.35 | 0.03 | - | 0.21 | 53.66 | 0.02 | - | 0.06 | 100.26 | 1.96 | 2.71 | 12.46 | 2.04 | ||
fl2001-07 | 46.27 | 0.03 | 0.15 | - | - | 0.09 | 53.69 | - | 0.13 | 0.07 | 100.41 | - | - | - | 2.02 | ||
fl2001-08 | 45.64 | 0.04 | 0.05 | - | - | - | 52.12 | 0.01 | 0.15 | 0.04 | 98.05 | 12.33 | 13.67 | 18.00 | 1.99 | ||
fl2013-15 | 45.84 | 0.01 | 1.06 | - | 0.01 | - | 53.62 | - | 0.09 | 0.03 | 100.65 | - | - | - | 2.04 | ||
fl2013-19 | 46.11 | 0.04 | 0.27 | - | - | 0.59 | 53.46 | 0.01 | 0.05 | 0.06 | 100.57 | - | - | - | 2.02 | ||
fl2013-20 | 46.27 | 0.06 | 0.05 | 0.04 | - | 0.11 | 53.50 | 0.01 | - | 0.06 | 100.08 | 1.63 | 1.69 | 1.34 | 2.01 | ||
fl2013-22 | 46.20 | 0.01 | - | - | 0.01 | 0.13 | 53.59 | 0.02 | - | 0.06 | 100.02 | - | - | - | 2.02 | ||
fl2013-24 | 46.13 | - | 0.01 | - | - | 0.27 | 53.19 | - | - | 0.05 | 99.65 | - | - | - | 2.01 | ||
fl2013-25 | 46.08 | 0.03 | - | 0.04 | - | 0.29 | 53.47 | - | - | 0.05 | 99.96 | 1.27 | 0.76 | 0.11 | 2.02 | ||
fl2013-30 | 46.03 | 0.04 | - | - | 0.01 | - | 54.60 | - | 0.06 | 0.05 | 100.78 | - | - | - | 2.07 | ||
S.D. | 0.33 | 0.02 | 0.63 | 0.04 | 0.02 | 0.16 | 0.55 | 0.01 | 0.06 | 0.01 | 0.82 | 3.66 | 4.69 | 6.27 | 0.02 | ||
Median | 46.13 | 0.04 | 0.15 | 0.04 | 0.04 | 0.26 | 53.50 | 0.01 | 0.06 | 0.05 | 100.26 | 1.65 | 1.23 | 1.51 | 2.02 | ||
Mean | 46.04 | 0.04 | 0.46 | 0.05 | 0.04 | 0.30 | 53.42 | 0.01 | 0.08 | 0.05 | 100.26 | 2.99 | 3.32 | 5.37 | 2.02 | ||
fl10-01 | Anhedral pyrite | 46.52 | 0.03 | 0.05 | - | 0.03 | - | 53.59 | - | - | 0.05 | 100.27 | - | - | - | 2.01 | |
fl10-02 | 45.92 | 0.14 | 0.08 | 0.01 | - | 0.04 | 53.76 | - | - | 0.06 | 100.01 | 6.30 | 13.70 | 8.00 | 2.04 | ||
fl10-03 | 46.18 | 0.09 | 0.72 | - | 0.03 | 0.01 | 53.81 | - | - | 0.06 | 100.89 | - | - | - | 2.03 | ||
fl2002-01 | 45.91 | 0.02 | - | - | - | 0.13 | 52.93 | 0.01 | 0.07 | 0.05 | 99.12 | - | - | - | 2.01 | ||
fl2002-02 | 46.40 | - | 0.01 | - | - | - | 53.25 | - | 0.05 | 0.06 | 99.75 | - | - | - | 2.00 | ||
fl2002-03 | 45.66 | 0.04 | 0.02 | 0.02 | - | 0.10 | 51.67 | - | - | 0.05 | 97.56 | 2.70 | 1.75 | 1.10 | 1.97 | ||
fl2002-04 | 45.84 | 0.01 | 0.02 | - | - | 0.03 | 53.33 | - | - | 0.04 | 99.28 | - | - | - | 2.03 | ||
fl17-10 | 45.68 | 0.33 | 0.02 | - | - | - | 53.08 | - | 0.07 | 0.05 | 99.23 | - | - | - | 2.02 | ||
fl17-11 | 45.06 | 0.29 | 0.18 | - | - | - | 51.85 | 0.01 | 1.61 | 0.06 | 99.06 | - | - | - | 2.00 | ||
fl2001-01 | 46.24 | 0.03 | 0.02 | - | - | - | 54.07 | - | 0.07 | - | 100.44 | - | - | - | 2.04 | ||
S.D. | 0.40 | 0.11 | 0.22 | 0.01 | - | 0.05 | 0.76 | - | 0.62 | 0.01 | 0.89 | 1.80 | 5.98 | 3.45 | 0.02 | ||
Median | 45.92 | 0.04 | 0.02 | 0.02 | 0.03 | 0.04 | 53.29 | 0.01 | 0.07 | 0.05 | 99.52 | 4.50 | 7.73 | 4.55 | 2.02 | ||
Mean | 45.94 | 0.11 | 0.12 | 0.02 | 0.03 | 0.06 | 53.13 | 0.01 | 0.37 | 0.05 | 99.56 | 4.50 | 7.73 | 4.55 | 2.02 | ||
fl2001-13 | Pentagonal dodecahedral pyrite | 45.96 | 0.02 | 0.01 | 0.16 | - | 0.43 | 53.25 | 0.01 | 0.03 | 0.07 | 99.92 | 0.44 | 0.14 | 0.04 | 2.02 | |
fl2013-18 | 45.58 | 0.00 | 0.39 | - | 0.04 | 0.52 | 52.22 | 0.03 | 0.02 | 0.05 | 98.88 | - | - | - | 2.00 | ||
S.D. | 0.19 | 0.01 | 0.19 | 0.00 | 0.00 | 0.05 | 0.50 | 0.01 | 0.01 | 0.01 | 0.52 | 0.00 | 0.00 | 0.00 | 0.01 | ||
Median | 45.77 | 0.01 | 0.20 | 0.16 | 0.04 | 0.48 | 52.76 | 0.02 | 0.03 | 0.06 | 99.40 | 0.44 | 0.14 | 0.04 | 2.01 | ||
Mean | 45.77 | 0.01 | 0.20 | 0.16 | 0.04 | 0.48 | 52.76 | 0.02 | 0.03 | 0.06 | 99.40 | 0.44 | 0.14 | 0.04 | 2.01 | ||
fl17-1-rim | Zoned pyrite | 45.78 | 0.00 | 1.50 | 0.02 | - | 0.08 | 53.41 | 0.03 | - | 0.05 | 100.87 | 2.30 | 0.20 | 74.75 | 2.03 | |
fl17-2-rim | 45.54 | 0.03 | 1.63 | 0.05 | - | 0.10 | 53.96 | - | 0.04 | 0.05 | 101.41 | 0.98 | 0.47 | 30.81 | 2.06 | ||
S.D. | 0.12 | 0.02 | 0.06 | 0.02 | - | 0.01 | 0.28 | 0.00 | 0.00 | 0.00 | 0.27 | 0.66 | 0.14 | 21.97 | 0.02 | ||
Median | 45.66 | 0.02 | 1.57 | 0.04 | - | 0.09 | 53.69 | 0.03 | 0.04 | 0.05 | 101.14 | 1.64 | 0.34 | 52.78 | 2.05 | ||
Mean | 45.66 | 0.02 | 1.57 | 0.04 | - | 0.09 | 53.69 | 0.03 | 0.04 | 0.05 | 101.14 | 1.64 | 0.34 | 52.78 | 2.05 |
Sample No. | Description | Pyrite Type | δ34S |
---|---|---|---|
fl17-2-core | Zoned pyrite | Py1 | −32.9 |
fl-17-3-core | −34.3 | ||
fl17-1-rim | Py2 | −12.5 | |
fl-20-1-rim | Cubic pyrite | 13.6 | |
fl-20-2-rim | 12.0 | ||
fl-20-3-core | 10.9 | ||
fl-20-4-rim | 13.0 | ||
fl-20-5-rim | 13.6 | ||
fl-20-6-rim | 13.1 | ||
fl20-13-8 | Pentagonal dodecahedral pyrite | 13.6 | |
fl20-13-1 | 13.5 | ||
fl20-13-3 | 14.0 | ||
fl20-13-12 | Subhedral-euhedral pyrite | 9.8 | |
fl20-13-13 | 9.7 | ||
fl20-13-6 | 10.0 | ||
fl20-13-5 | 11.1 | ||
fl20-13-2 | 12.1 | ||
fl20-13-4 | 10.5 | ||
fl20-13-7 | 11.3 | ||
fl20-13-9 | 13.7 | ||
fl20-13-10 | 13.3 | ||
fl20-13-11 | 15.0 | ||
fl17-8 | 11.4 | ||
fl10-5 | Anhedral pyrite | 13.4 | |
Fl17-2 | 18.1 | ||
fl17-3 | 13.1 | ||
fl17-4 | 15.4 | ||
fl17-5 | 15.2 | ||
fl17-6 | 20.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Ren, T.; Guan, S. The Genesis of Pyrite in the Fule Pb-Zn Deposit, Northeast Yunnan Province, China: Evidence from Mineral Chemistry and In Situ Sulfur Isotope. Minerals 2023, 13, 495. https://doi.org/10.3390/min13040495
Chen M, Ren T, Guan S. The Genesis of Pyrite in the Fule Pb-Zn Deposit, Northeast Yunnan Province, China: Evidence from Mineral Chemistry and In Situ Sulfur Isotope. Minerals. 2023; 13(4):495. https://doi.org/10.3390/min13040495
Chicago/Turabian StyleChen, Meng, Tao Ren, and Shenjin Guan. 2023. "The Genesis of Pyrite in the Fule Pb-Zn Deposit, Northeast Yunnan Province, China: Evidence from Mineral Chemistry and In Situ Sulfur Isotope" Minerals 13, no. 4: 495. https://doi.org/10.3390/min13040495
APA StyleChen, M., Ren, T., & Guan, S. (2023). The Genesis of Pyrite in the Fule Pb-Zn Deposit, Northeast Yunnan Province, China: Evidence from Mineral Chemistry and In Situ Sulfur Isotope. Minerals, 13(4), 495. https://doi.org/10.3390/min13040495